
Search

Version 10.1

Query Guide

Oracle ATG

One Main Street

Cambridge, MA 02142

USA

ATG Search Query Guide

Product version: 10.1

Release date: 03-14-12

Document identifier: SearchQueryGuide1405051316

Copyright © 1997, 2012 Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are

protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy,

reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any

means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please

report them to us in writing. If this software or related documentation is delivered to the U.S. Government or anyone licensing it on behalf of

the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS

Programs, software, databases, and related documentation and technical data delivered to U.S. Government customers are "commercial

computer software" or "commercial technical data" pursuant to the applicable Federal Acquisition Regulation and agency-specific

supplemental regulations. As such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and

license terms set forth in the applicable Government contract, and, to the extent applicable by the terms of the Government contract, the

additional rights set forth in FAR 52.227-19, Commercial Computer Software License (December 2007). Oracle America, Inc., 500 Oracle

Parkway, Redwood City, CA 94065.

This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended

for use in any inherently dangerous applications, including applications that may create a risk of personal injury. If you use this software or

hardware in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures

to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software or hardware in

dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are

trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or

registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open Group.

The software is based in part on the work of the Independent JPEG Group.

This software or hardware and documentation may provide access to or information on content, products, and services from third parties.

Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party

content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to

your access to or use of third-party content, products, or services.

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program website at http://www.oracle.com/us/

corporate/accessibility/index.html.

Oracle customers have access to electronic support through My Oracle Support. For information, visit http://www.oracle.com/support/

contact.html or visit http://www.oracle.com/accessibility/support.html if you are hearing impaired.

ATG Search Query Guide iii

Table of Contents

1. Introduction . 1

Audience . 1

Document Conventions . 2

More Information . 2

2. Query Processing Overview . 3

User Enters Search Input . 4

Natural Language Processing . 4

Apply Constraints . 4

Query Processing . 5

Search Results Displayed . 5

3. Search Form Handlers . 7

Form Handler Classes and Architecture . 7

Form Handler and Request Components . 8

Configuring the Form Handler Component . 8

Configuring the QueryRequest Component . 8

Configuring the SearchContext Component . 9

Sample Application . 9

Specifying the Content Labels and Target Type for Queries . 10

Understanding Content Labels and Target Types . 10

Site-Specific Content . 11

Determining the Environment to Search . 11

DynamicTargetSpecifier . 12

MultisiteConstraint . 12

Setting Request Properties . 13

Setting the responseNumberSettings Property . 13

Setting the relQuestSettings Property . 13

Setting the docProps and textProps Properties . 14

Setting Grouping Options . 15

Setting the Parser Options . 15

Setting Constraint Properties . 16

Processing the Request and Response . 17

Catalog Constraints . 18

Specifying a Price List in the Search Request . 18

Creating the Property Mapping . 19

Specifying a Default Price List . 20

Invoking Multiple Form Handlers . 20

Handling Results . 21

Indicating the Number of Results . 21

Handling Repository Items . 22

4. Paging Search Results . 23

Specifying the Page Size . 23

Handling Page Requests . 24

Types of Paging . 24

Example of Normal Paging . 24

Example of Fast Paging . 25

Modifying and Resubmitting the Request . 26

Example of Resubmitting the Form . 26

Example of Saving the Request in the SearchSession . 27

5. Implementing Type-Ahead for Searches . 29

Creating the Type-Ahead Page . 30

Creating the Search Page . 30

iv ATG Search Query Guide

6. User-Entered Operators . 33

Literal Operator . 33

Required Terms . 34

Required in Statement . 34

Required in Document . 34

Excluded Terms . 35

Excluded in Statement Results . 35

Excluded in Document Results . 35

Case Restriction . 36

Wildcards . 36

Regular Expressions . 37

Number Ranges . 38

Operator Combinations . 38

Fielded Search Operators . 39

7. Constraining Queries . 41

Document Set Constraints . 41

Collection Constraints . 42

Property Constraints . 42

Index Item Constraints . 43

Index Item URL Constraints . 44

Index Item Format Constraints . 44

Index Item Language . 44

Index Item File Extension . 44

Index Item Modified Date . 45

Combining Query Constraints . 45

Weighted Metadata Preference Expressions . 47

Query Refinements . 47

8. JMS Event Handling . 49

Search Messaging Components . 49

Suppressing Search Messages . 50

Detecting Web Spiders . 50

Filtering by IP Address or User Account . 51

Patch Bay Configuration . 51

9. Caching Search Query Data . 53

How Search Caching Works . 53

Configuring Search Caching . 54

Disabling Cache Invalidation . 54

Compressing Cache Entries . 55

Compressing Responses . 55

Hashing Requests . 56

Controlling the Caching of Individual Queries . 56

Queries that Include Timestamps . 57

Using the Cache Administration Page . 58

10. Faceted Search . 59

Overview of Faceted Search . 59

Building Pages that Include Facets . 60

Issuing Faceted Search Queries . 61

Specifying the Category for the Query . 62

Restricting the Set of Facets and Selections . 63

Using a Facet Trail . 63

Supporting Multiple Selection Values . 65

Working with the FacetTrail Object . 66

Rendering the Facets . 66

ATG Search Query Guide v

Ordering Facets by Priority . 68

Filtering Facets . 68

Skipping Facet Values in the Facet Trail . 69

Removing Facet Selections . 70

Rendering Multiple Selection Values . 71

About Refinement Counts . 71

Incorporating Search Text as a Facet . 72

Constructing the Facet Trail String . 72

Selecting the Refinement Configuration . 73

Formatting Facet Values . 74

11. Search Merchandising . 77

Determining the Search Configuration for a Query . 77

Determining the Language . 78

Handling Redirects . 79

12. Recording Events for Reporting . 81

Using the GetClickThroughId Servlet Bean . 81

Configuring the Cache . 82

Configuring the SearchClickThroughServlet . 82

Limiting the Pages to Examine . 83

A. Commerce Search Servlet Beans . 85

CommerceFacetTrailDroplet . 85

GetClickThroughId . 87

RefinementValueDroplet . 89

B. Search XML Reference . 91

answer . 91

categories . 93

category . 94

context . 94

debug . 96

document . 96

documentSets . 97

envName . 97

expandedStemming . 98

language . 98

parserOptions . 98

priorinput . 99

query . 99

andFeedback . 100

autocat . 101

autocatPrune . 101

autospell . 101

debug . 101

docSetSort . 102

docFlags . 102

docProps . 103

docSort . 103

docSortOrder . 104

docSortCase . 105

docSortProp . 105

docSortPropVal . 105

docSortPred . 105

docSortPropDefault . 105

feedback . 105

vi ATG Search Query Guide

locale . 105

maxRelatedSets . 105

mergeSettings . 106

minScore . 108

mode . 108

optimize . 110

pageNum . 110

pageSize . 110

QUID . 110

rankConfig . 110

recurseDocuments . 111

refineConfig . 111

refineConfigDefault . 111

refineConfigMapKey . 112

refineConfigMapProp . 112

refineMax . 112

refineTop . 112

refineMin . 113

relatedSets . 113

relQuestSettings . 113

requestMode . 121

responseNumberSettings . 122

ruleMode . 124

sorting . 124

sortProp . 125

strategy . 125

suggestCat . 126

suggestCatPrune . 126

textProps . 126

queryAction . 126

queryRule . 127

queryTerms . 127

question . 127

refineConstraint . 127

refinements . 127

reportData . 127

response . 128

responseTree . 128

securityRole . 128

spellchecker . 129

spelling . 130

spellSplitWords . 130

startCategory . 130

targetLanguage . 130

text . 131

topicMaximum . 132

userquestion . 132

weightedProps . 132

wildcardMax . 132

Index . 135

1 Introduction 1

1 Introduction

The Oracle ATG Web Commerce Search product allows end-users to search indexed data on a site and receive

useful answers. Implementing Search on your site involves the following steps:

1. Specify repository items and properties to index through an XML definition file.

2. Based on the information in the XML definition file, transform these repository items into XHTML documents.

3. Index the XHTML documents in Search.

4. Use search form handlers to allow site visitors to search the indexed documents.

The first three steps are described in the ATG Search Administration Guide. This book explains how to set up

search pages and form handlers to help your users achieve the search results they want from your site. For most

sites, the content searched is a product catalog; therefore most of the examples in this book are geared toward

this common situation, but you can adapt them for other purposes.

The Oracle ATG Web Commerce Search form handlers provide access to a wide number of options that can

affect how searches are processed and search results are displayed. These options are ultimately passed to the

search engine in XML form. In general, this book provides Java API-level information regarding these settings;

however, at times it may be necessary to explore the XML level, since this is the language understood by the

engine. In addition, an appendix reference on the XML is included to help in debugging search request and

response strings.

This chapter includes the following sections:

Audience (page 1)

Document Conventions (page 2)

More Information (page 2)

Audience

This guide is intended for JSP developers and system integrators. Users should have a thorough knowledge

of the Oracle ATG Web Commerce platform, other Oracle ATG Web Commerce products they are planning to

integrate Search with, JSPs, search technology, and XML syntax.

2 1 Introduction

Document Conventions

This guide uses the following conventions:

• <ATG10dir> refers to your Oracle ATG Web Commerce installation directory.

• Server or refers to an application instance that is deployed to your application server in the form of an EAR file.

See the ATG Installation and Configuration Guide for information. Oracle ATG Web Commerce documentation

commonly refers to the following server types:

• Asset management server—Where ATG Content Administration, Search Administration, and other such

applications run. Sometimes called just the management server.

• Agent-facing server—Used for Oracle ATG Web Knowledge Manager and other agent-oriented applications

• Customer-facing server or production server—Where your Oracle ATG Web Commerce application runs.

More Information

In addition to this guide, you may also want to consult the resources mentioned below.

See the following documents for additional information on Oracle ATG Web Commerce Search and related

products:

• ATG Search Installation and Configuration Guide

• ATG Search Administration Guide

2 Query Processing Overview 3

2 Query Processing Overview

This chapter describes the process by which search queries are turned into responses, and highlights some of

the important parameters that you might want to address in your form handlers.

This diagram provides a high-level overview of the processes used in answering search requests:

Search Request Processing

The sections that follow provide detailed information on each request processing step:

User Enters Search Input (page 4)

Natural Language Processing (page 4)

Apply Constraints (page 4)

Query Processing (page 5)

Search Results Displayed (page 5)

4 2 Query Processing Overview

User Enters Search Input

Oracle ATG Web Commerce Search can accept several different types of search input. Two common types are:

• Text—The user enters one or more terms and clicks a submit button.

• Browse—The user clicks a link that contains search request information encoded in a URL. This information

could include a product category.

The examples in this chapter use text searches.

The search form handlers can also add parameters to the user input, for example to identify the language the

user is searching in, or to restrict the search to certain parts of the index. Most of this guide addresses this

subject, but see the Search Form Handlers (page 7) chapter to get started.

The text the user enters is packaged up into a query request. The request is a Java object that is sent to Search

when the user clicks a submit button, follows a link, etc. The request is then translated into XML for processing

by the search engine.

Natural Language Processing

Once it receives the submitted request, Oracle ATG Web Commerce Search analyzes it to determine what terms

it has to search for. To do this, it performs a series of analyses on the text the user entered. Note that it is the final

result of all of these steps that is used by the search engine to conduct the search.

This is similar to the process used to index content, and it relies on a combination of the core search dictionary,

any supplemental dictionaries Search Administration users have created, and language-specific information.

This step includes the following processes:

1. Identify the words in the request.

2. Identify the root form of each of the identified words.

3. Map variant word forms and common misspellings to a single form of the word.

4. Identify synonyms for each of the words, if any are defined.

5. Apply a weight to each of the terms in the request. This is a proprietary process by which Search decides how

important each term in the request is.

The final result of natural language processing is a list of terms that includes the spell-corrected root forms of the

original search terms, any synonyms for these terms, and weighting information.

Apply Constraints

The next step of search processing is to apply constraints that were entered along with the request. Constraints

can include the following:

2 Query Processing Overview 5

• Site, catalog, category, or other property-based constraints—See the Constraining Queries (page 41)

chapter of this guide

• Operators such as quote marks and the ! symbol—See the User-Entered Operators (page 33) chapter of this

guide

• Query rules—See the ATG Search Administration Guide

• Search Merchandising rank configurations—See the Search Merchandising (page 77) chapter of this guide

The constraints are processed and added to the query information.

Query Processing

The compiled query information is compared against the index. The engine returns XML that includes the

resulting matching products or statements, taking constraints into account, along with categorization, spelling,

and query feedback information specified in the request.

The results are sorted in relevance order by default, but this behavior can be changed using request parameters.

The results can be grouped to reduce duplication, and you can apply paging to prevent slowing down your site

with large result lists. See the Paging Search Results (page 23) chapter of this guide for information.

Search Results Displayed

The final results are displayed to the user. See the Handling Results (page 21) section of this guide for

information.

6 2 Query Processing Overview

3 Search Form Handlers 7

3 Search Form Handlers

The Oracle ATG Web Commerce platform includes form handlers that you can use to build forms to issue queries

for search data indexed by Oracle ATG Web Commerce Search. You can use these form handlers to build a wide

variety of user interfaces to Search, and to make the full power of the platform available for working with Search

data.

This chapter discusses platform and Search classes and components. If you need more information about a

particular class, see the ATG Platform API Reference.

This chapter includes the following sections:

Form Handler Classes and Architecture (page 7)

Specifying the Content Labels and Target Type for Queries (page 10)

Determining the Environment to Search (page 11)

Setting Request Properties (page 13)

Processing the Request and Response (page 17)

Specifying a Price List in the Search Request (page 18)

Invoking Multiple Form Handlers (page 20)

Handling Results (page 21)

Form Handler Classes and Architecture

The main form handler for submitting queries to Oracle ATG Web Commerce Search is

atg.search.formhandlers.QueryFormHandler. This form handler issues a search request of class

atg.search.routing.command.search.QueryRequest, which represents a query of type <query>.

QueryFormHandler has as an ancestor the atg.search.formhandlers.BaseSearchFormHandler abstract

class, which implements generic functionality: error handling, URL redirection, maintaining state information,

query submission, etc. QueryFormHandler subclasses PagedRequestFormHandler, which is a subclass of

BaseFormHandler that adds support for paging of results.

QueryFormHandler constructs search queries using the SearchClient API. This API uses an instance of

Routing to direct those queries to the search engine. This instance of Routing can be running locally (on

the same Oracle ATG Web Commerce instance as the SearchClient) or remotely (on a different instance).

8 3 Search Form Handlers

Information about the connection to Routing is maintained in a session-scoped component of class

atg.search.formhandlers.SearchContext. The form handler and request classes themselves are designed

to be request-scoped.

QueryFormHandler has a handleSearch method that issues the search query. Typically, you associate this

method with a form button, so the query is issued when the user clicks the button. For example:

<dsp:input type="submit" bean="QueryFormHandler.search" value=" Search "
 action="query.jsp"/>

QueryFormHandler includes a number of other handler methods that you may find useful in building search

forms. See the ATG Platform API Reference for more information.

Form Handler and Request Components

The DAF.Search.Base module includes a /atg/search/formhandlers/QueryFormHandler component

and a corresponding request component, /atg/search/routing/command/search/QueryRequest.

The DCS.Search.Query module adds QueryFormHandler and QueryRequest components that are

preconfigured for querying the Oracle ATG Web Commerce product catalog. These components are found in the

/atg/commerce/search/catalog Nucleus folder. You can use these components for creating search forms

and displaying facets on commerce sites.

Configuring the Form Handler Component

Each instance of QueryFormHandler must be configured by setting, at a minimum, these two properties:

searchRequest

The associated request component of class

atg.search.routing.command.search.QueryRequest.

searchContext

The session-scoped component (of class atg.search.formhandlers.SearchContext)

that maintains information about the connection to Oracle ATG Web Commerce Search.

The form handler components mentioned in the previous section are preconfigured with settings for these

properties. You should not need to change these values. However, if you create your own form handler

components, be sure to set these properties on them.

In addition, the form handlers have properties that you can set to enable client-side processing of the request

and response objects. These properties are described in Processing the Request and Response (page 17).

Configuring the QueryRequest Component

The form handler’s searchRequest property points to a component of class

atg.search.routing.command.search.QueryRequest. This component, which should be request-scoped,

is the Java representation of the search query. The QueryRequest has a number of properties that correspond

to elements and attributes of the query XML.

Several sections of this chapter describe how to set these properties on the QueryRequest component. Note

that the /atg/commerce/search/catalog/QueryRequest component included in the DCS.Search.Query

3 Search Form Handlers 9

module has many of these properties preconfigured for querying the Oracle ATG Web Commerce catalog and

performing faceted search.

Configuring the SearchContext Component

The form handler’s searchContext property points to a component of class

atg.search.formhandlers.SearchContext. This component, which should be session-scoped, maintains

information about the connection to Routing. By default, the searchContext property of each form handler

component is set to /atg/search/formhandlers/SearchContext.

Routing

The SearchContext component’s primaryConnection property specifies the location of the

DAF.Search.Routing module that the search client is accessing. Accessing this module on the same Oracle

ATG Web Commerce instance as the search client is called local Routing; accessing it on a different instance is

called remote Routing. If you are using local Routing, primaryConnection should be set to local (the default).

If you are using remote Routing, set primaryConnection to:

rmi://hostname:port/atg/search/routing/SearchService

port is the RMI port used by Oracle ATG Web Commerce (typically 8860). For example:

primaryConnection=rmi://myHost1:8860/atg/search/routing/SearchService

For remote Routing, you can use the SearchContext component’s failoverConnections property to specify

an array of additional Routing instances to use if the primary instance fails. For example:

failoverConnections=rmi://myHost2:8860/atg/search/routing/SearchService,\
 rmi://myHost3:8860/atg/search/routing/SearchService

The maxAttemptsBeforeFailover property specifies the maximum number of times to attempt to access a

specific Routing instance before failover. The default value is 2.

The SearchContext component also has properties that control the firing of JMS messages when results are

returned from a query. See JMS Event Handling (page 49) for information.

SearchSession Object

The SearchContext component has a searchSession property that is set automatically to an object of class

atg.search.client.SearchSession. This object is used to store information that needs to persist between

search requests. For example, for paging of results, the SearchSession can keep track of the current page so

that a subsequent request can determine what the next page is. The SearchSession can even store the entire

previous request, which is useful for contexts (such as faceted search and some paging options) where you

might want to reissue a request with only minor changes.

Sample Application

The Oracle ATG Web Commerce platform includes a sample Web application that demonstrates search query

options. You can use the application for submitting test queries, or use the JSPs as starting points for building

your own search pages.

10 3 Search Form Handlers

To run the sample application, you need to assemble an EAR file that includes the

DAF.Search.Base.QueryConsole module, and deploy this application on your application server. You can

then access the application at:

http://hostname:port/atg/qc

See the ATG Installation and Configuration Guide for more information about the port number to use. For

information about assembling applications, see the ATG Platform Programming Guide.

Once the application is open in your browser, click the link for one of the query types. This opens a page that

contains a form for constructing a query of that type. Fill in the form, and then click the Search button. The

results of the search are displayed at the bottom of the page.

Note that neither the search forms nor the result displays are intended to be realistic examples of how you

would use the form handlers on an actual site. The forms enable you set search attributes that are rarely set by

individual queries. In addition, the forms allow you to set attributes directly that would typically be determined

by logic implemented in the page or in methods of the form handler itself. For the results, each page simply

displays a table of the fields of the results object and their values. On an actual site, the results would typically be

displayed in a more usable (and selective) format.

Specifying the Content Labels and Target Type for Queries

Oracle ATG Web Commerce Search is organized by projects, as discussed in the ATG Search Administration Guide.

There are two main types of relationships between projects:

• Independent projects have separate groupings of content for indexing. Two or more independent projects

can index the same content or different content, but the indexes are totally separate and independent. A

project’s content sets are grouped and identified for querying by one or more content labels.

• Linked projects have identical content labels, but they differ by target type, which specifies the instance of

the index that queries are directed to. In a set of linked projects, there is a main project whose target type is

Production. Other projects are created as links to this project, and have different target types, such as Staging

or Testing.

Each search project produces an index that comprises one or more logical partitions. The index has a separate

logical partition for each content set in the project.

Understanding Content Labels and Target Types

Content labels are used in search projects as a way of grouping content sets for querying. A content label can

refer to one or more content sets. So, for example:

Catalog content label --> Products content set
Articles content label --> Brochures content set, Manuals content set

Each content label must be unique to a single set of linked projects. Two independent projects cannot use

the same content label (though they can use the same content and have different content labels to refer to it),

because content labels are used to differentiate independent projects for querying.

3 Search Form Handlers 11

Linked projects, on the other hand, must share content labels. Linked projects differ only in the target type

(Production, Staging, etc.). Each target type must be unique to one project within a set of linked projects. Two

linked projects cannot use the same target type, because the target type is used to determine which search

environment within a set of linked projects to direct queries to.

To specify the content labels and target type for a query, you set the contentLabels and targetType

properties on the QueryRequest component in a properties file or JSP. For example:

contentLabels=Catalog,Articles
targetType=Staging

By default, the /atg/commerce/search/catalog/QueryRequest component has the following

configuration:

contentLabels=Catalog
targetType=Production

Site-Specific Content

In a multisite environment, you associate specific sites with specific content sets as a way of constraining

indexing and querying. For example, suppose you have three sites, A, B, and C, and a content set that you want

to make available for searching on sites A and C, but not on site B. To do this, you could associate sites A and C

with this content set in Site Administration. When the index is generated, the logical partition associated with

this content set does not include data for site B.

When a query is issued, rather than directing it to all of the logical partitions of the index, Routing looks at the

sites the query applies to, determines which content sets are associated with those sites, and directs the query

only to the partitions for those content sets. So in this example, if a customer is searching site B, Routing will

not direct the query to the logical partition for this content set. This restriction makes searching more efficient,

because it reduces the number of logical partitions that need to be searched.

There may be times when you do not want to return data for a specific site, even though that data is included

in the index. For example, if a site is disabled or otherwise unavailable, it is generally undesirable to return

search results for that site. Therefore, Oracle ATG Web Commerce Search does not return results for sites that are

currently unavailable.

Determining the Environment to Search

When a search request is submitted, Routing uses the /atg/search/routing/DynamicTargetGenerator

component to determine the search environment, the set of logical partitions, and possible constraints for the

request. The DynamicTargetGenerator takes into account the following properties of the QueryRequest

component:

• contentLabels -- An array of the content labels to direct the request to. These content labels must all be

associated with the same search project.

• targetType -- The target type to direct the request to.

12 3 Search Form Handlers

• dynamicTargetSpecifier -- A component of class

atg.search.routing.command.search.DynamicTargetSpecifier, which is used to specify site

information; by default, /atg/search/routing/command/search/DynamicTargetSpecifier. If this

property is not set, a DynamicTargetSpecifier is created automatically.

• siteConstraints -- A component of class

atg.search.routing.command.search.MultisiteConstraint; by default, /atg/search/routing/

command/search/MultisiteConstraint.

DynamicTargetSpecifier and MultisiteConstraint are described below.

DynamicTargetSpecifier

The DynamicTargetSpecifier component specifies the sites that the query should be applied to. This

component has two main ways to specify the sites:

• To explicitly specify the sites, set the siteIdsArray property to an array of site IDs.

• If siteIdsArray is not set, DynamicTargetSpecifier uses the current site from the SiteContext object.

In addition, if the useContextAdditionalSites property is true, DynamicTargetSpecifier also uses

the sites specified in the SiteContext object’s additionalSites property.

DynamicTargetSpecifier also has its own additionalSites property for specifying sites in addition to the

ones specified in siteIdsArray or obtained from the SiteContext object.

MultisiteConstraint

Based on the properties set on the QueryRequest and the DynamicTargetSpecifier, the

DynamicTargetGenerator may determine that the query should return results only from certain sites. If so,

it can generate a constraint and set the value of the MultisiteConstraint component’s siteConstraints

property to the generated constraint. Note that DynamicTargetGenerator generates a site constraint only if

necessary; in some cases, sites may already be excluded based on the content sets being searched, so they don’t

need to be excluded through a constraint.

MultisiteConstraint has a siteConstraintsOperation property for specifying whether the sites in

the generated constraint should be combined using AND or OR Boolean operators. The default value of this

property is or, so sites are combined using Boolean OR. This means that results will be returned from any site

listed in the constraint. For example, this constraint means “return results that are associated with site A or site

C”:

<or>
 <strprop name="$siteId">A</strprop>
 <strprop name="$siteId">C</strprop>
</or>

If you set siteConstraintsOperation to and, the query returns only results that are associated with both site

A and site C.

In addition to the generated site constraint, MultisiteConstraint has an additionalConstraints

property that can be set to a DocumentSetConstraint component, which you can use to specify additional

site constraints. For example, you could create a constraint that restricts unstructured content such as articles

from being returned on a certain site.

3 Search Form Handlers 13

MultisiteConstraint has an additionalConstraintsOperation property for specifying whether the

generated constraint and the constraint specified through additionalConstraints should be combined

using AND or OR Boolean operators. The default for this property is and.

Setting Request Properties

The QueryRequest class has properties that store the values that are used to construct the queries sent to

Oracle ATG Web Commerce Search. Typically, these properties are set in JSPs (or have defaults set in properties

files that can then optionally be overridden in JSPs), as their values may vary from query to query. Most of the

properties of the request components correspond to attributes of the query XML understood by the search

engine.

The XML query attributes are described in detail in the ATG Search Query Guide (page 1). You can also find

information about these attributes in the Javadoc for the request classes, in the ATG Platform API Reference. This

section describes how to set some of the more complex query attributes.

Setting the responseNumberSettings Property

The <query> query type has a responseNumberSettings attribute that comprises many subattributes. In the

query XML, this attribute is a single long delimited String that encodes the values of all of the subattributes.

In the QueryRequest class, the corresponding responseNumberSettings property is a Map that stores

these subattributes as a series of key/value pairs. This makes it possible to set the values of these subattributes

individually. When the query is submitted, the values in the responseNumberSettings Map property are used

to construct the String used in the query XML.

You can specify the values of all or some of the responseNumberSettings subattributes in a properties file. For

example:

responseNumberSettings=\
 prop=10,\
 doc=100

You can also set these values individually in JSPs, overriding the values in the properties file. For example:

<dsp:input bean="${FH}.searchRequest.responseNumberSettings.doc"
 value="125"/>

Setting the relQuestSettings Property

The <query> query type has a relQuestSettings attribute that, like responseNumberSettings, is a

delimited String that encodes the values of a number of subattributes.

In the QueryRequest class, the corresponding relQuestSettings property is an

atg.nucleus.ResolvingMap that stores these subattributes as a series of key/value pairs. (The

atg.nucleus.ResolvingMap class is a special type of Map that allows you to use the Nucleus ^= syntax to

link the value of an individual map key to the value of a property of another component.) When the query is

14 3 Search Form Handlers

submitted, the values in the relQuestSettings property are used to construct the String used in the query

XML.

Setting activeSolutionsZones

The activeSolutionZones subattribute of relQuestSettings is a String containing a comma-separated list

of the text properties in the index that are available for searching. Typically, you’ll want to set this to a list of all

of the text properties in the index (after all, that’s why you included them). Rather than specifying the entire list

explicitly, you can make all of the text properties available for searching by setting activeSolutionZones to

an asterisk (*). For example, you might set this in the QueryRequest.properties file:

relQuestSettings=\
 activeSolutionZones=*

In some cases, however, you may want to make only a subset of the indexed text properties available for

searching. For example, suppose your site has a Books section, and when customers search in this area, you

want to search only the title and author properties. Rather than having two different indexes with different

properties in them, you create a single index with the full set of desired properties for the overall site, but then

override the value of activeSolutionZones in the pages of the Books section to restrict searches from those

pages:

<dsp:input bean="${FH}.searchRequest.relQuestSettings.activeSolutionZones"
 value="role:author,role:title"/>

When a customer enters a search query in this part of the site, Oracle ATG Web Commerce Search searches only

these two properties. The search is faster, returning fewer but more relevant results.

Setting the docProps and textProps Properties

The QueryRequest class has docProps and textProps properties that specify lists of the metadata and text

properties to include in the response. If a property is specified in one of these lists, its values are included in the

search results that are returned. This simplifies displaying these values in JSPs, since otherwise you’d need to

retrieve them from the indexed repository.

The textProps property is an array listing the text properties to return. The names must include the role:

prefix. For example, you might set textProps like this:

textProps+=role:longDescription,role:parentCategory.displayName

The docProps property is an array listing the metadata properties to return. For example, you might set

docProps like this:

docProps+=childSKUs.color,childSKUs.salePrice

If you want to return all of the metadata properties in the index, you can set docProps to the special keyword

all, rather than specifying the properties individually. For example:

docProps=all

3 Search Form Handlers 15

Setting Grouping Options

If you index your product catalog by SKU, each result returned from a query represents an individual SKU. This

means some products may appear multiple times, because the query may match multiple SKUs for an individual

product.

If you want to return each product only once, you can group the results by product ID. Oracle ATG Web

Commerce Search will return a single result for each unique product ID.

To enable grouping, you set the sorting property of the QueryRequest component to property (to enable

grouping by property), and set the sortProperty to the index property to group by. For example:

sorting=property
sortProperty=string:$repositoryId:1

Note that in spite of their names, these QueryRequest properties control grouping, not sorting.

The format for the value of sortProperty is:

data-type:index-property:default-value

In the example above, the property is $repositoryId, which means the repository ID of the top-level item type

in the IndexingOutputConfig definition file. The top-level item type is the product item, so the product ID is

used as the grouping property. If a product ID value cannot be found for an item in the index, the default value

(in this example, 1) is used for that item instead.

If you are using faceted search, you should also set the refineCount property to group, so the refinement

counts reflect the number of products in each facet selection, rather than the number of SKUs:

refineCount=group

For more information about refinement counts in faceted search, see About Refinement Counts (page 71).

Setting the Parser Options

The QueryRequest class has a parserOptions property for specifying natural language

processing options. These options are encoded as XML in the search request. To simplify

the coding of your pages, the parserOptions property is set to a component of class

atg.search.routing.command.search.ParserOptions; rather than constructing the XML directly, you

specify the options by setting properties on this component, in either a properties file or a JSP. When a query is

issued, the ParserOptions component takes care of constructing the XML and including it in the input sent to

Oracle ATG Web Commerce Search.

The following is an example of setting a property of the ParserOptions component in a JSP:

<p>Maximum expansions: <dsp:input type="text"
 bean="${FH}.searchRequest.parserOptions.wildcardMax"/>

You can also specify the XML directly by setting the xml property of the ParserOptions component. This is

useful if you want to initialize the XML in a properties file. For example:

16 3 Search Form Handlers

xml=<parserOptions><language>en_US</language></parserOptions>

For information about the natural language processing options and their possible values, see the ATG Search

Query Guide (page 1).

Setting Constraint Properties

The QueryRequest object has several properties that point to components of class

atg.search.routing.command.search.DocumentSetConstraint (or one of its subclasses). These

components represent query constraints, which are encoded as XML in the search request. The XML can be

quite complex , often with many levels of nested tags.

For example, suppose you want to specify the following constraint through the

QueryRequest.documentSetConstraints property:

<and>
 <strprop op="equal" name="childSKU.color">
 rose
 </strprop>
 <numprop op="lesseq" name="childSKU.price">
 30.00
 </numprop>
</and>

This constraint limits search results to products whose childSKU.color property has a value of rose and

whose childSKU.price property has a value less than or equal to 30.00. (These properties may have multiple

values, since products can have multiple SKUs, but as long as one of the values of childSKU.color is rose and

one of the values of childSKU.price is less than or equal to 30.00, the constraint is satisfied.)

To specify this constraint, you could create a component of class

atg.search.routing.command.search.XmlDocumentSetConstraint and set its xmlConstraint

property to:

<and>\
 <strprop op="equal" name="childSKU.color">\
 rose\
 </strprop>\
 <numprop op="lesseq" name="childSKU.price">\
 30.00\
 </numprop>\
</and>

Then set QueryRequest.documentSetConstraints to this component. For example.:

documentSetConstraints=/MyStuff/MyConstraints

Assembling the Constraint using Components

Specifying the XML directly is useful for initializing constraints, but it is not very flexible, because it doesn’t allow

you to modify the XML dynamically in JSPs. Therefore, the Oracle ATG Web Commerce platform also includes a

3 Search Form Handlers 17

number of subclasses of DocumentSetConstraint that allow you to specify elements of the XML as individual

properties. When a query is issued, these constraint classes take care of constructing the XML and including it in

the input sent to Oracle ATG Web Commerce Search.

To construct the constraint shown above, you’d create components of the DocumentSetConstraint

subclasses StringConstraint, NumericConstraint, and ConstraintsGroup, from the

atg.search.routing.command.search package.

To specify the first part of the constraint, create a StringConstraint component named /MyStuff/

MyStringConstraint and set these properties:

property=childSKU.color
operation=equal
value=rose

To specify the second part, create a NumericConstraint component named /MyStuff/

MyNumericConstraint and set these properties:

property=childSKU.price
operation=lesseq
value1=30

Now combine the two parts by creating a ConstraintsGroup component named MyConstraintsGroup and

setting these properties:

operation=and
constraints=/MyStuff/MyStringConstraint,/MyStuff/MyNumericConstraint

Set the QueryRequest.documentSetConstraints property to MyConstraintsGroup:

documentSetConstraints=/MyStuff/MyConstraintsGroup

This approach makes it possible to modify the constraints dynamically in JSPs. For example:

<dsp:select bean="/MyStuff/MyStringConstraint.value">
 <dsp:option value="rose">rose</dsp:option>
 <dsp:option value="mauve">mauve</dsp:option>
 <dsp:option value="gray">gray</dsp:option>
 <dsp:option value="purple">purple</dsp:option>
 <dsp:option value="cobalt">cobalt</dsp:option>
</dsp:select>

Processing the Request and Response

The form handlers include three properties for specifying components for preprocessing the search request and

postprocessing the response:

18 3 Search Form Handlers

searchRequestProcessors

An array of Nucleus components for preprocessing the search request before it is

submitted. Each component in the array must be of a class that implements the

atg.search.formhandlers.SearchRequestProcessor interface.

searchResponseProcessors

An array of Nucleus components for postprocessing the search response after it

is received. Each component in the array must be of a class that implements the

atg.search.formhandlers.SearchResponseProcessor interface.

searchRedirectProcessors

An array of Nucleus components for determining the URL to redirect to, depending on

the search results. Each component in the array must be of a class that implements the

atg.search.formhandlers.SearchRedirectProcessor interface.

Note that the /atg/commerce/search/catalog/QueryFormHandler component is configured to use the /

atg/search/repository/FacetSearchTools component as a request preprocessor and postprocessor. This

component is of class atg.commerce.search.refinement.custom.CustomCatalogFacetSearchTools,

which implements all three interfaces listed above.

Catalog Constraints

As mentioned above, /atg/commerce/search/catalog/QueryFormHandler component is configured

to use the /atg/search/repository/FacetSearchTools component as a request preprocessor

and postprocessor. In addition to faceted search-related processing (described in Issuing Faceted Search

Queries (page 61)), the FacetSearchTools component manages catalog constraints for all queries, not just

faceted search queries.

By default, when a user enters a search query, FacetSearchTools checks the user’s profile to see if he or she is

assigned a catalog. If so, FacetSearchTools constrains the search to include only items in this catalog.

This behavior may not be desirable in certain situations. In a multisite environment that has a separate catalog

for each site, this logic may interfere with cross-site searches, because the search will be constrained to a single

catalog (and thus a single site). To prevent applying a constraint based on the catalog assigned to the user, set

the queryByCatalog property of the FacetSearchTools component to false.

If queryByCatalog is false, you can still have FacetSearchTools constrain queries to specific catalogs

by setting its catalogIds property to an array of the catalog IDs of the catalogs to include in the search. For

example:

catalogIds=masterCatalog,homeStoreCatalog

Note that if catalogIds is not null, the value of queryByCatalog is ignored. In this case, even if

queryByCatalog is true, the catalog assigned to the user is ignored and the catalogs in the catalogIds

property are used for the catalog constraint.

Specifying a Price List in the Search Request

If your Oracle ATG Web Commerce catalog uses price lists, a single item may have multiple prices. A customer

is assigned a price list, and when that customer accesses a product or SKU, Commerce looks up the item’s price

3 Search Form Handlers 19

in that price list. Another customer looking at that same item might see a different price, if that customer is

assigned a different price list.

The Indexing Price Data in Price Lists section of the ATG Search Administration Guide describes how to create a

special price property to represent the price data stored in price lists, using the /atg/commerce/search/

PriceListPropertyProvider component. When you index your catalog, the item prices are read from the

price lists and used to construct meta tags in the XHTML documents. A separate meta tag is created for each

price list, and the property name in the tag identifies the price list the tag is associated with.

When the index is queried, the search client must determine which price list is assigned to the customer issuing

the query, and map the price property to the meta tag associated with that price list. To do this, the search

client determines which user profile properties identify the assigned price lists, and checks the value of those

properties to determine the price lists to use. It then creates a property mapping between the price property in

the indexing definition file and the price properties in the index associated with those price lists.

Creating the Property Mapping

When a search query is issued, the /atg/commerce/search/PriceListPropertyMapping component

creates the property mapping dynamically, based on the user’s profile and other settings that you specify

through the following properties of the component:

price

The name of the price property created in the PriceListPropertyProvider component.

The default is price.

priceLists

An ordered array of the profile properties that specify price lists assigned to the user. The

order of the properties determines the order of precedence when querying the search index.

The default is priceList.

pricePropertyPrefix

The prefix for the price property in the XHTML document. This must

match the prefix specified in the pricePropertyPrefix property of the

PriceListMapPropertyAccessor component. The default is childSKUs.price@.

The PriceListPropertyMapping component constructs the propertyMapping tag and sets

the value of the PriceListPropertyMapping .priceMapping property to this tag. For example,

PriceListPropertyMapping might set priceMapping to:

<propertyMapping>
 price,childSKUs.price@pl90002,childSKUs.price@pl90004
</propertyMapping>

To include the propertyMapping tag in the search request, set the propertyMappings property of the

/atg/commerce/search/ProductCatalogParserOptions component by linking to the value of the

PriceListPropertyMapping .priceMapping property:

propertyMappings^=\
 /atg/commerce/search/PriceListPropertyMapping.priceMapping

This maps the price property in the query to the childSKUs.price@pl90002 and

childSKUs.price@pl90004 properties in the index. The index properties are listed in order of precedence.

20 3 Search Form Handlers

When the query is executed, Oracle ATG Web Commerce Search looks for the childSKUs.price@pl90002

property for an item. If there is a property by that name, Oracle ATG Web Commerce Search uses the value of

that property. If there is no childSKUs.price@pl90002 property (which means that price list pl90002 does

not have a price for the item), it uses the price from the childSKUs.price@pl90004 property. So for example,

if pl90002 contains sale prices and pl90004 contains list prices, Search uses the sale price if there is one, and

otherwise uses the list price.

Specifying a Default Price List

If a user is not assigned a price list, constraints and facets based on price will not work properly for that user.

This is generally not an issue for actual site customers, who should all have price lists assigned to them in their

profiles, but it may affect internal users testing the site.

You can specify a default price list for users who are not assigned price lists in their profiles. To do this, set the

defaultPriceListId property of the PriceListPropertyMapping component to the price list ID of the

price list you want to use as the default. For example:

defaultPrice=pl90002

Invoking Multiple Form Handlers

Some sites may need to make multiple repositories available for searching. For example, suppose your site

has, in addition to a product catalog, a repository with informational articles about the products. When a user

searches for, say, mountain bikes, you want to return both products and articles. You could enable this by

creating a single index that includes items from both repositories, and returning both types of items in the same

set of results.

If, however, you want products and articles to appear as separate sets of results, displayed on different areas of

the page, then including them in the same index is not desirable. Instead, you can create separate indexes for

the two repositories, and use two form handler instances that submit the same query text simultaneously to the

two indexes.

To invoke multiple form handlers simultaneously, you use a component of class

atg.search.formhandlers.MultipleSubmitHelper. This is a special form handler class that invokes

multiple QueryFormHandler components, using the same query text for all of them.

You configure a MultipleSubmitHelper component by setting its queryFormHandlers property to an array

of the QueryFormHander components you want to invoke. For example, the /atg/search/formhandlers/

MultipleSubmitHelper component (used by the QueryConsole sample application) is configured like this:

queryFormHandlers=/atg/search/formhandlers/QueryFormHandler1,\
 /atg/search/formhandlers/QueryFormHandler2

In your JSP, you create the search form as shown in the following example:

<%-- create the query text input field and associate it with the --%>
<%-- handleQuestion method of the MultipleSubmitHelper component --%>

3 Search Form Handlers 21

<dsp:input type="text" id="question" size="30" converter="nullable"
 name="question" bean="MultipleSubmitHelper.question"/>

<%-- create the submit button and associate it with the handleSearch --%>
<%-- method of one of the QueryFormHandler components --%>
<dsp:input type="submit" bean="QueryFormHandler1.search" value=" Search "
 action="multiquerysubmit.jsp" priority ="-100"/>

<%-- create a hidden field on the other QueryFormHandler components --%>
<dsp:input type="hidden" bean="QueryFormHandler2.search" value=" Search "
 action="multiquerysubmit.jsp" priority ="-100"/>

Handling Results

The QueryRequest class has an inner Response class that stores the results returned for the query. The value

of the searchResponse property of the form handler that issued the query is set to this Response object, so

you can display the query results in JSPs. For example, the following JSP fragment creates a table that displays

several properties of each category in the suggestedCategories List property of the Response object:

<dsp:getvalueof bean="QueryFormHandler.searchResponse" var="queryResponse"
 scope="request"/>

<table class=data style="width:100%" border=1 cellPadding=5 cellSpacing=0>
 <tr class="alt">
 <td>path</td>
 <td>id</td>
 <td>score</td>
 <td>label</td>
 </tr>
 <c:forEach items="${queryResponse.suggestedCategories}" var="cat">
 <tr>
 <td><c:out value="${cat.path}"/></td>
 <td><c:out value="${cat.id}"/></td>
 <td><c:out value="${cat.score}"/></td>
 <td><c:out value="${cat.label}"/></td>
 </tr>
 </c:forEach>
</table>

Notice that most of the JSP tags in this example are standard JSTL tags, rather than DSP tags, because the

Response object is not a Nucleus component.

Indicating the Number of Results

You can indicate the number of results returned by rendering the value of the search response object’s

groupCount property. For example:

<c:out value="${queryResponse.groupCount}"/>

22 3 Search Form Handlers

Note that this value is not affected by paging. It represents the total number of result groups returned by the

search, regardless of the number on any given page. Note that if you are grouping results by property (see

Setting Grouping Options (page 15)), this number may be smaller than the number of documents returned,

since a group can contain multiple documents.

Handling Repository Items

If the documents being searched represent repository items (such as products or SKUs in a product catalog),

each result returned will contain the URL for the corresponding item. You can use the URL to display the

repository item. For example:

<dsp:getvalueof bean="QueryFormHandler.searchResponse" var="queryResponse"
 scope="request"/>

<c:forEach items="${queryResponse.results}" var="result">
 <c:out value="${result.document.url}"/>

 <dsp:droplet name="/atg/targeting/RepositoryLookup">
 <dsp:param name="url" param="${result.document.url}"/>
 <dsp:oparam name="output">
 <dsp:valueof param="element.displayName"/>
 </dsp:oparam>
 </dsp:droplet>
</c:forEach>

Note, however, these URLs will not be recognized unless the repository is registered. To register a

repository, add it to the list of repositories in the initialRepositories property of the /atg/registry/

ContentRepositories component.

4 Paging Search Results 23

4 Paging Search Results

An individual search query can return a large number of results. Rather than displaying all of the results on a

single page, you will typically want to break them up into multiple pages, with a certain number of items per

page. Therefore, the query includes properties that you can use to specify the number of items to include per

page and which page to display.

This chapter describes these pagination properties and their effects. It includes the following topics:

Specifying the Page Size (page 23)

Handling Page Requests (page 24)

Types of Paging (page 24)

Modifying and Resubmitting the Request (page 26)

Specifying the Page Size

You use the pageSize request attributes to specify the number of items per page. For example, if pageSize=10,

the results will include ten items per page.

The following JSP fragment creates a drop-down for selecting a value for the pageSize attribute:

Page Size
<dsp:select bean="${FH}.searchRequest.pageSize">
 <dsp:option value="100">100</dsp:option>
 <c:forEach begin="5" end="35" step="5" var="pageSize">
 <dsp:option value="${pageSize}">
 <c:out value="${pageSize}"/>
 </dsp:option>
 </c:forEach>
</dsp:select>

24 4 Paging Search Results

Handling Page Requests

When you render the initial page of results, you typically want to render links to other pages of results. Each of

these links actually issues a new search query that in most respects is identical to the original query, but which

specifies a different page of results. So paging involves a sequence of connected requests and responses.

To display a specific page of results, you set the form handler’s goToPage property to a 1-based page number.

The goToPage property has an associated handler method, handleGoToPage. When a user clicks a link that sets

the value of goToPage, the handleGoToPage method issues the search for the specified page.

To ensure that all of the requests and responses in a sequence of page requests are associated with each other,

the initial query generates a unique String identifier called a request chain token. This identifier is included in

each query in the sequence of requests, and is returned in each response.

There are various paging options available, and the ones you use depend on the needs or your site. The

following options are explained below:

• The type of paging to use: normal paging or fast paging

• Whether to save the request in the search session or not

Types of Paging

Oracle ATG Web Commerce Search supports two types of paging, normal paging and fast paging. The key

differences between them relate to the information you get back from the search engine about the number of

pages of results, and the navigation you can build into your pages:

• Normal paging is the default. In this mode, the search engine returns (in the form handler’s pagesAvailable

property) the total number of pages of results. You can create links that enable the customer to go directly to

any page.

• Fast paging is specified by setting the fastPaging property of the search request to true. In this mode, the

search engine does not return information about the total number of pages of results; pagesAvailable is

set to the highest-numbered page that has been rendered so far. You can enable customers to go to the next

page or to any page previously rendered.

For a single-partition index, normal paging is always enabled (the fastPaging property is ignored). For a multi-

partition index, you can choose between normal paging and fast paging, but fast paging is recommended. Fast

paging is much less resource-intensive than normal paging. On multi-partition indexes, normal paging can be

very memory- and CPU-intensive, because results from the partitions must be merged.

Example of Normal Paging

The following example renders a list of the page numbers of all pages of results. Each page number is a link

to the corresponding results page, except for the current page number, which is displayed without a link. For

example, if pagesAvailable is 43 and the current page is page 10, this code will render the integers from 1 to

43, and all of these except 10 will be links. If the user clicks 22, for example, a request to display page 22 will be

issued.

<!-- Indicate that the request should be saved in the search

4 Paging Search Results 25

 session so that initial request data, such as the question
 text, is available to subseqent paged requests. -->
<dsp:input bean="QueryFormHandler.searchRequest.saveRequest"
 value="true" type="hidden"/>

<!-- Display page numbers with links to take user to specified
 page -->
Go to Page:
<c:forEach var="page" begin="1" end="${formHandler.pagesAvailable}">
 <c:choose>
 <c:when test="${page == (1+formHandler.searchResponse.pageNum)}">
 ${page} <!-- The current page, don't display a link -->
 </c:when>
 <c:otherwise>
 <dsp:a href="normal-paging.jsp">
 ${page}
 <dsp:property bean="QueryFormHandler.searchRequest.requestChainToken"
 value="${formHandler.searchResponse.requestChainToken}"/>
 <dsp:property bean="QueryFormHandler.searchRequest.saveRequest"
 value="true"/>
 <dsp:property bean="QueryFormHandler.goToPage" value="${page}"/>
 </dsp:a>
 </c:otherwise>
 </c:choose>
</c:forEach>

Example of Fast Paging

The following example renders a list of the page numbers of the results pages that have been rendered so far.

Each page number is a link to the corresponding results page, except for the current page number, which is

displayed without a link. In addition, the example renders the word “more” as a link to the page following the

current one.

<!-- Turn on fast paging -->
<dsp:input type="hidden" value="true"
 bean="QueryFormHandler.searchRequest.fastPaging"/>

<!-- Indicate that the request should be saved in the search
 session so that initial request data, such as the question
 text, is available to subseqent paged requests. -->
<dsp:input bean="QueryFormHandler.searchRequest.saveRequest"
 value="true" type="hidden"/>

<!-- Shortcut to the response object, which may be null -->
<c:set var="response" value="${formHandler.searchResponse}"/>

<!-- Display page numbers with links to take user to specified
 page -->
<c:if test="${response != null}">
 on page: ${1+response.pageNum}

 Go to Page:
 <c:forEach var="page" begin="1" end="${1+formHandler.pagesAvailable}">
 <c:choose>
 <c:when test="${page == (1+response.pageNum)}">
 ${page} <!-- current page -->
 </c:when>
 <c:otherwise>

26 4 Paging Search Results

 <dsp:a href="fast-paging.jsp">
 <c:choose>
 <c:when test="${page == (1+formHandler.pagesAvailable) &&
 response.multiPartitionSearch &&
 formHandler.searchRequest.fastPaging}">
 more
 </c:when>
 <c:otherwise>
 ${page}
 </c:otherwise>
 </c:choose>
 <dsp:property bean="QueryFormHandler.searchRequest.requestChainToken"
 value="${formHandler.searchResponse.requestChainToken}"/>
 <dsp:property bean="QueryFormHandler.searchRequest.saveRequest"
 value="true"/>
 <dsp:property bean="QueryFormHandler.goToPage" value="${page}"/>
 </dsp:a>
 </c:otherwise>
 </c:choose>
 </c:forEach>
</c:if>

Modifying and Resubmitting the Request

Since subsequent requests differ only in the requested page of results, it is most efficient just to retrieve the

most recent search request, change the value of the goToPage property, and resubmit the request. There are

two ways to do this:

• Modify properties on the form, and resubmit it. This avoids the memory use required to save the request

in the SearchSession. The downside is that resubmitting the form is difficult if you are creating your links

through anchor tags. In that case, it is generally easiest to write a JavaScript function that makes the necessary

changes and submits the form.

• Save the request in the SearchSession. This allows you to retrieve the request, modify it, and reissue it; no

JavaScript is necessary. The downside is that this approach can use a lot of memory, especially if there are

many users at your site issuing search queries.

Note that resubmitting a modified request is useful for faceted search as well as for paging.

Example of Resubmitting the Form

If you do not want to save the request in the SearchSession, you will need to resubmit the form. Create a

JavaScript function like this:

function nextPage(pageNum, requestChainToken)
{
 document.searchForm.requestChainToken.value = requestChainToken;
 document.searchForm.goToPage.value = pageNum;
 document.searchForm.submit();
 return false;

4 Paging Search Results 27

}

You can then invoke the function when the user clicks on a link for a specific page:

<a href="#" onclick="return nextPage('<%=pageValue.toString()%>',
 '${formHandler.searchResponse.requestChainToken}');">
 <dsp:valueof param="count"/>

When the link is clicked, the page number associated with the link and the requestChainToken of the current

search response are passed to the function. The function uses these values to set the goToPage property and

the requestChainToken property of the form, which it then submits. In addition to specifying the results page

to display, this ensures that the same requestChainToken value is associated with each subsequent search

request.

Example of Saving the Request in the SearchSession

If you save the request in the SearchSession, you can avoid the use of JavaScript. Instead, when a user clicks

on a link for a page, you set the necessary properties (including the saveRequest property) on the saved

request through dsp:property tags, and then resubmit the request:

<dsp:a href="queryExampleFastSave.jsp#Paging">
 <dsp:valueof param="count"/>
 <dsp:property bean="QueryFormHandler.goToPage" paramvalue="count"
 name="fh_gtp" priority="29"/>
 <dsp:property bean="QueryFormHandler.searchRequest.saveRequest"
 value="true" name="fh_sr" priority="30"/>
 <dsp:property
 bean="QueryFormHandler.searchRequest.requestChainToken"
 value="${formHandler.searchResponse.requestChainToken}"
 name="fh_rct" priority="30"/>
</dsp:a>

The examples of normal paging and fast paging in the Types of Paging (page 24) section use this approach.

28 4 Paging Search Results

5 Implementing Type-Ahead for Searches 29

5 Implementing Type-Ahead for

Searches

Oracle ATG Web Commerce Search supports a type-ahead feature that attempts to automatically complete

the query text as the user enters it in a search form. As the user types in the text box, a drop-down list is

displayed listing possible query text that matches the characters entered. For example, if the user types “bla”,

the dropdown may display “black”, “bland”, and “blank”. If the user then types “n”, the dropdown now displays

only “bland” and “blank”, because the typed substring no longer matches “black”. At any point, the user can

select a text string from the dropdown, and it will be entered in the text box. The user can then click the submit

button to issue a query with the selected text, or can ignore the dropdown and type in the complete text to

search for.

Implementing type-ahead involves creating two pages:

• A type-ahead page for submitting type-ahead queries and rendering the returned autocomplete strings.

• A search page containing an instance of QueryFormHandler, which is used to construct the search form and

issue queries against (typically) catalog data. This page also includes a JavaScript autocompleter function that

uses AJAX to render the type-ahead page, populate the drop-down list with the results, and fill in the text box

with the user’s selection.

Note that the type-ahead data and the catalog data are included in the same index, so an additional search

engine instance is not required. However, using separate indexes (and therefore separate search engine

instances) is highly recommended for performance reasons.

The examples in this section use the Ajax.Autocompleter function from the script.aculo.us open source

JavaScript library. For information about this library, see:

http://script.aculo.us

You can use an autocompleter function from a different JavaScript library instead, though you might then need

to implement a different servlet bean or form handler to use on the type-ahead page.

The WAR file for the QueryConsole sample application includes the script.aculo.us JavaScript files. The WAR file is

located at:

<ATG10dir>/DAF/Search/Base/QueryConsole/web-apps/queryconsole.war

This chapter includes the following sections:

Creating the Type-Ahead Page (page 30)

30 5 Implementing Type-Ahead for Searches

Creating the Search Page (page 30)

For information about configuring Oracle ATG Web Commerce Search to use type-ahead data, see the ATG

Search Administration Guide.

Creating the Type-Ahead Page

The type-ahead page is a JSP that is rendered periodically as the user types text in the search box. The frequency

of rendering the page is controlled by the JavaScript autocompleter function, which typically polls for changes

several times a second.

The following is an example of a type-ahead page that uses the

atg.search.formhandlers.TypeAheadDroplet. This servlet bean submits a request of class

atg.search.routing.command.search.TypeAheadRequest and then renders the results. Most of the input

parameters for the servlet bean are passed into the page as query parameters when the page is posted by the

JavaScript function.

<dsp:page>

<dsp:droplet name="/atg/search/formhandlers/TypeAheadDroplet">
 <dsp:param bean="/atg/search/formhandlers/SearchContext" name="context"/>
 <dsp:param name="text" param="q"/>
 <dsp:param name="environment" param="environment"/>
 <dsp:param name="language" param="language"/>
 <dsp:oparam name="itemformat">
 <dsp:valueof param="match"/>
 </dsp:oparam>
</dsp:droplet>

</dsp:page>

Creating the Search Page

On the search page, you include a <div> element in the search form to provide a hook for associating the type-

ahead drop-down list with the search text input:

<p>Search for: </p>
<dsp:input type="text" id="question" size="30" converter="nullable"
 name="question" bean="QueryFormHandler.searchRequest.question"/>
<div id="autocomplete_choices" class="autocomplete"></div>

The page also needs JavaScript to call the autocompleter function. The example below creates a JavaScript

function called buildQueryCallback, which constructs the URL (including query parameters) for rendering

the type-ahead page. The example also creates a JavaScript function called AutoComp, which is executed when

the page loads. The AutoComp function:

5 Implementing Type-Ahead for Searches 31

• Calls the Ajax.Autocompleter function with arguments that associate it with the text field and <div>

element in the search form shown above.

• Renders the type-ahead page using the URL constructed by the buildQueryCallback function, adding a

query parameter q whose value is the string currently in the text box.

<script language="Javascript">
function buildQueryCallback(element, entry) {
 entry += "&environment=commerce";
 entry += "&language=english";
 return entry;
}

function AutoComp() {
 var myAutoCompleter1 = new Ajax.Autocompleter('question',
 'autocomplete_choices', 'testtypeget.jsp' , {frequency: 0.2,
 callback: buildQueryCallback, paramName: "q" });
}

document.onload = AutoComp();
</script>

For example, if the user types “fla”, the URL constructed is:

testtypeget.jsp?q=fla&environment=commerce&language=english

The query parameters are used to set the input parameters of the TypeAheadDroplet on the type-ahead page.

32 5 Implementing Type-Ahead for Searches

6 User-Entered Operators 33

6 User-Entered Operators

Customers using your search page can by default include operators that can modify how Oracle ATG Web

Commerce Search interprets query terms. Depending on your customers’ level of knowledge, you may want to

provide them with information on how to use these operators, or prevent them from using the operators.

This chapter includes the following sections:

Literal Operator (page 33)

Required Terms (page 34)

Excluded Terms (page 35)

Case Restriction (page 36)

Wildcards (page 36)

Regular Expressions (page 37)

Number Ranges (page 38)

Operator Combinations (page 38)

Fielded Search Operators (page 39)

Literal Operator

If a single word is surrounded by double-quotes (for example, “books”), Oracle ATG Web Commerce Search

interprets this as a literal constraint, meaning that the user wants the query term to match that word form and

nothing else. Note that double-quotes do not enforce an alphabetic case match.

Double-quotes disable term expansion for the quoted term, meaning that the term can only match the same

index term. Double-quotes also require that the morphological information of the query term be identical to

the retrieved index term. For example, the term “books” is the index term book plus a +s suffix, so the query will

retrieve results with the index term book, but it will filter those that do not have the +s suffix.

If a sequence of terms is quoted (for instance, “book clubs”), the terms are required to appear in the same order

in the retrieved result as they do in the query, and to be adjacent to each other. For example, the quoted string

“book clubs” would mean the following:

• book must not be expanded and must match only this form of book, equivalent to the double-quoted query

of “book”

34 6 User-Entered Operators

• clubs must not be expanded and must match only this form of club, equivalent to the double-quoted query of

“clubs”

• book and clubs must appear in that order in the retrieved result

• book and clubs must be next to each other

For the adjacency constraint, intervening stop-words or punctuation do not count. For example, book – clubs

and book a clubs would satisfy the example query.

Required Terms

The operators described in the following sections can be used to require a search term to appear in the sentence

or document result.

Required in Statement

By default, not all of the terms in a query are required to be in the statement result (Boolean OR). To require that

a search term appear in the statement result, users can use the operator +. The + operator must immediately

precede the query term, with no intervening white space, and there must be white space before the + operator,

as in:

book +clubs

Note that since Oracle ATG Web Commerce Search applies morphology and term expansion by default, the +

operator applies to the explicit query index term plus all of its expansions. In order to require a literal term in the

statement results, use the double-quote operator with the + operator, as in the following example:

book +"clubs"

If the query includes multiple terms with the + operator, all of them must appear in each statement result.

Required in Document

The special operator ++ requires a term to appear in the document results, but not necessarily the sentence

results. This is useful if a user wants to constrain the search to documents about a term, yet not require that the

sentence results from those documents contain the term. The ++ operator must immediately precede the query

term, with no intervening white space, and there must be white space before the ++ operator, as in:

book ++clubs

Note that since Oracle ATG Web Commerce Search applies morphology and term expansion by default, the +

+ operator applies to the query index term plus all of its expansions. To require a literal term in the document

results, the query can use the double-quote operator with the ++ operator, as in:

6 User-Entered Operators 35

book ++"clubs"

Multiple terms with the ++ operator form a Boolean AND of those terms; all of them must appear in the

documents of each result.

The operator +| requires a term to appear in the document results, but not necessarily the sentence results, in

the same way as the ++ operator. Unlike the ++ operator, however, multiple terms with the +| operator form a

Boolean OR; at least one of them must appear in the documents of each result. This is useful for situations where

there are alternative terms that reflect the overall content that the user wishes to search within.

Note that a single query can have terms that use each of these operators. First, the terms with the ++ operator

are used to constrain the document candidates to those which contain all of these terms. Next, the terms with

the +| operator are also used to further constrain the document candidates to those which contain one of these

terms. Finally, the terms with the + operator are used to restrict the sentence results to those that contain these

terms.

Excluded Terms

Users can eliminate undesired search results by using ! and !! to exclude terms, in effect a Boolean NOT.

Excluded in Statement Results

The operator ! requires that a term not appear in the statement results. The ! operator must immediately precede

the query term, with no intervening white space, and there must be white space before the ! operator, as in:

clubs !book

Because Oracle ATG Web Commerce Search applies morphology and term expansion by default, the ! operator

applies to the query index term plus all of its expansions. To require a literal term not to appear in the statement

results, use the double-quote operator with the ! operator, such as

clubs !"book"

Note: Other search engines use the - operator, but this operator can be mistaken for a hyphen; therefore Oracle

ATG Web Commerce Search uses the exclamation mark, also a common symbol for a NOT operator.

Excluded in Document Results

The operator !! requires a term not to appear in the document results, and therefore all of the sentence results.

This is useful if a user wants to exclude documents with a term from the search, no matter where they appear in

those documents. The !! operator must immediately precede the query term, with no intervening white space,

and there must be white space before the !! operator, as in:

clubs !!book

36 6 User-Entered Operators

Since Oracle ATG Web Commerce Search applies morphology and term expansion by default, the !! operator

applies to the original query index term plus all of its expansions. To exclude a literal term from the document

results, use the double-quote operator with the !! operator, as in:

clubs !!"book"

Case Restriction

Oracle ATG Web Commerce Search interprets single quotes as a constraint on the case of the terms inside the

quotes. Search characterizes each query term into three types of case:

• Upper—All upper-case letters

• Lower—All lower-case letters

• Mixed—Both upper and lower-case letters

Mixed includes the common title case (for example, The) as well as non-standard case forms, such as iPod and

NeXT. If a query term is single-quoted, then it is constrained to retrieve only index terms that match its case. For

example, a query with ‘IT’ will only retrieve results with the index term it in upper case.

Wildcards

A wildcard (*) is treated as a character pattern that matches many index terms at once. Oracle ATG Web

Commerce Search uses asterisks in a term to denote a wildcard, where the asterisk can match zero or more other

characters. At least one other non-asterisk character must appear in the query term. The wildcard can be used in

the following ways:

• At the end of the term. For example, book* matches any index term that begins with the substring book, such

as book, books, booking, and bookshelf.

• At the beginning of the term, such as with *desk, which matches terms such as desk, workdesk, and

computerdesk.

• Within a term, such as inst*ion, which matches index terms such as installation and institution.

• Multiple wildcards, such as *install*, match any index term with install in the middle.

Wildcards are a form of term expansion, because a single query term is replaced with alternative terms. But in

this case, the expansions are not from a thesaurus, but based solely on the characters of the terms in the index

and the wildcard pattern.

Note: Wildcard patterns expand to index terms, not to morphological forms of words, so the results are not

always obvious. For example, *desk expands to workdesk, which retrieves all forms of workdesk, including

workdesks, which doesn’t really match the wildcard pattern due to the trailing s. This behavior is by design

and consistent with the rest of Oracle ATG Web Commerce Search’s query handling and search results. Users

should understand that the wildcards are matching against the dictionary of index terms, not literally across the

document text.

6 User-Entered Operators 37

Wildcards can expand to hundreds or thousands of index terms with patterns like s*. To prevent slowdowns and

poor search results, Search limits the number of expansions a wildcard can produce. This limit is configurable, as

described in the wildcardMax (page 132) section of Appendix B, Search XML Reference (page 91). The limit

defaults to 20.

Regular Expressions

Oracle ATG Web Commerce Search uses a common regular expression pattern syntax consisting of the following

operand types:

Operand Description

. Match any character

x Match character x

\x Match character x, which might otherwise have special meaning to the syntax, such as +, *, ?,

(,), and /.

[set] Match any character belonging to the given set, where hyphens denote a range

[^set] Match any character that does not belong to the given set, where hyphens denote a range

The language allows each operand to have an optional operator immediately following it:

Syntax Description

operand? Match zero or one of the operand

operand* Match zero or more of the operand

operand+ Match one or more of the operand

The language allows operands and operators to be grouped by parentheses to form a larger operand, which also

can take operators.

To use a regular expression in a query, it must be denoted as shown:

re/regexp/

For efficiency, Oracle ATG Web Commerce Search requires that the regexp pattern must contain at least one non-

optional, non-negative operand, which means either a literal (non-.) character or a [set] operand without a *

or ? operator.

38 6 User-Entered Operators

For example, book.* is a wildcard term that matches any index term that starts with the sub-string book, such

as book, books, booking, and bookshelf. An example of a set operand, the pattern r[oa]m will match the index

terms rom and ram only.

Regular expressions are a form of term expansion, because a single query term is replaced with a disjunction of

alternative terms. But in this case, the expansions are not from a thesaurus, but based solely on the characters of

the terms in the index and the regexp pattern.

Note: The regexp patterns expand to index terms, not to morphological forms of words, so the results are

not always intuitively obvious. For example, .*desk expands to workdesk, but this could retrieve all forms

of workdesk, including workdesks, which doesn’t really match the regexp pattern due to the trailing s. This

behavior is by design, since it makes it consistent with the rest of Search’s query handling and search results.

Users must understand that the regular expressions are matching against the Search dictionary of index terms,

not literally across the text of the collection.

Regular expressions can expand to hundreds or thousands of index terms with patterns like s.*. To prevent slow

searching and poor results, Search limits the number of expansions a regular expression can produce. This limit

is configured by the wildcardMax (page 132) described in Appendix B, Search XML Reference (page 91). The

default is 20.

Number Ranges

A number range is a query term that is treated as a numeric pattern that matches many index terms at once.

Oracle ATG Web Commerce Search defines a number range as two numbers, separated by two periods, with no

spaces (i..j). The first number is the minimum value, and the second number is the maximum value of the range.

Any numeric index term that falls between the first and second numbers inclusively is retrieved. Integers and

real numbers are not distinguished. For example, the number range 5..8 returns 6, 5.7, and 8.0.

Number ranges can be viewed as a form of term expansion, because a single query term is replaced with a

disjunction of alternative terms. Note that only numbers that appear in the collection are considered for these

ranges. There is no limit to the number of included numbers.

Operator Combinations

Some query operators can be combined on a single term; others cannot, while some must be combined in a

certain order. This section explains how to combine operators.

Natural language query terms can use the Boolean operators plus both quoted strings, as shown below. The

Boolean operators must appear first, with no white space after them. Only one Boolean operator is allowed per

term. The single quote operator can appear next, surrounding the term and optional double-quote operators.

The double-quote operators are innermost.

[+,!,++,+|,!!][']["]term["][']

A wildcard query term can use the Boolean operators and only the single quote operator, as shown below. The

double quote operator denotes a literal match constraint and therefore conflicts with the wildcard pattern

operator.

6 User-Entered Operators 39

[+,!,++,+|,!!][']wildcard[']

A number range query term can use only the Boolean operators, as shown below. The number range is a pattern

and conflicts with the double quote operator. Because numbers do not have case, the single quote operator is

not applicable.

[+,!,++,+|,!!]i..j

Fielded Search Operators

Oracle ATG Web Commerce Search stores features on each sentence term vector which represent different

regions, also called zones or fields, of the text content. The search can be restricted to certain fields, therefore this

functionality is called fielded search. Normally, the user interface would expose the controls for fielded search,

which are passed as parameters. However, Search also provides special query operators for specifying the fields

within the query input. The operator syntax is:

zones:field,field,...

fields:field,field,...

The zones operator controls which fields are searched for normal unstructured content, and corresponds to the

/activeSentenceZones setting (see the Search Fields (page 120) section). By default, Search searches only

the body of the unstructured content, which has a field name of doc. However, unstructured content also has

two other fields: a title field (named role:title) and a URL field (named role:url). The title field typically

represents the metadata title element, such as the <title> element of HTML. The URL field is a special field that

contains the words of the URL of the index item. The following shows how to search all three fields, plus each of

the special fields individually:

zones:doc,role:title,role:url rest_of_query

zones:role:title rest_of_query

zones:role:url rest_of_query

The fields operator controls which fields are searched for structured content, and corresponds to the /

activeSolutionZones setting (see the Search Fields (page 120) section). By default, Oracle ATG Web

Commerce Search searches only the goal, symptom, and id fields of the structured solution content, which have

field names of role:goal,role:symptom,role:id.

However, structured content can have an unlimited number of fields, depending on the extracted structured

content. Structured content does not necessarily have a title or URL field like unstructured content, but it can if

40 6 User-Entered Operators

its structured representation contains them. The following shows how to search on six fields for typical solution

content, plus a search on just the goal and just the ID:

fields:role:goal,role:symptom,role:fact,role:fix,role:cause,role:change,
rest_of_query

fields:role:goal rest_of_query

fields:role:id rest_of_query

7 Constraining Queries 41

7 Constraining Queries

Oracle ATG Web Commerce Search queries can include constraints, which limit the search space within the

index. This chapter describes the following topics:

Document Set Constraints (page 41)

Collection Constraints (page 42)

Property Constraints (page 42)

Index Item Constraints (page 43)

Combining Query Constraints (page 45)

Weighted Metadata Preference Expressions (page 47)

Query Refinements (page 47)

Document set and item constraints can be arbitrarily combined into a single Boolean expression of individual

constraints. Documents that satisfy the Boolean expression are accessible for searching; documents that do not

satisfy the expression are inaccessible.

Search uses XML to represent the query constraint expressions. Constraints are included in a query through the

expression tag and its subtags (see the Combining Query Constraints (page 45) section of this chapter for

XML details). If you want to give your customers access to this feature, you must include the appropriate controls

in the form handler.

The XML is constructed programmatically. Constraints can also be configured using metadata or query rules; see

the ATG Search Administration Guide for information on these methods.

Document Set Constraints

A document set is a collection of source index items that are indexed and deployed together. Document sets can

represent directories, metadata, or item categorization. During a query, Oracle ATG Web Commerce Search can

restrict its search to a particular document set or a document set and all its child sets.

The subdirs attribute determines whether child sets are included (true) or excluded (false). The

docset_path is the pathname for the document set, beginning with an initial forward slash denoting the root.

The XML representation for this constraint is:

<set subdirs="true|false">docset_path</set>

42 7 Constraining Queries

For example, the following XML constrains the search to documents that are included in the /Meta/

fall_styles/shoes document set and its subdirectories:

<set subdirs="true">/Meta/fall_styles/shoes</set>

In Oracle ATG Web Commerce Search, there are four root paths:

• /Documents – Physical directories of unstructured content

• /Solutions – Physical directories of structured content

• /Topics – Virtual directories for categorization results

• /Meta – Virtual directories for metadata

Collection Constraints

Collection constraints function much like document sets, and are ideal for use in B2B environments, where

catalog-based document sets can be numerous enough to slow searching. Collections do not include

hierarchies and cannot be browsed, but are a simple switch that indicates whether a given document is part of

the collection.

<collection>/Meta/name/value</collection>

In order to use collection constraints, index your meta-property with store-as-collection=true in the

IndexingOutputConfig component.

Property Constraints

Oracle ATG Web Commerce Search represents index item metadata as properties stored with the index item.

During a query, Oracle ATG Web Commerce Search can restrict its search to items with certain property values.

Numeric property values can be tested for equality, less-than, and greater-than; string property values can

test for sub-string matches; and both types can be tested for range matches. The XML representation for these

constraints is:

<prop type="type" name="name" op="str_op|num_op" case="true|false">value
</prop>

<strprop name="name" op="str_op" case="true|false">value</strprop>

<numprop name="name" op="num_op" >value</numprop>

7 Constraining Queries 43

The constraints are:

• type—One of six possible property types, enum, string, float, integer, boolean and date. Note that for

properties of type boolean, the value must be provided as a 1 or 0. For example:

<prop type="boolean" name="onSale">1</prop>

The strprop constraint is equivalent to the type values of enum and string, and the numprop constraint is

equivalent to the other four type values.

• name —The name of the property.

• value —The operand value for the constraint.

• op —Contains the comparative operator for the constraint, which defaults to equal.

All constraints allow the following operators:

• equal—The index item must have a property value equal to the operand

• greater—The index item must have a property value greater than the operand

• greatereq—The index item must have a property value greater than or equal to the operand

• less—The index item must have a property value less than the operand

• lesseq—The index item must have a property value less than or equal to the operand

• greater-less—The index item must have a property value greater than the initial range value and less than

the final range value, where the range operand is expressed as initial-final.

• greatereq-lesseq—The index item must have a property value greater than or equal the initial range value

and less than or equal the final range value, where the range operand is expressed as initial-final.

• greatereq-less—The index item must have a property value greater than or equal the initial range value

and less than the final range value, expressed as initial-final.

• greater-lesseq—The index item must have a property value greater than the initial range value and less

than or equal to the final range, where the range operand is expressed as initial-final.

For string and enum property constraints, the comparisons are character byte comparisons. In addition, the

enum and string property constraints allow three more operators:

• contains—The index item must have a property value that contains the operand

• starts—The index item must have a property value that starts with the operand

• ends—The index item must have a property value that ends with the operand

For string property constraints, the additional case attribute controls whether the operator should be case-

sensitive (true) or case-insensitive (false). If the operator is a range operator, then the value is a range of

values expressed as initial-final.

Index Item Constraints

This section discusses various types of index item constraints.

44 7 Constraining Queries

Index Item URL Constraints

Index items require a URL identifier, even if they are not physical files or accessible by Web URLs. This identifier

is stored in the index, and queries can constrain against this URL, which means that only a single index item will

satisfy this constraint. Typically, a set of these constraints are grouped into a Boolean OR to limit the search to a

small subset of index items. The XML for this constraint is shown below:

<doc>URL</doc>

Index Item Format Constraints

Queries can be constrained to items of a particular format. The XML representation for these constraints is:

<format>format</format>

The format operand can be one any of the following:

• HTML – Simple HTML of any style

• Text – Raw text format

• PDF – Adobe format

• XHTML – w3.org XML schema for HTML

• XML – XML format

• Other – Any other format, typically from word or data processing software, such as Word, Power Point, or Excel

• All – Any type

Index Item Language

Content is analyzed and indexed with respect to a specified language, and this language is recorded in the

index. Therefore, queries can be constrained to items of a certain language. The XML representation for these

constraints is shown below:

<language>lang</language>

The lang operand can be any valid language name or code, such as English or en.

Index Item File Extension

Index items require a URL identifier, even if they are not actually physical files or accessible by Web URLs. This

identifier is stored in the index, and queries can constrain against the file extension. For example, the URL http://

www.oracle.com/index.htm has a file extension of htm. The XML for this constraint is:

<type>file_suffix</type>

7 Constraining Queries 45

The file_suffix operand is the file extension characters, not including the period.

Index Item Modified Date

Index items typically have a last modified date associated with them. Queries can be constrained to items with a

certain date or a range of dates. The XML representation of this constraint is:

<date op="num_op">date_string</date>

This constraint has the same comparative operator values as the number property constraint (see Property

Constraints (page 42)). The date_string is either a valid date value or a range of valid values, expressed as

initial_date-final_date. The valid forms of data values are:

• YYYY – A four digit year

• YY – A two digit year, assumes 1900.

• MM YY – Month number followed by two digit year

• MM YYYY – Month number followed by four digit year

• MM DD YY – Month number followed by day number followed by two digit year

• MM DD YYYY – Month number followed by day number followed by four digit year

• month DD YY – Month name followed by day number followed by two digit year

• month DD YYYY – Month name followed by day number followed by four digit year

For all forms, the month, day, and year components must be separated by one of the following delimiters: space,

hyphen, period, comma, slash, or backslash.

Combining Query Constraints

Oracle ATG Web Commerce Search allows you to express arbitrary Boolean combinations of the index item

constraints described previously. For example, to constrain a query to one of three document sets, you can

construct a Boolean OR of three document set constraints; to constrain a query to documents with two property

values, create a Boolean AND of two property constraints. To constrain a query to documents without a property

value or not within a document set, a Boolean NOT of those constraints would be used.

The Backus Naur Form for the XML representation of the query constraint expressions is shown below.

expression := or_exp | and_exp | not_exp | set_exp | format_exp | type_exp
| doc_exp | date_exp | prop_exp | strprop_exp | numprop_exp ;

or_exp := "<or>" expression+ "</or>" ;

46 7 Constraining Queries

and_exp := "<and>" expression+ "</and>" ;

not_exp := "<not>" expression+ "</not>" ;

set_exp := "<set subdirs=\"true|false\">" docset_path "</set>"

format_exp := "<format>" format "</format>"

type_exp := "<type>" file_suffix "</type>"

doc_exp := "<doc>" URL "</doc>"

date_exp := "<date op=\"num_op\" >" date_string "</date>"

prop_exp := "<prop type=\"type\" name=\"name\" op=\"str_op\" >" value
"</prop>"

strprop_exp := "<strprop name=\"name\" op=\"str_op\" >" value "</strprop>"

numprop_exp := "<numprop name=\"name\" op=\"num_op\" >" value "</numprop>"

format := html|text|pdf|other|xhtml|xml|all

date_string := YYYY|YY|MMYY|MMYYYY|MMDDYY|MMDDYYYY

date_string := month DD YY|YYYY

num_op := greater|greatereq|less|lesseq|equal|between|within

str_op :=
greater|greatereq|less|lesseq|equal|between|within|contains|starts|ends

An <or> element represents a Boolean OR. The statement is true if one of its contained expressions is true,

and otherwise evaluates to false.

7 Constraining Queries 47

The <and> element represents a Boolean AND, which is true if all of its contained expressions are true, and

otherwise evaluates to false.

The <not> element represents a Boolean NOT, which is true if none of its contained expressions are true, and

otherwise evaluates to FALSE.

Weighted Metadata Preference Expressions

The previous sections described query constraint expressions that represent arbitrarily complex Boolean

expressions of metadata constraints, including document sets, properties and URL constraints. In some

circumstances, a hard constraint is not appropriate, and a preference for certain content is desired. For example,

to support personalization, an application might prefer certain content depending on the user’s profile.

Oracle ATG Web Commerce Search supports this functionality by allowing a second expression to be included

in the request XML. This second expression includes weights which will affect the relevancy calculation of the

results. Results that satisfy the expression receive extra weight, and results that do not, receive no extra weight.

The metadata expressions use the same XML format as the query constraints, except that each basic element

requires a weight attribute, such as:

<set subdirs="bool" weight="N"

<strprop name="name" weight="N"

The N value is arbitrary and will be relative to the maximum weight for any given expression. The three Boolean

expressions do not use the weight attribute, for their weight is based on the weight of their operands, as follows:

• Boolean <and> expression has a weight equal to the sum of its operands

• Boolean <or> expression has a weight equal to the maximum weight of its operands

• Boolean <not> expression has a weight equal to zero minus the sum of its operands

Thus, the entire metadata expression results in a total weight using the mathematical combination of the

individual weights. This total weight is normalized into a relevancy value and factored into total relevancy.

Query Refinements

Another type of user feedback involves metadata properties of the retrieved index items. Oracle ATG Web

Commerce Search can return properties and values which can segment the retrieval results. This refinement is

controlled by configuration data defined by the administrator. Note that this feature is referred to as refinement

configuration in Oracle ATG Web Commerce Merchandising; see the ATG Merchandising Guide for Business Users

for information.

The configuration data specifies which properties to use in refinement, the order in which they should be used,

and various settings to control how to construct the refinement. For example, the configuration data might

48 7 Constraining Queries

specify that manufacturer, product type, and price should be used, where price should be returned in ranges

and the other two in enumerated lists, limited to the top three values.

Query Refinement

As another example, the configuration data can specify that the country property will be used initially until

all results are from the same country, then state, then county, and so on. The property refinement is dynamic

depending on the result set.

8 JMS Event Handling 49

8 JMS Event Handling

When a QueryRequest is issued by QueryFormHandler and a response is received, a JMS event (message)

of class atg.search.events.QueryMessage is fired. Search events are used to create logs for reporting

purposes. You can also add configuration to use them for other purposes, such as triggering scenarios.

This chapter discusses search events and how to configure them. It includes these sections:

Search Messaging Components (page 49)

Suppressing Search Messages (page 50)

Patch Bay Configuration (page 51)

For information about the properties of the QueryMessage class, see the ATG Platform API Reference.

Search Messaging Components

The /atg/search/formhandlers/SearchContext component has two properties that control the firing of

search messages:

Property Description

firingSearchEvents A Boolean which specifies whether firing of search events is enabled. If

false, no search events are fired; if true, search events are enabled and

are managed by the component specified in the searchMessageService

property.

searchMessageService A component of class atg.search.events.SearchMessageTools,

which manages the firing of the search events. By default, the

SearchMessageService property is set to /atg/search/events/

SearchMessageService.

The /atg/search/events/SearchMessageService component is responsible for constructing and sending

search messages. It has a number of properties that configure the firing of messages:

50 8 JMS Event Handling

Property Description

spiderlikeTypes An array of atg.servlet.BrowserType components for which search events

are not fired.

browserTyper The browserTyper component used to determine the browser type the

request is coming from.

messageFilter A component of class atg.search.events.MessageFilter that is

configured with a list of IP addresses and a list of login names for which search

events are not fired. By default, the messageFilter property is set to /atg/

search/events/MessageFilter.

searchMessageSource The Patch Bay message source, of class

atg.search.messages.SearchMessageSource, that fires JMS messages

when results are received from Oracle ATG Web Commerce Search. The

SearchMessageService component uses the data in the Response

object to construct a message object, which is then sent off by the

SearchMessageSource component.

Suppressing Search Messages

The SearchMessageService component includes logic for determining, when a response is received, whether

to send a JMS message. The purpose of this logic is to prevent sending of messages that will distort the search

reporting results. For example, if a query has been initiated by a Web spider or by the Search Testing feature in

Oracle ATG Web Commerce Merchandising rather than by a site visitor, you typically will not want to take this

query into account in reports.

SearchMessageService suppresses messages in the following situations:

• If the request is determined to come from browser type that is considered a Web spider

• If the request comes from a specified IP address or user account

Detecting Web Spiders

Web spiders (also called robots) crawl the Web and create indexes for Web search services such as Google. This

activity is generally benign, but it can skew reporting results. For example, if a spider issues a search query,

that query will be reflected in search reports you run. This is generally undesirable, since you typically want

the reports to reflect only queries issued by actual site visitors. Therefore, the SearchMessageService has a

mechanism for determining whether a search query is being issued by a spider, and if it is, suppressing the firing

of search events.

To enable this mechanism, you set the SearchMessageService component’s spiderlikeTypes property to

an array of the atg.servlet.BrowserType components that you consider to be spiders. When a search query

is issued, the SearchMessageService examines the userAgent property of the QueryRequest component.

SearchMessageService compares the value of the userAgent property with the values of the patterns

properties of the spiderlikeTypes components, and if it finds a match, suppresses the events.

8 JMS Event Handling 51

Typically, the search request’s userAgent property is set to the value of the User-Agent property of the

HTTP request. You can override this value by explicitly setting the userAgent property in the properties file

of the search request component. This is what happens in the Oracle ATG Web Commerce Merchandising

Search Testing environment. When you use Search Testing, the userAgent property of the QueryRequest

component is set to SearchTesting. By default, one of the spiderlikeTypes components is /atg/dynamo/

servletpipeline/BrowserTypes/Robot, and one of the entries in this component’s patterns array is

SearchTesting, so events are not fired.

Filtering by IP Address or User Account

The SearchMessageService has a messageFilter property that points to a component of class

atg.search.events.MessageFilter. The MessageFilter component determines whether to suppress

search messages, based on the IP address or the user account associated with the request. By default,

the SearchMessageService component’s messageFilter property is set to /atg/search/events/

MessageFilter.

To configure this component, set the following properties:

Property Description

IPAddressList A array of the IP addresses that search messages should not be fired for. Note that the

entries can include wildcards (e.g., 10.1.4.*).

loginList A list of usernames that search messages should not be fired for.

Patch Bay Configuration

The DAF.Search.Base module includes a dynamoMessagingSystem.xml (Patch Bay configuration) file that

declares the /atg/search/events/SearchMessageSource component as a message source, and also defines

a number of message sinks.

If you want other message sinks to listen for search events, you can add your own

dynamoMessagingSystem.xml file to your CONFIGPATH. You can also configure the ScenarioManager to

listen for search events, if you want to use search events to trigger scenario actions. For more information about

configuring Patch Bay, see the ATG Platform Programming Guide.

52 8 JMS Event Handling

9 Caching Search Query Data 53

9 Caching Search Query Data

You can configure Oracle ATG Web Commerce Search to cache entire user queries and their responses. This can

improve performance by removing load from the search engines, and is most useful when many users are doing

browse-type searches (such as faceted navigation) that result in repeated identical queries.

The cache stores the environment name, the query XML, and the response XML. By default, the cache stores the

most recently used queries and their responses in memory, while older responses are stored on disk.

Any Oracle ATG Web Commerce instance running the DAF.Search.Routing module can cache search data;

caches are created as needed, with one cache per search environment.

This chapter includes these sections:

How Search Caching Works (page 53)

Configuring Search Caching (page 54)

Compressing Cache Entries (page 55)

Controlling the Caching of Individual Queries (page 56)

Using the Cache Administration Page (page 58)

How Search Caching Works

The query cache is implemented as a map of key/value pairs. Each entry in the map represents a single query

and the associated response. For an individual cache entry, the query XML is the map key, and the response XML

is the map value.

When a user enters a query (either through free-text search or by clicking a facet value), Routing checks the

cache to see if it has a key that matches the query. If it finds a match, it uses the map value corresponding to the

key as the search response. In this case, the query is not sent to the search engine.

If no match is found, the query is directed to the search engine, and a response is returned. The query and the

response are then used to construct a new entry in the cache.

Search caching is implemented through the atg.service.cache.persistent.ehcache.EHCacheService

class, which invokes the Ehcache open source library. For more information about the EHCacheService

class, see the ATG Platform API Reference. For information about the Ehcache library, see http://

ehcache.sourceforge.net/.

54 9 Caching Search Query Data

Configuring Search Caching

Search caching is enabled by default. You can disable caching by setting the cacheService property of the

RoutingSearchService component to null. Note that if you disable caching, Oracle ATG Web Commerce

Search does not clear out any existing cached queries, but it no longer retrieves existing cached queries or

caches new queries.

If caching is enabled, you can configure its behavior by setting properties of the /atg/search/routing/

CacheService component, which is of class EHCacheService. By default, this component includes these

settings:

defaultMaxElementsInMemory=100
defaultOverflowToDisk=true
defaultMemoryStoreEvictionPolicy=LRU
defaultMaxElementsOnDisk=10000000
defaultDiskPersistent=true

These setting configure the cache to store a maximum of 100 queries in memory. When this number is

exceeded, the least recently used queries are moved to disk, up to a total of 10,000,000. Cache contents are

maintained on disk during Oracle ATG Web Commerce server restarts.

Disabling Cache Invalidation

By default, a search cache is invalidated each time the index is deployed. This ensures that out-of-date queries

are removed from the cache.

Unfortunately, this results in valid queries being flushed as well. As a result, load on the search engines tends

to spike after a deployment, then decrease over time as more and more queries are cached. This pattern is

repeated after each deployment, resulting in large fluctuations in the load.

To avoid these fluctuations, you can disable cache invalidation, and instead have individual queries evicted

based on how long they have been in the cache. If you do this, it is a good idea to also disable storing any

queries on disk, because looking for queries to evict on disk is very slow. You will also need to increase the

maximum number of queries to keep in memory (since none will be stored on disk), and specify how long to

keep a query before evicting it from the cache. So you might configure the CacheService component like this:

defaultDisableInvalidation=true
defaultTimeToLiveSeconds=3600
defaultMaxElementsInMemory=10000
defaultOverflowToDisk=false
defaultMemoryStoreEvictionPolicy=LRU
defaultMaxElementsOnDisk=0
defaultDiskPersistent=false

Note that if query invalidation is disabled, the setting for defaultTimeToLiveSeconds involves a tradeoff

between keeping queries in the cache that are no longer valid (because the index has changed and has been

redeployed) and evicting ones that still are (because they have been present longer than the configured value).

9 Caching Search Query Data 55

Compressing Cache Entries

Caching queries and responses can significantly improve performance, but the disadvantage is that the cache

may use a lot of memory or disk space, since each cache entry includes a complete request and response.

Oracle ATG Web Commerce Search provides mechanisms for compressing cached requests and responses to

reduce disk and memory usage. The mechanisms for compressing requests and responses are separate, because

the objectives are different:

• A lossless compression scheme must be used for the responses, so they can be reconstructed exactly. When a

response is retrieved, the compressed value is decompressed to obtain the original value.

• The size of a request can be reduced to a much greater degree by using a one-way hash function. When a new

query is issued, Routing compares the hash value of the new request with the stored hash values in the cache.

It is not necessary (or possible) to recover the original request.

Compressing Responses

The compression scheme used for responses (the cache values) is specified through a class that implements the

atg.search.routing.CacheValueCodec interface. This interface has encode() and decode() methods for

compressing and decompressing the cache values.

The /atg/search/routing/CompressedCacheValueCodec component is of class

atg.search.routing.CompressedCacheValueCodec, which implements the CacheValueCodec

interface. This class produces the same compressed XML format that is returned for the response if the

QueryRequest.respform property is set to comp. In addition, CompressedCacheValueCodec can optionally

use GZIP encoding to further compress the response.

To use the compressed XML format for the cache values, set the cacheValueCodec property of the /atg/

search/routing/RoutingSearchService component to the CompressedCacheValueCodec component:

cacheValueCodec=/atg/search/routing/CompressedCacheValueCodec

By default, the cacheValueCodec property is not set, and the uncompressed XML responses are used as the

cache values.

To enable GZIP compression of the cache values, set cacheValueCodec to use the

CompressedCacheValueCodec component as shown above, and set the gzip property of

CompressedCacheValueCodec to true:

gzip=true

Note that if you change the type of compression used for responses, you should clear the cache. Otherwise,

errors may occur because the current decoding algorithm will not be appropriate for the older cached

responses.

Tradeoffs

Using the compressed XML format adds a small amount of processing time to the creation of cache values,

but retrieving the response object in this format is actually faster than it is for uncompressed XML. There is

no processing involved in the decode() method, as the compressed XML string is returned directly, and

parsing the compressed XML value is two to five times faster than parsing regular response XML. However, the

compressed XML format provides a savings of only about 35% in the space used to store the cache values.

56 9 Caching Search Query Data

Enabling GZIP compression significantly reduces memory and disk use for cache values (typically by a factor of

10) at the expense of CPU time. Encoding is considerably more processor-intensive than decoding, so a cache

with many infrequently requested elements will involve a larger performance penalty than one with fewer, more

frequently requested elements.

Hashing Requests

The algorithm used for creating cache keys is specified through a class that implements the

atg.search.routing.CacheKeyCreator interface. This interface has a single makeKey() method for

creating cache keys from the requests.

Oracle ATG Web Commerce Search includes two components whose classes implement CacheKeyCreator:

• The /atg/search/routing/DefaultCacheKeyCreator component is of class

atg.search.routing.DefaultCacheKeyCreator. This class uses the uncompressed XML requests to

create the cache keys.

• The /atg/search/routing/DigestCacheKeyCreator component is of class

atg.search.routing.DigestCacheKeyCreator. This class creates cache keys by computing MD5 hashes

of the XML requests.

To specify the component to use for creating cache keys, set the cacheKeyCreator property of the /atg/

search/routing/RoutingSearchService component. For example, to enable hashing of cache keys, set

cacheKeyCreator to the DigestCacheKeyCreator component:

cacheKeyCreator=/atg/search/routing/DigestCacheKeyCreator

With this setting, each cache key is created by performing an MD5 hash of the corresponding XML request and

converting the result to a 24-character string.

If cacheKeyCreator is not set, /atg/search/routing/DefaultCacheKeyCreator is used to create the

cache keys from the uncompressed XML requests. By default, cacheKeyCreator is not set.

Note that if you change the value of cacheKeyCreator, you should clear the cache, since any existing cache

keys will not match the keys generated from new requests.

Tradeoffs

Hashing a request can result in huge space savings, because the resulting cache key is always only 24 characters

long. However, there is a small increase in CPU usage associated with performing the hash, both for caching and

for cache lookups.

A hash value is not necessarily unique to a specific request, so there is a very slight chance of a cache key

collision. If this happens, the incorrect response may be returned.

Controlling the Caching of Individual Queries

Caching of queries is most useful if the same queries are used repeatedly. Faceted search queries are particularly

good candidates for caching, because the same query is likely to be issued by different users selecting the same

9 Caching Search Query Data 57

facet values. Searches that include search text are less likely to be repeated exactly, so they may benefit less from

caching.

If you know in advance that certain queries are unique, it is a good idea to disable caching of them. Otherwise

your cache will grow quickly and provide little performance benefit. To disable caching of a query, you set the

cacheable property of the QueryRequest component to false. For example:

<dsp:property bean="QueryFormHandler.searchRequest.cacheable"
 value="false"/>

Queries that Include Timestamps

Queries are especially likely to be unique if they have constraints that include timestamps. For example,

suppose you configure queries to include a constraint that removes items whose start date is in

the future (i.e., items that are not yet available). To do this, you might create a component of class

atg.search.routing.command.search.PropConstraint and configure it so that an item is returned only

if the value of its startDate property is less than or equal to the current date and time. Unfortunately, this

constraint results in every query being unique, because the time changes continuously. So no benefit can be

realized by caching the queries.

To prevent these queries from being unique, the Oracle ATG Web Commerce platform includes the class

atg.service.util.ChunkedTimeInterval. This class divides up time into discrete intervals of a specified

length, and during an individual interval always returns the same time. If you use this class to include

timestamps in search queries, all queries created during an individual interval will have identical timestamps, so

queries that are otherwise identical will remain identical. At the end of one interval, a new interval begins and

the timestamp changes, but then remains constant for the duration of the new interval.

ChunkedTimeInterval has intervalUnitName and intervalCount properties for specifying the length of

the interval. For example, to specify an interval of 4 hours:

intervalUnitName=hour
intervalCount=4

ChunkedTimeInterval has startTime and endTime properties that it sets to the time at the beginning

and end of the interval (in milliseconds, using Coordinated Universal Time). So, for example, if an interval is 4

hours long and begins at 4:00 am on July 3, 2010, then startTime is set to 4:00 am of that day and endTime is

set to 8:00 am. ChunkedTimeInterval also has a number of other properties that it sets to the interval start

and end times in different formats. For search constraints, use either the startTimeSecondsAsString or the

endTimeSecondsAsString property, as these properties return the time in a format that is most suited to

inclusion in search queries.

The DCS.Search.Query module includes a ChunkedTimeInterval component named /atg/commerce/

search/catalog/ProductAvailabilityTimeWindow which is configured to use intervals of one day.

You can change this interval or create your own component of this class. The following example shows a

PropConstraint properties file that uses this component to include a timestamp in a constraint:

type=integer
name=startDate
operation=lesseq
value^=/atg/commerce/search/catalog/\
 ProductAvailabilityTimeWindow.startTimeSecondsAsString

58 9 Caching Search Query Data

For more information about the ChunkedTimeInterval class, see the ATG Platform API Reference.

Using the Cache Administration Page

To administer search caching, navigate to /atg/search/routing/CacheService in the Component Browser

of the Dynamo Server Admin. The Cache Statistics section provides information on current cache configuration

and effectiveness.

Note that the accuracy of many of these statistics may be affected by the value of the statisticsAccuracy

property of EHCacheService. There is tradeoff between the accuracy of the values and the goal of minimizing

the system resources required to gather the values. You can increase the accuracy by changing the setting of

this property, as described in the ATG Platform API Reference.

The page also provides buttons for the following actions:

• Clear Statistics -- Resets to zero the statistics that appear in the CacheService charts (see below).

• Disable/Enable -- Turns the caching service off or on. (Note that this does not disable searching.)

• Flush to Disk -- Saves the portion of the cache currently in memory to disk.

• Clear Cache -- Deletes all cached information.

• Disable Invalidation -- Disables cache invalidation.

The page includes the following charts, which show how caching affects your site:

• Hit Rates -- The percentage of queries that have been satisfied by cached data. A high hit rate means that

caching is working well.

• Maintenance Time -- The percentage of time the cache spent purging itself vs. serving requests. If this number

is more than a few percent, try increasing the value of defaultMaxElementsInMemory to decrease the

amount of time the system spends moving items between disk and memory.

• Requests/Hits per Second -- The number of search requests, the number of those requests that were served by

cached data, and the number of items evicted from the cache.

Note: If you are using the QueryConsole sample application to test search behavior, the Cache Responses

setting is false by default; change this value before testing.

10 Faceted Search 59

10 Faceted Search

The Faceted Search feature enables Oracle ATG Web Commerce sites to provide a navigational structure that is

not strictly based on the catalog hierarchy. Facets are like virtual categories that are populated by the results of

search queries. Facets are implemented as search refinements, which are used to narrow down search results

by searching within those results for only the items that fulfill a certain constraint. For example, a search might

return men’s shirts, and then the customer might select a facet value that narrows the results to men’s shirts that

are made of cotton.

This chapter describes how to write pages that implement Faceted Search on a Commerce site. It includes the

following sections:

Overview of Faceted Search (page 59)

Building Pages that Include Facets (page 60)

Issuing Faceted Search Queries (page 61)

Using a Facet Trail (page 63)

Rendering the Facets (page 66)

Incorporating Search Text as a Facet (page 72)

Formatting Facet Values (page 74)

Note that Faceted Search extends the Search querying and response-handling mechanisms described in the

Search Form Handlers (page 7) chapter. Be sure to familiarize yourself with the information in that chapter before

reading this chapter.

Overview of Faceted Search

A facet is a search refinement element that corresponds to a property of a product or SKU. The property is

referred to as a faceting property. The values of this property are broken down into selections that can be either

ranges or specific values. For example, you might define a price facet whose faceting property is the salePrice

property of a product’s SKUs. The selection ranges, which can either be determined dynamically or specified

explicitly, might be $100 to $200, $200 to $500, $500 to $1000, etc. Or you might define a manufacturer facet

with selection values of Acme, Cogswell, and Spacely.

You specify facets and the logic for determining the selections in Oracle ATG Web Commerce Merchandising

as part of creating your product catalog. Each facet corresponds to a property of a commerce item, and can

60 10 Faceted Search

be associated with one or more categories or catalogs. Each facet is stored in the RefinementRepository

as a separate refineElement repository item. When you deploy your catalog to your production

site, the RefinementRepository is deployed as well. When you index your catalog, the data in the

RefinementRepository is used to create the refinement configuration files used by Oracle ATG Web

Commerce Search. These are the XML files that define sets of facets and the facet values or ranges. These files

are generated and submitted to Search after an indexing operation. When Commerce issues a query to Search, it

determines which refinement configuration file should be applied, and specifies it in the query.

When you write JSPs for displaying facets, you render the facet selection values as hyperlinks. When a customer

clicks one of these links, a query is issued to Search, using the selection range or value as a refinement criterion.

For example, a customer might issue a text query that returns a set of products that are displayed on the page.

If the customer then clicks the Sale Price facet’s “$100 to $200” link, a new query is issued that specifies “return

only the products in this set whose sale price is between $100 and $200.” The results of this query are then

displayed on the page, and the facet selections are updated.

See the ATG Merchandising Guide for Business Users for information about creating facets.

Building Pages that Include Facets

To use facets on your site, you create JSP pages that display the facet selections as hyperlinks. When a customer

clicks one of these links, a query is issued to Oracle ATG Web Commerce Search. The search results returned are

then displayed on the page. These results include only those items whose faceting property value is the selected

value or falls within the selected range. The available facet selections are also updated to reflect the selections

previously made. This process continues as the customer clicks further links.

To create pages that enable Faceted Search, you use the following classes:

• The form handler atg.search.formhandlers.QueryFormHandler issues the search queries that include

the refinement information, and receives the responses that include the refinements. The /atg/commerce/

search/catalog/QueryFormHandler component of this class is configured to work with faceted search.

• The atg.commerce.search.refinement.custom.CustomCatalogFacetSearchTools class processes

the refinement data in the search request and response objects. The /atg/commerce/search/catalog/

QueryFormHandler component is configured to use a component of this class, /atg/search/repository/

FacetSearchTools.

• The atg.repository.search.refinement.FacetTrail class keeps track of the facet selections made by

the customer.

The pages you write should not be associated with specific facets or selections. Instead, they should be written

in a generic way, to be able to handle any set of facets defined in Oracle ATG Web Commerce Merchandising.

Typically you write one primary page that deals with displaying the facets and manipulating the facet trail, and

that page is re-rendered each time new results are returned. The remaining sections in this chapter describe

how to do this.

Note: In ATG 2007.1 and earlier, faceted search queries and responses were handled

through the atg.repository.search.refinement.FacetSearchDroplet and

atg.commerce.search.refinement.CommerceFacetSearchService classes. These classes were

deprecated in ATG 9.0, and atg.search.formhandlers.QueryFormHandler was modified to support

faceted search queries and responses. As of Oracle ATG Web Commerce 10, the FacetSearchDroplet,

CommerceFacetSearchService, and related classes have been removed from the distribution. If your faceted

10 Faceted Search 61

search implementation is based on these classes, you must rewrite your JSPs to use QueryFormHandler

instead.

Issuing Faceted Search Queries

You issue faceted search queries with the QueryFormHandler, which takes the FacetTrail object and various

Oracle ATG Web Commerce Search query attributes and constructs a search query that specifies:

• Constraints created based on the facets and categories in the facet trail

• A refinement configuration, which is determined based on the entries in the facet trail

• Search refinement query attributes

• Pagination query attributes

The QueryFormHandler submits the search request to Oracle ATG Web Commerce Search and receives

back a search response. The FacetSearchTools class handles the processing of the search request by

creating constraints and specifying the refinement configuration to use, based on the entries in the facet trail.

FacetSearchTools also processes the search response by converting the Refinements object into an array

of facets that can be manipulated individually. The page developer can then use servlet beans or JSP tags to

iterate through the response and display the resulting facets and selections and the products returned. The

selection ranges or values can be displayed as hyperlinks which, when clicked, pass the new facet trail String and

modification instructions as query parameters to the linked page.

To configure the request and response processing, a component of class FacetSearchTools is added to the

QueryFormHandler component’s searchRequestProcessors and searchResponseProcessors array

properties. For example:

searchRequestProcessors+=/atg/search/repository/FacetSearchTools
searchResponseProcessors+=/atg/search/repository/FacetSearchTools

Note that the /atg/commerce/search/catalog/QueryFormHandler component is configured to use /atg/

search/repository/FacetSearchTools.

The following example creates a search form where a user can enter text and then click a button

to submit the query. The results are returned as a QueryRequest.Response object (stored in the

QueryRequest.searchResponse property). The FacetSearchTools component converts the raw facet

data (found in the Refinements object stored in the QueryFormHandler.searchResponse.refinements

property) and stores the converted data in the FacetSearchTools.facets property for use on the page.

<dsp:form id="searchForm" name="searchForm" formid="searchForm"
 method="post" action="simpleFacet.jsp">

 <!-- the text field is linked to the searchRequest's question property -->
 <p>question: <dsp:input type="text" id="question" size="60"
 name="question" bean="QueryFormHandler.searchRequest.question"/>

 <!-- submit button invokes the handleSearch method on the QueryFormHandler -->
 <p><dsp:input type="submit" bean="QueryFormHandler.search" value="Search"/>

62 10 Faceted Search

 <!-- get the search response, facets, and facet trail string -->
 <!-- from the initial request -->
 <dsp:getvalueof bean="QueryFormHandler.searchResponse"
 var="queryResponse" scope="request"/>
 <dsp:getvalueof bean="FacetSearchTools.facets" var="facetHolders"
 scope="request"/>
 <dsp:getvalueof param="trail" var="trailString"/>

. . .
</dsp:form>

Specifying the Category for the Query

When a customer navigates a site, facets are not returned until a search query is issued. If you want facets to

appear without a customer explicitly entering a search query, you can silently issue a textless query when the

customer selects a category. This is sometimes referred to as category navigation.

For example, suppose a site has top-level categories of Shoes, Hats, and Gloves. When the customer clicks the

link for the Hats category, the products or SKUs in that category are displayed along with the appropriate facets

for the category. The products or SKUs can be obtained using standard Oracle ATG Web Commerce catalog

navigation or through a search query, but a search query must be issued to return the facets. The query is

submitted when the page for the category is loaded, and specifies the category to return results and facets for.

To specify the category, you set the startCategory property of the QueryRequest component. For example:

<dsp:setvalue bean="QueryFormHandler.searchRequest.startCategory"
 param="/Meta/ancestorCategories.catalogSpecificId/${categoryId}"/>
<dsp:setvalue bean="QueryFormHandler.search" value="submit"/>

This code assumes the category ID has been passed to the page through a query parameter on the selected link.

For example, the anchor tag for the link to the Hats category might look like this:

Note that setting startCategory this way requires that the ancestorCategories.catalogSpecificId

property be included in the index and stored as a document set. This property is an array of the catalog-specific

category IDs of a product’s ancestor categories, which are determined by the /atg/commerce/search/

CustomCatalogCategoriesPropertyAccessor component. The definition file of the /atg/commerce/

search/ProductCatalogOutputConfig component includes this property by default:

<item is-multi="true" property-name="ancestorCategories">
 <meta-properties>
 <property store-as-docset="true" name="catalogSpecificId" type="string"
 property-accessor=\
 "/atg/commerce/search/CustomCatalogCategoriesPropertyAccessor"
 output-name="ancestorCategories.catalogSpecificId"
 is-non-repository-property="true" filter="unique"/>
 </meta-properties>
</item>

10 Faceted Search 63

Restricting the Set of Facets and Selections

In some situations, you may not want your sites to display all available facets and selections. For example:

• If you have a large number of facets, you may want to display only the most important ones.

• If a facet has a large number of selection values or ranges, you may not want to display all of them. For

example, if a Color facet has 20 values, you could display only the ones with the most results.

• If a facet returns only one selection value, you may not want to display that facet. For example, if the value

of the color property for every result returned is red, you could suppress display of the Color facet, since it

would have only a single selection value that would return the same set of results already being displayed.

You can restrict the set of facets and selection values that Oracle ATG Web Commerce Search returns by setting

the following properties on the /atg/commerce/search/catalog/QueryRequest component:

refineMax

The maximum number of facets to return (configured value: 5). If the number of facets

in the refinement configuration is greater than this number, only the top n facets (where

refineMax=n) in terms of priority order are returned. (See Ordering Facets by Priority (page

68).) Note that if two or more facets have a nesting relationship, Oracle ATG Web

Commerce Search returns only one facet in that nesting hierarchy.

refineTop

The maximum number of values or ranges to return for a facet (configured value: 5). If

the number of available values is greater than this number, only the top n values (where

refineTop=n) in terms of sort order are returned. The sort order for a facet’s selection values

is specified when the facet is defined in Oracle ATG Web Commerce Merchandising; you can

choose to sort in descending order of the number of results in the selection, so that only the

facet selections with the fewest results are eliminated.

refineMin

The minimum number of results that a facet value or range must have for that value or range

to be returned. The configured value is 0, which means even facet values with no results are

returned. For example, if a Size facet has values of Small, Medium, and Large, selections are

displayed for all three values, even if the results include no items whose size is Small. Set the

value of this property to 1 to return only facet values that include results.

refineMinVal

The minimum number of selection values or ranges that a facet must have in order for that

facet to be returned. The default value is 1, which means all facets are returned, since a facet

always has at least one selection value or range. Set the value of this property to 2 eliminate

facets for which all results have the same value. For example, if every result has color=red,

setting refineMinVal to 2 prevents Oracle ATG Web Commerce Search from returning the

Color facet.

Using a Facet Trail

Because facet selections are cumulative, it is necessary to keep track of each facet selection a

customer has made so far. This is done through a facet trail, which is stored as an object of class

atg.repository.search.refinement.FacetTrail.

64 10 Faceted Search

A facet trail is similar to a navigational breadcrumb trail, where each entry consists of a facet and a selection

value or range for that facet. For example, a facet trail might be rendered on the page like this:

Manufacturer:Cogswell > Price:$300-$500 > Voltage:12-24

The first time the page is displayed, you can set the facet trail explicitly, or leave it empty. When the user makes a

facet selection, you append entries to or delete entries from the facet trail, and include the updated facet trail in

the new search query.

You can update the facet trail using the CommerceFacetTrailDroplet. This servlet bean takes as input a

String representation of the current FacetTrail object plus instructions for modifying the facet trail based on

selections chosen by the customer. (Typically these inputs are passed through HTTP request query parameters.)

From these inputs, the CommerceFacetTrailDroplet constructs a new FacetTrail object.

For example, suppose a site visitor navigates by first selecting the Televisions category, and then selecting the

LCD Televisions subcategory. (This assumes that a property whose values are categories is defined as a facet; see

the Oracle ATG Web Commerce Merchandising documentation.) Next, she chooses the $1000 to $2000 selection

range for the price facet, and then chooses Acme as the selection value for the manufacturer facet. The facet trail

String would now look something like this:

1:cat444323:1:cat333222:2:1000-2000:32:Acme

In this example, cat444323 is the repository ID of the Televisions category, and cat333222 is the repository ID

of the LCD Televisions category. The example also assumes the following facets have been defined in Oracle ATG

Web Commerce Merchandising:

1 = category
2 = price
32 = manufacturer

The number identifying the facet is the repository ID of the corresponding refinementElement in the

refinement repository, which is also used as the ID of the refinementElement XML attribute in the refinement

configuration.

Your pages should display the current facets and selections, along with links for removing the selections.

(Typically a link for removing a facet is an image of an X, or the word “remove.”) Suppose the site visitor now

clicks the link to remove the Televisions facet. When a category selection value is removed from the facet trail,

all of that category’s subcategories are also removed, so in this case the LCD Televisions category is removed as

well. (In addition, any category-specific facets and selection values that no longer apply are also removed. For

example, if the Televisions category has a Screen Size facet associated with it, removing the Televisions facet

from the trail also removes the Screen Size facet and selections.)

The new facet trail String is therefore:

2:1000-2000:32:Acme

The displayed search results now consist of all products priced between $1000 and $2000 whose manufacturer

is Acme. So if Acme also manufactures stereo systems, the ones in this price range will now be displayed.

Last Range Indicator

The constraint generated for a facet’s last selection range is slightly different from the constraints for the other

ranges. For example, suppose you have a price facet with three selection ranges: $1000 to $2000, $2000 to

10 Faceted Search 65

$3000, and $3000 to $4000. The first range includes items whose price is great than or equal to $1000 and less

than $2000. The second range includes items whose price is great than or equal to $2000 and less than $3000.

But the last range includes items whose price is great than or equal to $3000 and less than or equal to $4000.

If a site visitor chooses the last selection range for a facet, the facet trail must indicate this, so that the correct

constraint can be constructed. The last range is indicated by appending |LAST to the entry for the range in

the trail. In this example, if the site visitor selects the $3000 to $4000 range, the facet trail String would look

something like this:

1:cat444323:2:3000-4000

Note that although |LAST is included in the facet trail String (and therefore may appear in URLs), it is not part of

the label for the selection range, and therefore does not appear on the page itself. Also, you do not need to code

your JSPs in any special way to deal with this selection range.

For more information about the CommerceFacetTrailDroplet, see Appendix A, Commerce Search Servlet

Beans (page 85).

Supporting Multiple Selection Values

Many sites that use faceted search support selecting only a single value or range for a given facet. When a user

clicks a link to make a selection, a search query is issued that specifies that selection as a constraint. So, for

example, for a Color facet, when a customer clicks the link for the Red selection value, a search query is issued

that returns only items whose color property is red.

Some sites allow users to make multiple selections for certain facets. For these facets, rather than encoding the

selections as hyperlinks, each selection typically has an associated checkbox, so the user can choose multiple

selections by checking their checkboxes; a separate button is provided to issue the query once the selections

are chosen. (Encoding the individual selections as hyperlinks is also possible, but results in more queries being

issued.)

Multiple selections can be combined either with Boolean OR or Boolean AND logic:

• Combining with Boolean OR returns results that match any of the selected values. For example, for a Color

facet, if the user selects Yellow and Orange, a given item is returned if its color property is yellow or if it is

orange.

• Combining with Boolean AND returns results that match all of the selected values. For example, suppose a

product representing a laser printer has a paperSizes property that is an array of the paper sizes the printer

accepts, and you have a Paper Sizes facet based on this property. If the user selects A4 and Letter for this facet,

a given item is returned only if its paperSizes property includes letter and a4.

If multiple facet values are selected, you need a way to encode them in the facet trail. To specify multiple

selections combined with Boolean OR, use the pipe (|) character. For example, to encode the Yellow and Orange

selections for a Color facet, the facet trail entry for this facet would look something like this:

3:Yellow|Orange

To specify multiple selections combined with Boolean AND, use the dollar sign ($) character. For example,

to encode the Letter and A4 selections for a Paper Size facet, the facet trail entry for this facet would look

something like this:

66 10 Faceted Search

3:Letter$A4

You can use the /atg/commerce/search/refinement/FacetTrailString component to construct

facet trails that include facets with multiple selection values. This component, which is of class

atg.repository.search.refinement.FacetTrailString, provides methods for adding facet values,

including multiple selection values combined with Boolean OR or Boolean AND, to the facet trail string.

Working with the FacetTrail Object

The FacetTrail object stores information about the facets in its facetValues property, which holds an array

of atg.repository.search.refinement.FacetValue objects. Each FacetValue object represents a single

entry in the facet trail – a facet and its value. To render the facet trail on a page, you will typically need to access

the following properties of the FacetValue objects:

facet

An object of class atg.repository.search.refinement.Facet. This is an abstract base

class whose subclasses represent various types of refinement elements. A Facet object has

id and label properties that hold the ID of the refinement element and some associated

text. For standard facets, these value are the repository ID and the display name of the

refinementElement in the Refinement Repository. For the special SRCH search text facet,

id is SRCH and label defaults to Search. See Incorporating Search Text as a Facet (page

72).

value

The facet selection value. Depending on the facet type, this can be text or numeric, and

either a single value or a range. If the facet has multiple selection values, then this property is

an array of values or ranges.

matchingDocsCount

The number of items with this facet value or in this range.

The examples in the Rendering the Facets (page 66) section illustrate using these properties in JSPs.

Rendering the Facets

When a faceted search query is issued, Oracle ATG Web Commerce Search returns the facets as part of

the QueryRequest.Response object. The FacetSearchTools component converts the raw facet data

and stores the converted data in the FacetSearchTools.facets property as an array of objects of class

atg.repository.search.refinement.FacetHolder. Each FacetHolder object represents a single facet

and its values.

The facet is stored in the FacetHolder.facet property as an object of class

atg.repository.search.refinement.Facet. (See Working with the FacetTrail Object (page

66).) The facet values are stored in the FacetHolder.facetValueNodes property as an array of

atg.repository.search.refinement.FacetValueNode objects.

The following example illustrates rendering the facets and facet values. It accesses the FacetSearchTools

object and iterates through the facets in its facets property. For each facet, it displays the available selections

and indicates the number of results for each selection value or range.

10 Faceted Search 67

Each value or range is rendered as a hyperlink. When a user clicks one of these links, the JSP:

• Adds the facet and selection value to the facet trail.

• Retrieves the current search request object (which has been saved in the SearchSession object), updates it,

and resubmits the request. (See Modifying and Resubmitting the Request (page 26) for more information.)

• Re-renders the page with the facets and selections returned in the new search response. (This fragment does

not include the code for rendering the search results themselves.)

<dsp:getvalueof bean="QueryFormHandler.searchResponse" var="queryResponse"
 scope="request"/>
<dsp:getvalueof bean="FacetSearchTools.facets" var="facetHolders"
 scope="request"/>
<dsp:getvalueof param="trail" var="trailString"/>

<!-- iterate through the returned facets -->
<c:forEach items="${facetHolders}" var="facetHolder">
 <tr>
 <!-- display the name of the facet -->
 <td><c:out value="${facetHolder.facet.label}"/></td>

 <!-- iterate through the values of the current facet -->
 <td><c:forEach items="${facetHolder.facetValueNodes}" var="facetValueNode">

 <!-- use the CommerceFacetTrailDroplet to construct the facet trail -->
 <dsp:droplet name="CommerceFacetTrailDroplet">

 <!-- pass in facet trail from previous request -->
 <dsp:setvalue param="trail" value="${trailString}"/>

 <!-- add the facet selection to the trail; also include the SRCH facet -->
 <!-- if there is search text and the SRCH facet hasn't been added yet -->
 <c:if test="${ empty trailString and ! empty queryResponse.question }">
 <dsp:setvalue param="addFacet"
 value="SRCH:${queryResponse.question}:${facetValueNode.facetValue}"/>
 </c:if>
 <c:if test="${ ! empty trailString or empty queryResponse.question }">
 <dsp:setvalue param="addFacet" value="${facetValueNode.facetValue}"/>
 </c:if>

 <dsp:oparam name="output">

 <!-- expose the facetTrail string as a jstl variable -->
 <dsp:getvalueof param="facetTrail" var="facetTrail"/>

 <!-- display facet value as link that issues a new search when -->
 <!-- clicked and re-renders this page -->
 <dsp:a href="simpleFacet.jsp">

 <!-- re-use the previously saved search request -->
 <dsp:property bean="QueryFormHandler.searchRequest.requestChainToken
 value="${queryResponse.requestChainToken}"
 name="qfh_rct" priority="30"/>

 <!—- save this request so it can be re-used -->
 <dsp:property bean="QueryFormHandler.searchRequest.saveRequest"
 value="true" name="fh_sr" priority="30"/>

68 10 Faceted Search

 <!—- specify that this is a faceted search request -->
 <dsp:property bean="QueryFormHandler.searchRequest.facetSearchRequest"
 value="true" name="qfh_fsr" priority="31"/>

 <!-- set the facetTrail property on the FacetSearchTools component -->
 <dsp:property bean="FacetSearchTools.facetTrail"
 value="${facetTrail.trailString}" name="qfh_ft" priority="27"/>

 <!-- set the facet trail as a query parameter -->
 <dsp:param name="trail" param="facetTrail.trailString"/>

 <!-— submit the request by invoking the handleSearch method -->
 <!—- on the QueryFormHandler when the link is clicked -->
 <dsp:property bean="QueryFormHandler.search" value="submit"
 name="qfh_s_s"/>

 <!-- display each facet value and the number of results -->
 <c:out value="${facetValueNode.facetValue.value}"/>
 (<c:out value="${facetValueNode.facetValue.matchingDocsCount}"/>)

 </dsp:a>

. . .

Ordering Facets by Priority

When defining a facet in Oracle ATG Web Commerce Merchandising, a merchandiser can optionally specify a

priority value for the facet. The facet priority value must be zero (0) or a positive integer. The higher the value is,

the lower the priority.

The priority values determine the order in which the facets appear in refinement configurations, which

determines the order in which facets are returned by Oracle ATG Web Commerce Search. So, for example, if

a refinement configuration has a Color facet with priority 0 and a Size facet with priority 3, the Color facet is

returned before the Size facet. If the page doesn’t do any reordering of the facets, the Color facet is displayed

above the Size facet.

If a facet is not assigned a priority value in Oracle ATG Web Commerce Merchandising, its priority is set to the

value of the FacetSearchTools component’s defaultFacetPriority property. The default value of this

property is 100, so that facets whose priority value is null are assigned a low priority. You can change this value

in the FacetSearchTools component’s properties file. For example:

defaultFacetPriority=50

Filtering Facets

When a user selects a facet value, a new query is issued with this selection applied as a constraint. The search

engine returns the results of this query and a new set of facets. By default, the new facet set does not include the

other selection values for the selected facet. So, for example, if the selection values for the Color facet are Red,

Green, and Blue, and the user selects Red, the facet set returned does not include the Green and Blue selection

values, because the green and blue items have already been removed from the search results. Removing these

selection values is called filtering the facet.

There are a certain cases where filtering the facet may not be the desired behavior:

10 Faceted Search 69

• If you have a facet based on the product item’s ancestorCategories property, when a user selects a

category, you typically will want lower-level category selections to still be available for further navigation. See

Skipping Facet Values in the Facet Trail (page 69) for information about removing the higher-level category

selections.

• If your faceted search implementation supports multiple selection values, you may want the unselected facet

values to be returned, so the user can further refine on the same facet. This is particularly true if the facet

values are combined using Boolean AND, so you can allow the user to further restrict the current result set.

See Supporting Multiple Selection Values (page 65) for more information.

The search engine filters all facets unless the refinement configuration specifies otherwise. To disable filtering

of an individual facet, you add the faceting property to the filterProperties array property of the /atg/

commerce/search/refinement/RefinementConfigurationXMLGenerator component. By default, this

property is set to:

filterProperties=\
 ancestorCategories.$repositoryId,\
 ancestorCategories.displayName

If you have additional facets that you do not want to be filtered, add the faceting properties to this array. For

example:

filterProperties+=paperSizes

Skipping Facet Values in the Facet Trail

As mentioned above, when a faceted search query is issued, Oracle ATG Web Commerce Search returns the

facets as part of the QueryRequest.Response object, and the FacetSearchTools component converts the

raw facet data into the appropriate format for display. The facets and values returned by Search include ones

that the user has already selected, as well as ones that are available for selection.

Most faceted search implementations do not need the already-selected facet values, since these values are

typically not displayed, except as part of the facet trail. Therefore, the FacetSearchTools component omits

these values by default.

This behavior is controlled through the following FacetSearchTools properties:

• skipValuesAlreadyInTrail -- When set to true (the default), omits any facet values that are already

present in the facet trail.

• skipAncestorsToCategoriesInTrail -- When set to true (the default), omits any facet values that

represent categories that are ancestors of categories present in the facet trail.

You should leave these properties set to true unless your faceted search implementation requires otherwise. If

you change the values of these properties, you may see unexpected facet values displayed. For example, if you

have a facet based on the product item’s ancestorCategories property, the available facet selections will

include the current category and categories above it in the catalog hierarchy, rather than just categories below it

in the hierarchy.

Note that the values of these properties have no effect on the facet trail itself. The trail still includes all of the

selected values, so the appropriate constraints can be applied when a query is submitted.

70 10 Faceted Search

Removing Facet Selections

The example in Rendering the Facets (page 66) creates links for facet selection values. When an user clicks a

link, the selection is added to the facet trail and a new search request is issued.

Your pages should also include links for removing facet selections. For example, if a customer chooses a “$100

to $200” selection range for the price facet, only items in that price range are displayed. To display all items

regardless of price, the customer can click a link that removes this facet selection.

The following example creates a “remove” link for each facet selection. When a user clicks one of these links, the

JSP removes the facet and selection value from the facet trail, along with any dependent facet selections. It also

retrieves, updates, and resubmits the current search request.

<!-- use CommerceFacetTrailDroplet to transform the -->
<!-- facet trail string into a FacetTrail object -->
<dsp:droplet name="CommerceFacetTrailDroplet">

 <!-- expose the facet values as a jstl variable -->
 <dsp:getvalueof param="facetTrail.facetValues" var="facetValues"/>

 <dsp:oparam name="output">

 <c:forEach items="${facetValues}" var="currentFacetValue">
 <!-- Output the facet name and selection value separated by a colon; -->
 <!-- skip over the facet value containing the search question text -->
 <c:set var="srchFacetLabel" value="SRCH"/>
 <c:if test="${currentFacetValue.facet.id != srchFacetLabel}">
 <c:out value="${currentFacetValue.facet.label}:"/>
 <c:out value="${currentFacetValue.value}"/>

 <!-- create a remove link for each facet value; use the -->
 <!-- CommerceFacetTrailDroplet to construct a new facet trail -->
 <dsp:droplet name="CommerceFacetTrailDroplet">
 <dsp:setvalue param="trail" value="${trailString}"/>
 <dsp:setvalue param="removeFacet" value="${currentFacetValue}"/>

 <!-- expose the facetTrail string as a jstl variable -->
 <dsp:getvalueof param="facetTrail" var="facetTrail"/>

 <dsp:oparam name="output">

 <!-- create a link back to this page that submits a -->
 <!-- search request using the updated facet trail -->
 <dsp:a href="simpleFacet.jsp">
 <dsp:property bean="QueryFormHandler.searchRequest.requestChainToken"
 value="${queryResponse.requestChainToken}"
 name="qfh_rct" priority="30"/>
 <dsp:property bean="QueryFormHandler.searchRequest.saveRequest"
 value="true" name="fh_sr" priority="30"/>
 <dsp:property bean="QueryFormHandler.searchRequest.facetSearchRequest"
 value="true" name="qfh_fsr" priority="31"/>
 <dsp:property bean="FacetSearchTools.facetTrail"
 value="${facetTrail.trailString}" name="qfh_ft" priority="27"/>
 <dsp:param name="trail" param="facetTrail.trailString"/>
 <dsp:property bean="QueryFormHandler.search" value="submit"
 name="qfh_s_s"/>
 remove
 </dsp:a>
 </dsp:oparam>

10 Faceted Search 71

 </dsp:droplet>
 </c:if>
 </c:forEach>
 </dsp:oparam>
</dsp:droplet>

Rendering Multiple Selection Values

If your site supports multiple selection values for facets, you need to code your JSPs accordingly. For example,

consider these lines that display a facet and its selection value:

<c:out value="${currentFacetValue.facet.label}:"/>
<c:out value=" ${currentFacetValue.value}"/>

This code assumes that the value property of a FacetValue object is a single value. If a facet actually has

multiple selection values, the code will display only one value. So, for example, if the current selections for the

Color facet are Blue, Green, and Red, this code would display:

Color: Blue

To display all of the selection values, your JSP code should treat the FacetValue.value property as an array.

For example:

<c:out value="${currentFacetValue.facet.label}:"/>
<c:forEach items="${currentFacetValue.value}" var="currentMultiValue">
 <c:out value=" ${currentMultiValue}"/>
</c:forEach>

For the Color facet, this will display:

Color: Blue Green Red

Note that code for handling multiple selection values will work even when there is only a single selection value

for a facet, so it is not necessary to write separate code to handle each case.

About Refinement Counts

Pages that display facets typically include refinement counts, which show the number of items in each selection.

For example, the selection values displayed for a color facet might look like this:

72 10 Faceted Search

The values in parentheses are the refinement counts. If the user clicks on the Black selection value, for example, 2

items will be displayed.

Note that these refinement counts may not always match the number of search results. For example, in this

figure, the number of search results is 3, but if you add up the refinement counts, you get 5. This is because some

search results appear in multiple facet selections, because the index is based on products but SKU properties are

used for faceting. In this example, one of the products is available in Black, Grey, and Khaki, so it is included in

the counts for all three of those colors.

There are various other situations where refinement counts won’t match the number of search results. For

example, if you use SKU-based indexing but group results by product, the refinement counts will reflect the

number of SKUs returned, but the items displayed when a facet value is selected will be products. To make the

refinement counts reflect the number of products, set the following property on the /atg/commerce/search/

catalog/QueryRequest component:

refineCount=group

For more information about grouping results by product, see Setting Grouping Options (page 15).

Incorporating Search Text as a Facet

Using a search form created with the QueryFormHandler class, you can constrain the set of items accessed

through facet selections to ones that also match the search query text. For example, suppose a site visitor at a

clothing store begins by searching for “belt,” and then chooses the “Brown” selection value for the color facet.

The site would now display only brown belts, not all brown items in the store.

To enable this behavior in your pages, Faceted Search allows you to use a special SRCH facet whose selection

value is the search term entered by the site visitor. In this example, the facet trail String would look something

like this:

SRCH:belt:12:Brown

Constructing the Facet Trail String

When a customer submits a text query through the QueryFormHandler, the search text is stored in the

question property of the QueryRequest component, and returned (with possible modifications) in the

10 Faceted Search 73

question property of the QueryRequest.Response object. Submitting search text creates a new search

request with an empty facet trail. When the customer makes a facet selection, it is added to the facet trail that is

included in the subsequent search request.

The following JSP code implements the logic for building up the facet trail. If the facet trail is empty and the

question property of the response object is not empty, this means that the user has entered search text as the

most recent search request. In this case, the code sets the facet trail to SRCH:text plus whatever facet selection

the customer makes.

If, however, there is already a non-empty facet trail or the question property of the response object is empty,

this means that either the SRCH facet has already been added to trail, or there is no SRCH facet (because there is

no search text). So in either of these cases only the facet selection the customer makes is added to the trail.

<dsp:droplet name="CommerceFacetTrailDroplet">
 <dsp:setvalue param="trail" value="${trailString}"/>

 <c:if test="${ empty trailString and ! empty queryResponse.question }">
 <dsp:setvalue param="addFacet"
 value="SRCH:${queryResponse.question}:${facetValueNode.facetValue}"/>
 </c:if>
 <c:if test="${ ! empty trailString or empty queryResponse.question }">
 <dsp:setvalue param="addFacet" value="${facetValueNode.facetValue}"/>
 </c:if>

. . .

Selecting the Refinement Configuration

When a customer submits a text query, the QueryFormHandler has no information for selecting a refinement

configuration. In this situation, Oracle ATG Web Commerce Search can determine the refinement configuration

based on the items that are returned from the query. This behavior is configured in the /atg/commerce/

search/catalog/QueryRequest component through the following settings:

refineConfig=$map
refineConfigMapProperty=ancestorCategories.catalogSpecificId

Setting the refineConfig property to $map instructs Oracle ATG Web Commerce Search to select

the refinement configuration by finding a metadata property value common to all of the results;

refineConfigMapProperty specifies which metadata property to use. The value of the specified

property, ancestorCategories.catalogSpecificId, is an array of the catalog-specific category IDs of

a product’s ancestor categories. (Each ID is formed by combining the category ID with the catalog ID.) The

value of ancestorCategories.catalogSpecificId is determined by the /atg/commerce/search/

CustomCatalogCategoriesPropertyAccessor component, which is a property accessor of class

atg.commerce.search.producer.CustomCatalogCategoriesPropertyAccessor.

These settings specify that Oracle ATG Web Commerce Search should use the refinement configuration

associated with the lowest-level catalog-specific ancestor category that is common to all of the returned items.

This refinement configuration includes the global facets plus any facets specific to that category. If there is no

ancestor category common to all of the results, a refinement configuration that includes only global facets is

used.

For example, suppose your site has several root categories, including Electronics, Shoes, Books, etc. The

hierarchy of the Electronics category looks like this:

74 10 Faceted Search

Let’s say a customer searches for “Acme”. The search results consist only of TVs and stereos manufactured by

Acme Audiovisual. So the lowest-level ancestor category that is common to all of the returned items is Home

Theater. Oracle ATG Web Commerce Search uses the refinement configuration associated with this category.

Another customer searches for “Cogswell”. This time, the results consist of TVs and stereos manufactured by

Cogswell Inc., but also books written by an author named Russell Cogswell. The results therefore do not have a

common ancestor category, so Search uses only the global facets.

Formatting Facet Values

In many cases, when you display a facet value on a page, it is desirable to reformat the value, because the format

used to store the values in the index is not optimized for display purposes. For example:

• Boolean values are stored in the index as 0 (false) or 1 (true).

• Dates are encoded as long integers.

• Price data is stored as raw numbers with no currency symbol or other formatting. For example, the value

representing $87,109.00 might be stored in the index as 87109.0.

To reformat these values for displaying on pages, the Oracle ATG Web Commerce platform includes a servlet

bean, atg.repository.search.refinement.RefinementValueDroplet. This servlet bean takes as input

a facet selection value and the repository ID of the refinementElement that represents the facet, and outputs

the value in a more human-readable form.

Oracle ATG Web Commerce includes a component of this class, which you can use in your pages like this:

<dsp:droplet name="/atg/commerce/search/refinement/RefinementValueDroplet">
 <dsp:param name="refinementId" value="${facetHolder.facet.id}"/>
 <dsp:param name="refinementValue" value="${facetValueNode.facetValue.value}"/>
 <dsp:oparam name="output">
 <dsp:valueof param="displayValue"/>
 </dsp:oparam>
</dsp:droplet>

10 Faceted Search 75

To perform the formatting, RefinementValueDroplet uses a class that implements the

atg.repository.search.MetaPropertyValueFormatter interface. By default, this class is

atg.repository.search.DefaultMetaPropertyValueFormatter. The RefinementValueDroplet

component has a defaultValueFormatter property that points to a component of this class, /atg/

commerce/search/refinement/DefaultMetaPropertyValueFormatter.

DefaultMetaPropertyValueFormatter can reformat a variety of data types:

• For a repository ID property (e.g., childSKUs.$repositoryId), it returns the item display name.

• For a date property (e.g., creationDate), it returns a locale-specific date string.

• For an enumerated property (e.g. stockAvailabilityStatus), it returns the display name of the

enumerated value.

• For a Boolean property (e.g., onSale) it looks in a resource bundle for a key of the format property-

name_0 (for false) or property-name_1 (for true), and returns the string associated with that key. For

example, for an onSale property, the keys would be onSale_0 and onSale_1. If the key is not found, the

value is returned unchanged. The resource bundle is specified by the resourceBundle property of the

DefaultMetaPropertyValueFormatter component.

You can write a custom implementation of the MetaPropertyValueFormatter interface

to use for specific faceting properties. Oracle ATG Web Commerce includes one such class,

atg.commerce.search.PriceMetaPropertyValueFormatter, for formatting price data. It also includes a

component of this class, /atg/commerce/search/PriceMetaPropertyValueFormatter.

To specify a custom formatter for a property, you create a component of your class and then register

the component with the /atg/search/repository/MetaPropertyValueFormatterRegistry

component. MetaPropertyValueFormatterRegistry has a valueFormatterMap property which

maps property names to their associated formatter components. For example, to specify that the

PriceMetaPropertyValueFormatter should be applied to the price property, Oracle ATG Web Commerce

adds this configuration:

valueFormatterMap+=\
 price=/atg/commerce/search/PriceMetaPropertyValueFormatter

When it formats a value, RefinementValueDroplet first checks the

MetaPropertyValueFormatterRegistry to see if there is a custom MetaPropertyValueFormatter

registered for the property name, and if there is, uses that formatter. If there no custom formatter registered for

the property, it uses the DefaultMetaPropertyValueFormatter.

76 10 Faceted Search

11 Search Merchandising 77

11 Search Merchandising

The Search Merchandising feature enables commerce sites to customize search results based on site initiatives

and customer purchasing patterns. A merchandiser uses Oracle ATG Web Commerce Merchandising to create

search configurations, which are sets of rules that determine the order of search results and which items are

excluded from the results.

Search configurations are stored in the RefinementRepository (along with the refinement configurations

used for Faceted Search), and are included by Oracle ATG Web Commerce Search when the product catalog is

indexed. When a site visitor issues a search query, Oracle ATG Web Commerce platform components determine

which search configuration to use, and include this information with the query. When Search returns the results

from the query, it applies the rules in the search configuration to those results.

This chapter describes the query-side services involved in Search Merchandising. It includes the following

sections:

Determining the Search Configuration for a Query (page 77)

Handling Redirects (page 79)

For more information about Search Merchandising, including details about creating search configurations, see

the ATG Merchandising Guide for Business Users and the ATG Merchandising Administration Guide.

Determining the Search Configuration for a Query

When a visitor enters a search term on a site that uses Search Merchandising, the software determines which

search configuration to apply, and includes this information in the query it sends to Oracle ATG Web Commerce

Search. The logic used to select the search configuration is based on the tree structure created in Oracle ATG

Web Commerce Merchandising. This structure can take into account three dimensions: user segment, site, and

locale (referred to in Merchandising as language).

The dimension tree structure is stored as repository items in the RefinementRepository. When the product

catalog is deployed from the Merchandising environment to the target site, this repository is deployed as well.

The dimension services that create the tree structure in Merchandising, /atg/search/config/

LanguageDimensionService, /atg/commerce/search/config/SiteDimensionService, and /atg/

commerce/search/config/SegmentDimensionService, are also present on the search client environment.

When a site visitor submits a query entered in a search form, the form handler invokes the /atg/commerce/

search/config/SearchConfigNameService component, which uses these services to traverse the decision

tree based on the visitor’s language (locale) , the user segments he or she is a member of, and the current site.

It proceeds through the tree until it finds the first search configuration that matches these values. It then adds

78 11 Search Merchandising

a reference to this search configuration to the query. The search configuration rules are applied to the results

returned. If there is no matching search configuration, then no search configuration rules are applied.

For example, suppose the dimension tree created in Merchandising looks like this:

In this example, English is the only language defined, and there are only two segments available, Big Spenders

and Californians, and site is not used as a dimension.

To determine the search configuration to use, the software would proceed like this:

• Determine the visitor’s language, as described in Determining the Language (page 78).

• If the language is English:

• Determine if the visitor is a member of the Big Spenders segment. If so, use the Segment: Big Spenders

search configuration.

• If the visitor is not a member of the Big Spenders segment, determine if the visitor is a member of the

Californians segment. If so, use the Segment: Californians search configuration.

• If the visitor is not a member of the Californians segment, use the Segment: All Others search configuration.

• If the language is not English:

• Determine if the visitor is a member of the Big Spenders segment. If so, use the Segment: Big Spenders 2

search configuration.

• If the visitor is not a member of the Big Spenders segment, do not use any search configuration.

Some things to note in this example:

• The ordering of the items in the tree is important. If the visitor’s language is English, and he or she is a

member of both the Big Spenders and the Californians segments, the Segment: Big Spenders search

configuration is selected, because its position in the tree is above the Segment: Californians search

configuration.

• In a group of dimension folders or search configurations at the same position in the hierarchy, the folder

or search configuration whose dimension value is All Others is always the last item in that group of folders

or search configurations. In the example above, the Language: All Others folder comes after Language:

English, and the Segment: All Others search configuration comes after Segment: Big Spenders and Segment:

Californians. Merchandising enforces this ordering to ensure that a folder or search configuration whose

dimension value is All Others is used only if the visitor’s value for that dimension doesn’t match any other

folder or configuration.

Determining the Language

When a merchandiser defines a search configuration in the Merchandising UI, he or she selects a language

from a preconfigured list. Though the term “language” is used throughout Merchandising, the values selected

11 Search Merchandising 79

actually represent Java locales. So, for example, the list of available languages might include both British English

(representing the locale en_GB) and US English (representing the locale en_US).

When a site visitor enters a search query, the software determines the visitor’s locale, and uses this value in the

process of selecting a search configuration. Different sites may use different logic for determining a visitor’s

locale. The following steps describe one common approach:

1. If the URL in the request includes a query parameter that specifies a locale, use that locale.

2. If the locale is not specified in the URL, examine the current profile’s locale property. If this property is set

(typically the case only if the user is logged in), use the value of that property.

3. If the locale property of the profile is not set, examine the HTTP headers of the request for a locale setting.

This is set by the browser based either on a preference setting in the browser itself, or on a value derived from

an operating-system setting.

Handling Redirects

A merchandiser can create a rule in Merchandising that specifies a URL to redirect to if the search query

contains certain terms. For example, if a certain product is highly anticipated but has not yet been released,

the merchandiser may want to create a redirection rule specifying that if a site visitor searches for this product,

the site should display a page where the visitor can sign up to be notified when the product is available. If this

redirection rule is executed, the results returned by Search are not displayed.

The search form handlers have an redirectEnabled property that specifies whether the form handler

should check the search results for a redirect URL. If this property is set to true, the form handler examines

the search results for a redirect URL, and if it finds one, displays the page specified by that URL. If this property

is set to false, the form handler ignores any redirect URL and displays the results returned by Search. The

redirectEnabled property is set to false by default in the Merchandising Search Testing environment, but is

set to true by default otherwise.

80 11 Search Merchandising

12 Recording Events for Reporting 81

12 Recording Events for Reporting

If your installation includes Oracle ATG Web Commerce Business Intelligence, you can use it to generate Oracle

ATG Web Commerce Search reports. In particular, you can generate reports that associate search terms with

items that are viewed or purchased.

To do this, your site must record “click-through” events. These occur when a customer clicks on a product or SKU

returned by a search, to view it or purchase it. The recording of these events works like this:

• For each search result, the GetClickThroughId servlet bean generates a click-through ID, which you append

to the URL for that result using a query parameter. The servlet bean also adds the result document to a cache.

• When a customer clicks a link to view a search result, the SearchClickThroughServlet examines the

request URL, finds the click-through ID, and uses it to look up the document in the cache. If it finds the

document, the servlet fires a JMS event containing the search request and response objects and the selected

document. This event is logged to be used for reporting.

This chapter describes how to code your pages and configure your site to log the events used for Commerce

Search reporting. See the ATG Commerce Programming Guide for information about loading this data into ACI.

For more information about reporting in general, see the ACI documentation.

Using the GetClickThroughId Servlet Bean

The /atg/search/droplet/GetClickThroughId servlet bean is typically used in a loop that renders a list

of search results. For each result, it adds the item to a cache, and generates a click-through ID to be included

in the URL for viewing that item. The click-through ID consists of a query identifier and a document identifier,

separated by a delimiter.

You use this servlet bean in pages that render a listing of search results. For example, the following JSP code

creates a hyperlink to a product page and appends the searchClickId query parameter to the URL:

<dsp:droplet name="/atg/search/droplet/GetClickThroughId">
 <dsp:param name="result" value="${searchResult}" />
 <dsp:oparam name="output">
 <dsp:a href="/myapp/en/product.jsp">
 <dsp:param name="searchClickId" param="${searchClickId}"
 </dsp:a>
 </dsp:oparam>
</dsp:droplet>

The resulting URL looks something like this:

82 12 Recording Events for Reporting

http://www.mycompany.com/myapp/en/product.jsp?searchClickId=0000020003,25

For more information, see GetClickThroughId (page 87).

Configuring the Cache

GetClickThroughId uses a session-based cache component, /atg/search/cache/SearchQueryCache, to

store results returned by Oracle ATG Web Commerce Search. This cache uses a Least Recently Used (LRU) storage

algorithm. This means that if the cache is full, whenever a new item is added to the cache, the oldest item is

discarded.

Discarding items can make reporting less accurate, but prevents the cache from becoming too large and

consuming too much memory. To optimize the tradeoff between accuracy and resource use, you can set the

following properties of the SearchQueryCache component:

• queryCount -- Specifies the maximum number of search request/response objects to store. Default is 10. To

specify no maximum, set this value to -1.

• documentCount -- Specifies the maximum number of documents to store per search request/response. A

document is stored in the cache if the page of results it is on is displayed. So, for example, if 10 results are

displayed per page, and the user views the first 3 pages of results, 30 documents are stored in the cache for

that response. Default is 1000. To specify no maximum, set this value to -1.

Note that the LRU caching algorithm is applied independently to the number of search queries and the number

of documents per search query. So, for example, if queryCount is set to 5, and a user enters 6 search queries, the

results from the first query are discarded from the cache, regardless of how many documents are returned for

the other stored queries. Similarly, if documentCount is set to 100, and the user pages through the first 12 pages

of results for a query (with 10 results displayed per page), then the cache will store documents 21 through 120,

and the first 20 documents will be discarded; but none of the other stored queries will be affected.

Configuring the SearchClickThroughServlet

The /atg/search/servlet/pipeline/SearchClickThroughServlet is inserted into the DAF

servlet pipeline after the ProfileRequestServlet. When a user clicks a link to view a search result,

SearchClickThroughServlet reads the click-through ID from the request URL and looks up the document in

the SearchQueryCache. If it finds the document, it triggers a SearchClickThroughMessage JMS event, which

is logged for loading into the ACI Data Warehouse.

To configure this servlet, set the following properties:

enabled

If true, the servlet processes the request. Default is false.

searchClickIdQueryArgs

An array of the query arguments to read to find the click-through ID for a viewed item.

One of the values in this array must match the name of the output parameter set by

GetClickThroughId. Default is searchClickId.

12 Recording Events for Reporting 83

Limiting the Pages to Examine

By default, this servlet examines all URLs to look for click-through IDs. This process can be inefficient, because

only product detail pages will typically have these IDs. Therefore SearchClickThroughServlet has a

clickThroughPages property that you can use to limit the pages to examine. This property is an array

of URLs; these URLs can include asterisk (*) characters as wildcards. If clickThroughPages is not null,

SearchClickThroughServlet will examine only the URLs that match one of the clickThroughPages

entries. For example, you could set clickThroughPages to:

/myapp/*/product*.jsp,\
/myapp/*/sku*.jsp

84 12 Recording Events for Reporting

Appendix A. Commerce Search Servlet Beans 85

Appendix A. Commerce Search Servlet

Beans

This appendix provides reference entries for the following Commerce Search servlet beans:

CommerceFacetTrailDroplet (page 85)

GetClickThroughId (page 87)

RefinementValueDroplet (page 89)

CommerceFacetTrailDroplet

Class Name atg.commerce.search.refinement.CommerceFacetTrailDroplet

Component /atg/commerce/search/refinement/CommerceFacetTrailDroplet

This servlet bean takes as input a String representing a facet trail, plus additional input parameters specifying

modifications to the facet trail. It outputs the modified facet trail as a FacetTrail object, which can then be

rendered on the page or used to construct a subsequent search request.

The input parameters can be set explicitly or they can be set by the page’s URL query parameters. For example,

when a customer clicks a link for a selection value, the query parameter corresponding to the servlet bean’s

addFacet parameter can be set to this selection value. When the new page is displayed, the chosen value will

appear at the end of the facet trail. Similarly, another link could be used to remove a selection value or range

from the facet trail.

Properties

The following table describes the properties of the CommerceFacetTrailDroplet component and their

default settings. Note that each property whose name ends with “ParameterName” specifies the name of the

query parameter that supplies the value to use for the corresponding input parameter if the input parameter is

not supplied.

86 Appendix A. Commerce Search Servlet Beans

Property Description

facetManager Specifies the component used to retrieve items from the

refinement repository. Default: /atg/commerce/search/

refinement/CommerceFacetManager

facetTrailSeparator The character used as a separator between the facets and the

faceting property values in the facet trail. Default: the colon

character (:)

lastRangeValueIndicator A String appended to a selection range in the facet trail if the

range is the last one for a particular facet. Default: LAST

valueIndicatorSeparator Separator placed between a selection range and the

lastRangeValueIndicator String if the range is the last one

for a particular facet. Default: the vertical bar character (|)

categoryRefineConfigPropertyName The name of the property of the category repository item that

contains a reference to the refinement configuration for the

category. Default: refineConfig

trailParameterName The name of the query parameter that specifies the value to

use for the trail input parameter, if the input parameter is not

supplied. Default: trail

addFacetParameterName The name of the query parameter that specifies the value to use

for the addFacet input parameter, if the input parameter is not

supplied. Default: addFacet

removeFacetParameterName The name of the query parameter that specifies the value to use

for the removeFacet input parameter, if the input parameter is

not supplied. Default: removeFacet

removeAllFacetsParameterName The name of the query parameter that specifies the value to

use for the removeAllFacets input parameter, if the input

parameter is not supplied. Default: removeAllFacets

removeFacetTypeParameterName The name of the query parameter that specifies the value to

use for the removeFacetType input parameter, if the input

parameter is not supplied. Default: removeFacetType

Input Parameters

trail

String that represents the current facet trail. This parameter’s value is typically specified through a query

parameter in the URL for the page. The name of the query parameter that sets the value of this input parameter

is configured through the trailParameterName property.

refineConfig

The refineConfig repository item to use for querying Oracle ATG Web Commerce Search. If this value is not

specified, the refinement configuration will be chosen automatically.

addFacet

Appendix A. Commerce Search Servlet Beans 87

String that represents an entry (consisting of a facet and an associated selection value or range) to add to

the facet trail. This parameter’s value is typically specified through a query parameter in the URL for the

page. The name of the query parameter that sets the value of this input parameter is configured through the

addFacetParameterName property.

removeFacet

String that represents an entry to remove from the trail. This parameter’s value is typically specified through

a query parameter in the URL for the page. The name of the query parameter that sets the value of this input

parameter is configured through the removeFacetParameterName property.

removeAllFacets

If this parameter is set to true, the facet trail is cleared. This parameter’s value is typically specified through

a query parameter in the URL for the page. The name of the query parameter that sets the value of this input

parameter is configured through the removeAllFacetsParameterName property.

removeFacetType

The item ID of a refinement element repository item (i.e., a facet); specifies that all facet values or ranges for

this facet should be removed from the facet trail. This parameter’s value is typically specified through a query

parameter in the URL for the page. The name of the query parameter that sets the value of this input parameter

is configured through the removeFacetTypeParameterName property.

Output Parameters

facetTrail

The FacetTrail object generated from the input or query parameters.

errorMessage

The message generated if an error occurs when creating the FacetTrail object.

Open Parameters

output

This open parameter is rendered if no errors occur when creating the FacetTrail object.

error

This open parameter is rendered if any errors occur when creating the FacetTrail object.

Examples

For examples of using the CommerceFacetTrailDroplet, see the Faceted Search (page 59) chapter.

GetClickThroughId

Class Name atg.search.cache.droplet.GetClickThroughId

Component /atg/search/droplet/GetClickThroughId

This servlet bean takes as input a single search result, stores it in a document cache, and returns a click-through

ID associated with the result. This ID can subsequently be used by the SearchClickThroughServlet to

retrieve the result from the cache.

88 Appendix A. Commerce Search Servlet Beans

GetClickThroughId is typically used in a loop that renders a list of search results as hyperlinks to pages

displaying those items. For each result, the click-through ID is set as the value of a query parameter that is

appended to the URL.

Properties

The following table describes the properties of the GetClickThroughId component and their default settings.

Property Description

searchResultParameter Name of the input parameter that specifies the search result. Default:

result

searchClickIdParameter Name of the output parameter that holds the click-through ID. Default:

searchClickId

searchQueryCachePath String specifying the Nucleus pathname of the cache component. Default:

/atg/search/cache/SearchQueryCache

searchClickIdDelimiter Delimiter separating the query identifier and the document identifier in

the click-through ID. Default: the comma character (,)

Input Parameter

result

The current search result.

Output Parameter

searchClickId

The click-though ID for retrieving the current search result from the cache.

Open Parameter

output

The open parameter for rendering the click-through ID.

Example

<dsp:droplet name="/atg/search/droplet/GetClickThroughId">
 <dsp:param name="result" value="${searchResult}" />
 <dsp:oparam name="output">
 <dsp:a href="/myapp/en/product.jsp">
 <dsp:param name="searchClickId" param="${searchClickId}"
 </dsp:a>
 </dsp:oparam>
</dsp:droplet>

Appendix A. Commerce Search Servlet Beans 89

RefinementValueDroplet

Class Name atg.repository.search.refinement.RefinementValueDroplet

Component /atg/commerce/search/refinement/RefinementValueDroplet

This servlet bean takes as input a facet selection value and the repository ID of the refinementElement that

represents the facet, and outputs the value in a more human-readable form. The value is formatted by the

/atg/commerce/search/refinement/DefaultMetaPropertyValueFormatter component, which is

specified by the defaultValueFormatter property of the servlet bean.

The DefaultMetaPropertyValueFormatter formats the following data types:

• For a repository ID property (e.g., childSKUs.$repositoryId), it returns the item display name.

• For a date property (e.g., creationDate), it returns a locale-specific date string.

• For an enumerated property (e.g., stockAvailabilityStatus), it returns the display name of the

enumerated value.

• For a Boolean property (e.g., onSale) it looks in a resource bundle for a key of the format property-

name_0 (for false) or property-name_1 (for true), and returns the string associated with that key. For

example, for an onSale property, the keys would be onSale_0 and onSale_1. If the key is not found, the

value is returned unchanged. The resource bundle is specified by the resourceBundle property of the

DefaultMetaPropertyValueFormatter component.

You can also write custom formatters for specific properties. For more information, see the Faceted Search (page

59) chapter.

Input Parameters

refinementId

The repository ID of the refinementElement that represents the facet in the refinement repository.

refinementValue

The facet value returned by the search engine.

Output Parameter

displayValue

The formatted value.

Open Parameters

output

This open parameter is rendered if no errors occur when formatting the value.

error

This open parameter is rendered if any errors occur when formatting the value.

Example

<dsp:droplet name="/atg/commerce/search/refinement/RefinementValueDroplet">

90 Appendix A. Commerce Search Servlet Beans

 <dsp:param name="refinementId" value="${facetHolder.facet.id}"/>
 <dsp:param name="refinementValue" value="${facetValueNode.facetValue.value}"/>
 <dsp:oparam name="output">
 <dsp:valueof param="displayValue"/>
 </dsp:oparam>
</dsp:droplet>

Appendix B. Search XML Reference 91

Appendix B. Search XML Reference

This appendix provides information on the XML used by Oracle ATG Web Commerce Search queries and

responses. This information can be useful for troubleshooting.

answer

The answer element is the root response element for a query (page 99) request. Based on the query (page

99) string entered by the end-user and the search environment’s configuration, Oracle ATG Web Commerce

Search returns a response containing the results retrieved. The results can then be displayed in the user interface

or subjected to further processing. The search results include:

• The matching statement

• The index item that contains that statement

• Secondary information about the results, such as where they fall in the category taxonomy

• Feedback about the query, such as spelling suggestions or refinements

Each document object contains the list of document sets and categories of which it is a member. This

information includes the size of the document set, and for categories, the relevance of the document to that

category.

Attribute Description

contentID Content ID of the index item.

QUID Value of the query’s QUID attribute.

sorting Value of the query’s sorting attribute.

sortProp For grouping by property, the type, name, and default value.

docSetSort Value of the query’s docSetSort attribute.

mode Value of the query’s mode attribute.

strategy Value of the query’s strategy attribute.

92 Appendix B. Search XML Reference

Attribute Description

debug Value of the query’s debug attribute.

refineDebug Value of the query’s refineDebug attribute.

refineMax Value of the query’s refineMax attribute.

refineMin Value of the query’s refineMin attribute.

refineTop Value of the query’s refineTop attribute.

autospell Value of the query’s autospell attribute.

highlight Value of the query’s highlight attribute.

minScore Value of the query’s minScore attribute.

pageNum Value of the query’s pageNum attribute.

pageSize Value of the query’s pageSize attribute.

docSort Value of the query’s docSort attribute.

docSortPred Value of the query’s docSortPred attribute.

docSortProp Value of the query’s docSortProps attribute.

docSortPropDefault Value of the query’s docSortPropDefault attribute.

docSortOrder Value of the query’s docSortOrder attribute.

docSortCase Value of the query’s docSortCase attribute.

relQuestSettings Value of the query’s relQuestSettings attribute.

responseNumberSettings Value of the query’s responseNumberSettings attribute.

topicSettings Reserved for future use.

responseCount Total number of results returned.

groupCount Total number of groups returned.

docCand Number of document candidates considered during retrieval.

docMax Estimate of how many documents are retrievable using the current query.

docMin Minimum number of documents that could be returned, if all query terms

were in the same documents.

ansCand Number of sentence candidates considered during retrieval.

ansMax Estimate of how many sentences are retrievable with the current query.

Appendix B. Search XML Reference 93

Attribute Description

ansMin Minimum number of sentences that could be considered, if all query terms

were in the same sentence.

ansPool Number of sentence results before grouping and paging.

pageOffsetInfo Value of the query’s pageOffsetInfo attribute.

maxRelatedSets Value of the query’s maxRelatedSets attribute.

responseTimeMs Amount of time taken to process the query.

The answer element contains the following child elements:

• categories (page 93)

• debug (page 96)

• documentSets (page 97)

• parserOptions (page 98)

• priorinput (page 99)

• queryAction (page 126)

• queryRule (page 127)

• queryTerms (page 127)

• question (page 127)

• response (page 128)

• responseTree (page 128)

• refinements (page 127)

• spelling (page 130)

• startCategory (page 130)

• userquestion (page 132)

• weightedProps (page 132)

categories

This element is a child of the answer (page 91) element, and contains category (page 94) child elements.

For this element, a category is equivalent to a document set.

94 Appendix B. Search XML Reference

category

The category provides document count information, and contains query refinements, documents, and

additional categories. For this element, a category is equivalent to a document set.

Attributes Description

_path Path name of document set.

label Optional display label for document set.

_id Topic ID, if the document set represents a topic.

nUniqueDocuments Total number of unique documents under this document set and all

descendents.

nTotalDocuments Total number of documents under this document set and all descendents.

nDisplayedDocuments Total documents returned under this document set, with respect to constraints

and settings.

nDocuments Total documents immediately under this document set.

nChildren Number of child sets immediately under this document set.

nTotalChildren Total number of descendent sets under this document set and its child sets.

nDisplayedChildren Number of returned descendents with respect to constraints and settings.

Child elements of a category are collections of simple single elements:

• refinements (page 127)—Has refinement elements as children.

• documents—Has document (page 96) elements as children.

A category can also contain additional category elements.

context

The context element is a child of the parserOptions (page 98) element. It has no child elements.

Oracle ATG Web Commerce Search contains a large general-purpose dictionary which represents all of the

knowledge about a language that it processes. The dictionaries for each language can be loaded separately, or

in combinations. For each language, the dictionary contains index terms (also called stems), part-of-speech data,

syntactic and semantic features, morphological rules, compound and phrase data, term normalization data, term

weights, thesaurus entries, text patterns, and various other pieces of data.

The adaptor components are extensions to the general purpose dictionary. Adaptors typically reflect domains,

such as financial, computer, and manufacturing. Each domain requires specialized information in the dictionary,

Appendix B. Search XML Reference 95

which may or may not be applicable to other domains. Administrators determine which adaptors are loaded

(see the Term Dictionaries chapter of the ATG Search Administration Guide). Adaptors include the following:

• index terms

• compound terms

• term normalizations

• additional thesaurus entries

• modifications to thesaurus entries in the core dictionary

Oracle ATG Web Commerce Search offers the following adaptors for English:

• aerospace

• airlines

• apparel

• appliances

• automotive

• business

• computer

• cooking

• crafts

• ecommerce

• financial

• food

• healthcare

• hotels

• housewares

• HR

• insurance

• jewelry

• legal

• manufacturing

• media

• personal_care

• pets

• sports_outdoors

96 Appendix B. Search XML Reference

• telecommunications

• tools

• toys

• yard_garden

During indexing, the adaptors are loaded based on the languages selected in Search Administration (see the

ATG Search Administration Guide).

To use a dictionary adapter, the adapter must be loaded when the content is indexed, and it must be included

as a context in parserOptions. For example, to use the healthcare adaptor, it must be selected as a pre-

indexing customization in the search project via Search Administration. Additionally, each query must include

the context in its parserOptions:

<context>healthcare</context>

Multiple instances of this element are allowed. If an adapter is specified at index time but not as a query-time

context, the loaded adapter is not used for the query.

Adaptors can affect which strings are considered tokens for indexing purposes, and this effect is independent

of the context setting at query time. Therefore, you should usually include all adapters as contexts in the query.

The exception would be if a site has mixed content indexed in a single partition; then, different adaptors may be

enabled at query time, depending on the context of the query. This allows different thesaurus entries to be used

depending on the query context; for example, in one context for healthcare, and in another context for pets.

debug

This element contains debugging information. It is a child of the answer (page 91) element and has no child

elements.

document

For query (page 99) requests, the document element represents a single document within the

response (page 128) element.

Attributes Description

contextID View context information in the form:

hdoc:start-final,start-final…

Start and final refer to the text offset positions of a matching statement.

Appendix B. Search XML Reference 97

Attributes Description

hdoc Document identifier.

goto Jump to off-set of this result in the document text.

size Size of source of document.

docset Physical document set of the document.

type Major format of document.

lang Language of document.

filename File name (excluding path).

relevance Relevance score of document.

The document element has the following child elements:

• documentSets—See the documentSets (page 97) element.

• title—Title of document. No child elements.

• summary—Summary of the document. No child elements.

• _url—URL of the document. No child elements.

• timestamp—Last modified date and time of the document. No child elements.

• question—See the question (page 127) element.

• answer—See the answer (page 91) element.

• properties—List of metadata properties for this document, contained by meta child elements.

documentSets

This element consists of a constraint expression. It is a child of the query (page 99) element. See Document

Set Constraints (page 41) in the Constraining Queries (page 41) chapter for information.

envName

The envName element is a child of the query (page 99) element. It has no child elements.

This element contains the name of the search environment against which the query is directed, if one has been

specified. See the ATG Search Administration Guide for information on environments.

98 Appendix B. Search XML Reference

expandedStemming

The expandedStemming element is a child of the parserOptions (page 98) element. It has no child elements.

Oracle ATG Web Commerce Search performs morphological analysis on both indexed content and input queries.

For most word forms, a single index term is derived; however, for some forms, multiple index terms are possible.

For example, the form spoke is both a noun root and a past tense form of the verb root speak.

During indexing, if multiple index terms are possible, Oracle ATG Web Commerce Search chooses the most

common term (as defined in the dictionary). At query time, Search uses all root terms for each query term. Part-

of-speech tagging can help determine if the terms should be limited, such as choosing the noun spoke for a

phrase like the spoke, but is not always able to correctly interpret queries. This tag determines what sort of stem

expansion is used:

<expandedStemming>val</expandedStemming>

If val is false, expansion is performed only on a single index term. If val is all, all index terms are used during

expansion. A value of untagged means that query terms that could not be part-of-speech tagged use all index

terms for expansion.

language

The language element is a child of the parserOptions (page 98) element. It has no child elements.

The query language determines which dictionary to use for processing. Only languages that have been loaded

when the content was indexed are valid. The format is:

<language>lang</language>

The lang value is the name of any valid language, and defaults to English.

parserOptions

The parserOptions element is a child of the query (page 99) element. It contains the following child

elements:

• language (page 98)

• targetLanguage (page 130)

• spellchecker (page 129)

• expandedStemming (page 98)

• wildcardMax (page 132)

Appendix B. Search XML Reference 99

• securityRole (page 128)

• context (page 94)

• topicMaximum (page 132)

• spellSplitWords (page 130)

Oracle ATG Web Commerce Search uses its natural language components to process the query during search.

The natural language components provide options that affect this processing. This section describes the major

options, which are passed in as XML elements in the query as part of the parserOptions element.

It is important to keep in mind that any parser options you set in the query XML must agree with the text

processing option set selections you have made in Search Administration. For example, if you have indexed

content in French, and the language and targetLanguage settings specify English, the search will return no

results.

See the ATG Search Administration Guide for information on creating text processing option sets through Search

Administration.

priorinput

This element contains prior or secondary user input. It is a child of the query (page 99) element and has no

child elements. See the requestMode (page 121) attribute of the query (page 99) element for information.

query

The query element is the standard means of communicating end-user questions to the search engine. The

query element has no parent element, and contains the following child elements:

• envName (page 97)

• question (page 127)

• startCategory (page 130)

• priorinput (page 99)

• parserOptions (page 98)

• documentSets (page 97)

• refineConstraint (page 127)

• weightedProps (page 132)

• reportData (page 127)

The response to a query request is an answer (page 91) element. The query element attributes are

described in the sections that follow.

100 Appendix B. Search XML Reference

andFeedback

This request attribute allows you to include feedback in the search response on searches that are performed

using the and mode (see the mode (page 108) attribute). If the full “and” of the search terms the user entered

does not provide enough results, you can use the andFeedback results to arrive at a subset of terms that does

provide results, and use that information in your results page to suggest alternate searches.

<query andFeedback="N">

N can have the following values:

• N=0

No feedback is returned.

• N=1

Only searches with 0 results generate feedback.

• N>1

Searches with fewer than the specified number of results generate feedback.

The feedback consists of alternate queries that provide all possible combinations of the terms from the original

query that satisfy the Boolean and mode. An example of the response feedback follows:

<andFeedback>
<altQuery size="1" results="1808" text="women">
 <term exclude="false">women</term>
 <term exclude="true">of</term>
 <term exclude="true">apparel</term>
</altQuery>
<altQuery size="1" results="1329" text="apparel">
 <term exclude="true">women</term>
 <term exclude="true">of</term>
 <term exclude="false">apparel</term>
</altQuery>
</andFeedback>

The altquery child element includes the following attributes:

• size—Number of non-excluded terms included in that subset of the query.

• results—Approximate number of search results returned by that subset of the query.

• text—Text of the non-excluded terms that comprise that subset of the query.

The altquery element includes one term child element for each of the original query terms. This makes it easy

for you to display the original query and the excluded terms in a different format, if desired; to display only the

included terms, refer to the text attribute.

The exclude attribute of the term element indicates whether the term has been excluded from that version

of the query. In the above example, notice that “of” is automatically excluded in all and searches, due to its low

value as a search term.

Note that if you are grouping by property and the refineCount=group attribute is in use (see Setting

Grouping Options (page 15)), the result counts returned reflect groups, not items.

Appendix B. Search XML Reference 101

autocat

Oracle ATG Web Commerce Search applies rules to determine what categories are relevant to a user queries. One

use of this functionality is to automatically add the most relevant categories as constraints on the query itself,

thus narrowing the search to the more appropriate content. These automatic constraints are controlled by the

following attribute:

<query autocat="max"

<query autocat="maxp"

The max value is the maximum number of categories to add as constraints. Multiple categories are added as

a Boolean OR of document set constraints, joined (that is, ANDed) to the pre-existing constraints. If the max

value is appended with a p, then the optional taxonomy pruning post-processing algorithm is used during

categorization.

autocatPrune

When used with the autocat (page 101) attribute, autocatPrune="true" indicates that taxonomy pruning

should be used during categorization.

<query autocat="max" autocatPrune="prune"

This process eliminates any category assignments in which content is assigned to a child category where it

should also be assigned to the parent. For example, a taxonomy has a category for Product X and subcategories

containing topics, such as Installation, Service, Support, Help, etc. Without pruning, the taxonomy rules would

be forced to require X in the rules throughout the sub-tree, such as “support for X” and “install X”. This might

be possible, but often X won’t be in the same sentence as the other terms required for the sub-categories. With

pruning, the taxonomy rules could simply define rules for X under the root product X category, then define

generic rules for the sub-tree, like “support” and “install”. Content that matched these generic rules and was

assigned to the categories would be pruned if it was not also assigned to the product X category. Taxonomy

pruning works globally across all categories, effectively pruning content down the tree that has not been

assigned above it.

autospell

Oracle ATG Web Commerce Search always returns spelling feedback in the response. It can optionally

automatically correct spelling before issuing the query, using the following attribute:

<query autospell="true"

The bool value must be either true or false, and defaults to true.

debug

If this attribute is set to true, the returned answer includes the query XML for debugging.

102 Appendix B. Search XML Reference

docSetSort

Oracle ATG Web Commerce Search can return categorization feedback about the returned results in the form of

a tree. This functionality is controlled by the following attribute:

<query docSetSort="mode"

The mode value can be:

• none—No categorization feedback tree is constructed.

• fulltree—A full categorization tree is returned, with all intervening levels, even if they have no direct

connection to the results.

• sparsetree—A categorization tree is returned, but intervening levels that have no direct connection to the

results are omitted.

The default value is none.

docFlags

This attribute allows full control over how much document information to return, with the potential to greatly

affect the size of the returned response. The default is “url,docsets,properties” plus “contextid” if

optimize is set to a value greater than 1.

<query docFlags="flag1,flag2,flag3…"

The possible flags that can be included are:

• summary—Document summary, normally just for browse*

• docsets—Item set information

• title—Index item title*

• properties—Metadata properties, limited by docProps

• timestamp—Index item timestamp*

• date—Index item timestamp*

• contextid—Item view request highlight information

• size—Size of index item source*

• type—Major format type of index item (HTML, PDF, etc.)

• language—Language of index item

• url—Index item URL

• document—Same as url

• all—All flags are set

The url (or document) flag must be included to get any index item information at all. The default value is

“url,properties,docsets”.

Appendix B. Search XML Reference 103

Items marked with an asterisk must retrieve information from the disk; those have the most impact on query

speed, and should be eliminated if the information is not needed.

docProps

Oracle ATG Web Commerce Search returns the metadata properties associated with the index item of each

statement result. These returned properties can be used for user interface functionality, such as customized

result pages. By default, Search returns all stored metadata properties, but the list of returned properties can be

controlled by this attribute:

<query docProps="all"

<query docProps="prop,prop,..."

The first example is the default, and indicates that all properties are returned. The second form lists the property

names to return in a comma-delimited list. If the attribute is empty (docProps= "") no properties are returned.

docSort

Oracle ATG Web Commerce Search returns a list of result groups in its query response. Normally, the result

groups are sorted in relevance order, but you may want to allow users to sort the final results by some secondary

criteria, such as date. This secondary sort does not affect what results are in the result groups, just the order of

the returned groups.

Note: Secondary sorting work on result groups, not on individual search results, so it is affected by

responseNumberSettings (page 122) parameters such as perProp. See that section for detailed parameter

information.

Secondary sorting is performed before paging, and is controlled by the following attributes:

<query docSort="mode" docSortOrder="order" docSortProp="prop"
dcSortPropDefault="def" docSortPropVal="val" docSortPred="predicate"
docSortCase="bool"

The mode value specifies how the index items will be sorted, and can be one of the following:

• relevance—The default value, return items in relevance order, assuming the item set is a category

• alpha—Sort index items by filename (such as index.htm)

• address—Sort index items by the beginning of the full URL (for example, http://www.oracle.com)

• url—Sort index items by full URL

• date —Sort index items by last modified date

• strprop —Sort index item by a metadata string property, requires docSortProp attribute

• numprop —Sort index items by a metadata number property, requires docSortProp attribute

• title —Sort index items by title

• type —Sort index items by the type, such as HTML or PDF

104 Appendix B. Search XML Reference

• docset—Sort index items by physical document set

• index—Leave index items unsorted, in index order

• predicate – Sort groups by combination of the modes specified in the docSortPred attribute (see below).

The order value determines whether the sort is ascending or descending, either alphabetically or numerically,

depending on the sort mode. The order value can be either ascending or descending.

The prop value specifies the property name to use for the strprop or numprop modes. The property name

must be a valid property of the given type; for example, for strprop, either string or enum, and for numprop,

either integer, float, boolean or date. Index items that don’t have this property will be excluded from the

sort. To prevent that, the def value can specify the default property value to use for these exceptional cases. The

def value should agree with the type of the property.

When grouping by property, it is common to have multiple values for a property within an item as well as across

a group. The val value controls which value of the result group’s properties to use. The val can be one of the

following values:

• first—The first value of the first item in the group is used.

• last—The last value of the last item in the group is used.

• high—The highest (greatest) value of the property from any of the items in the group.

• low—The lowest (smallest) value of the property from any of the items in the group.

The default is first. As an example, if the items should be sorted by the lowest price and there are multiple

price values per item or the items are grouped by some property, the low value for docSortPropVal should be

used.

The predicate value specifies a sequence of sorting modes and orders to apply when mode="predicate",

forming a complex sort criterion. The value has the following form:

docSort="predicate" docSortPred="mode:order:prop:def:bool|…"

The five colon-delimited fields correspond to the five docSort attribute values. Note that for modes other than

strprop and numprop, the prop and def fields are irrelevant and can be omitted. The order value should

specify the logical precedence of the mode, that is, how the results would be placed in order by that individual

mode. The bool represents the docSortCase value.

The overall sort order is controlled using the docSortOrder attribute. For example:

docSortPred="numprop:descending:popularity:0|numprop:ascending:cost"
docSortOrder="ascending"

In this example, search results are first sorted descending by popularity, then ascending by cost (for results

where popularity is the same).

The docSortCase attribute determines whether any string secondary sorting is case-sensitive (true) or not

(false). This attribute affects the docSort mode values of strprop, alpha, url, address, and title. The sort

predicate specifies its case-sensitivity within its fielded format.

docSortOrder

See the docSort (page 103) attribute.

Appendix B. Search XML Reference 105

docSortCase

See the docSort (page 103) attribute.

docSortProp

See the docSort (page 103) attribute.

docSortPropVal

See the docSort (page 103) attribute.

docSortPred

See the docSort (page 103) attribute.

docSortPropDefault

See the docSort (page 103) attribute.

feedback

Oracle ATG Web Commerce Search returns feedback about related terms and phrases for the query. This

functionality is enabled by the following attribute:

<query feedback="bool"

The bool value must be either true or false, and defaults to false.

locale

You can use the locale attribute to pass information for use during secondary sorting of Search results. This

allows for result sorting based on the language rules for that locale; for example, correct sorting of accents in

French requires this secondary sort.

<query locale="fr_fr" docSort="strprop" docSortProp="displayName"

maxRelatedSets

Oracle ATG Web Commerce Search returns information associated with the index item of each statement result.

This information includes the related document sets of the index item. By default, Search returns all related

document sets, but the number and type of the returned item sets can be controlled by this attribute:

<query maxRelatedSets="max" relatedSets="path,path,..."

106 Appendix B. Search XML Reference

The max value is the maximum number of related sets to return. A value of 0 means no related item set

information is returned in the response. The default is 0.

Note that even if the value is 0, the physical document set is always returned:

<document docset="">

The path values are item set paths (for example, /Topics/Product) which act as constraints on what type of

related sets to return. Only related sets that are descendents of one of the path values are returned. The default

value is an empty string, which means that the related sets are unconstrained.

mergeSettings

Extremely large indexes require more than one physical partition. If more than one partition exists, each

partition is queried individually and the results merged for presentation to the end-user. The mergeSettings

attribute works together with responseNumberSettings (page 122) to control the number of results returned

from a merged result set.

The responseNumberSettings attribute determines how many results are returned from each partition.

The mergeSettings attribute determines how many of those total results are returned to the end user.

If you use mergeSettings, be sure to set it to a number higher than the individual partition results set in

responseNumberSettings. For example, if you return 50 results from each of four partitions, you may use

mergeSettings to trim the combined result list to the top 100 results, but not the top 20 results. It is more

efficient to trim the responseNumberSettings to begin with than to do so after merging.

The mergeSettings attribute takes the same options as responseNumberSettings. If mergeSettings is not

set, responseNumberSettings is used instead. The syntax for mergeSettings is:

mergeSettings=doc50,prop50,…

Grouping Type Description

Group-by-document Groups the raw search results by document, returning up to some maximum

number of groups of a certain size, as defined by these parameters, with the

default values shown:

doc10,perDoc3,perSol1,

- doc–Maximum number of document result groups to return

- perDoc–Maximum size of a group from an unstructured index item

- perSol–Maximum size of a group from a structured index item.

Note: An additional mode, docrank, is the same as document, but it also uses

the relevancy of the document instead of the relevancy of the statement to rank

results.

Appendix B. Search XML Reference 107

Grouping Type Description

Group-by-property Groups the raw search results by a metadata property value, returning up to some

maximum number of groups of a certain size, as defined by these parameters,

with the default values shown:

prop10,perProp3,

The prop parameter is the maximum number of property result groups to return,

and the perProp parameter establishes the maximum size of a group.

To group by property, the mode value requires a sortProp attribute with the

type, name, and default value for the grouping property. See the sortProp (page

125) section in this guide.

Result Type Weights Normally, all statement results receive the same treatment in the relevancy

calculation. However, you may want certain statement types to be weighted

higher or lower in the search results. For example, two identical statements

from two similar documents usually receive near identical relevancy, with

minor differences in the context and document weight factors. However, if

the statements are from two different text fields (such as role:goal and

role:fact), and these fields were weighted differently, then their relevancy

could vary greatly. Oracle ATG Web Commerce Search supports these weighting

factors with the following parameters:

f*1.0,o*1.0,s*1.0,ROLE:ID*2.0

f*—The weight (or multiplier) of preferred answer statement relevance.

o*—The weight of structured statement results.

s*—The weight of unstructured statement results.

A weight of 1.0 means the original (pure) relevancy is used.

Individual structured types (or fields) can be defined separately, as shown:

role:goal*1.2,role:symptom*1.1,role:fact*0.5

Whole Field Result Text Normally, the result text is the matching statement text plus some additional

context for small sentences. However, for structured content, which contains

potentially multi-sentence fields of text, you might want to return the entire text

of the field as the result. This behavior is controlled by the following parameter:

wholefield0

The wholefield parameter holds a Boolean value which, if non-zero, means that

the entire enveloping field text for the result’s matching statement is returned as

the text.

108 Appendix B. Search XML Reference

Grouping Type Description

Suppress Similar

Statements

When using Oracle ATG Web Commerce Search with Oracle ATG Web Knowledge

Manager, you may want to retrieve documents that have unique matching text.

Search allows you to suppress documents from the current page if they share a

matching text statement. This behavior is controlled by the following parameter:

suppress0

The suppress parameter holds an integer value that determines the number of

matching statements to compare for suppression. For example, if the value is 2,

then the top-2 matching statements for each document result are compared. If

two documents share a matching statement, the first one on the page is returned,

the other is suppressed. Note that the comparison is case-sensitive and ignores

whitespace and punctuation.

Note that the total number of results that is reported from the engine does not

take into account this suppression.

minScore

Oracle ATG Web Commerce Search uses a relevancy score to rank results. The relevancy score is calculated based

on how well the statement matches the query, plus how related the retrieved index item of that statement is to

the query.

During the collection of the final results, before grouping and secondary sorting, Search applies a minimum

threshold on the relevancy score, using the following attribute:

<query minScore="min"

The min value must range from 0 to 1000, and defaults to 0. Results that do not meet the minimum threshold

are discarded.

mode

Oracle ATG Web Commerce Search handles natural language and Boolean queries. Simple Boolean syntax is

handled automatically as part of the natural language processing, but complex Boolean expressions require

a special mode of processing. Furthermore, Search can support simple keyword search behavior in several

additional modes. These modes are controlled by this attribute:

<query mode="mode"

The mode value can be any one of the following:

• nlp—Natural-language and simple Boolean queries. This is the default value, but should not be used for

Oracle ATG Web Commerce installations.

• boolean—Deprecated.

Appendix B. Search XML Reference 109

• booleanDoc—This mode performs a Boolean match at the document level. See below for details on Boolean

expressions.

• booleanStmt—Complex Boolean expressions; see below for details. This mode operates at the statement

level, and should therefore not be used for Oracle ATG Web Commerce integrations; for example, “red” and

“shoes” would be indexed as separate statements, and a search that includes both would return no results.

See below for details on Boolean expressions.

• keyword—Handles natural language queries in a simplistic keyword search model. Oracle ATG Web

Commerce Search parses the query as normal, but each query term is double-quoted and required to appear

in the index items of the results. For example, a query of install procedures in keyword mode would be

interpreted as ++”install” ++”procedures”.

• and—Handles natural language queries in an expanded keyword search model. Search parses the query

as normal, but each query term is required to appear in the index items of the results. This is similar to the

keyword mode, but without the double-quotes, which means the query terms could match morphological

variants and use term expansions. For example, a query of install procedures in and mode would be

interpreted as ++install ++procedures.

This mode is strongly recommended for use with Commerce.

• matchall—Natural language queries as a Boolean AND of terms, as opposed to the default Boolean OR.

Search parses the query as normal, but each query term is required to appear in the result statements. For

example, a query of install procedures in keyword mode would be interpreted as +install +procedures.

As described in the User-Entered Operators (page 33) chapter, the required term and excluded term operators

represent simple approximations of true Boolean operators, and can be entered as part of the query, with no

special user interface. In addition to these simple operators, Search supports a special query syntax for Boolean

expressions which are parsed in a special mode of query handling. The Boolean syntax is shown here in Backus

Naur Form:

expr := <expr> AND <expr>
expr := <expr> OR <expr>
expr := NOT <expr>
expr := (<expr>)
expr := [']["]term["][']
expr := [']wildcard[']
expr := i..j

The first three statements show the syntax for the three Boolean operator expressions, whose operands can

themselves be other expressions. The precedence for these operators is: NOT, AND, OR. The fourth statement

shows that parentheses can be used to delimit an expression in order to override operator precedence. For

example, x AND y OR z is interpreted by default as (x AND y) OR z, but using explicit parentheses, it could be

interpreted as x AND (y OR z).

The last three statements show the three types of simple term expressions: normal term, with optional quote

operators; wildcard pattern, with optional single quote operator; and a number range pattern. Thus, full Boolean

expressions can utilize all the simple query operators described in this section except for the simple Boolean

operators (+, !, ++, !!, +|).

Oracle ATG Web Commerce Search handles full Boolean expressions specially, but it shares much of the natural

language query handling. Search parses the Boolean expression, building up an operator-operand tree. During

this parsing, it processes the terms in the same way as a natural language query, including tokenization,

morphology and term expansion. In addition, it also has to process the special query operators that may modify

the terms. At the end of this process, Search has a vector of query items that can execute normally, plus a

Boolean expression tree that can filter the retrieved sentence results.

110 Appendix B. Search XML Reference

optimize

Oracle ATG Web Commerce Search can optimize its algorithms for faster speed with little effect on the search

results. Search accomplishes this by skipping the statement level relevancy evaluation for each of the candidate

index items, resulting in faster query speed. The relevancy is based on the document weighting and rank

configuration formula.

You may want to use this option if you are unsatisfied with the query speed on your installation. To enable

optimization, use the following attribute:

<query optimize="level"

A level of 0 is the default, and means no optimization. Level 1 performs part of the statement level retrieval, but

just in order to better rank the index item candidates. Level 2 avoids all statement level retrieval and relevancy

computations, and achieves the fastest query speed.

Note that with optimization, the search results contain no matching statement text, only the index item

(document) information. This means that no statement highlighting is possible for the index item view request.

Note: For even faster query speeds, set the indexScheme Text Processing Option to “uncompressed”

in Search Administration. This creates larger indexes, but faster queries, and could be useful if you have

a small index. Changing the indexScheme setting requires reindexing your content. A combination of

indexScheme=uncompressed and optimize=2 results in the fastest query speed.

pageNum

Oracle ATG Web Commerce Search supports result paging, controlled by the following attributes:

<query pageNum="num" pageSize="size"

The size value specifies how many results are returned, in number of response groups as described in the

sorting (page 124) attribute information. If pageSize is empty, no paging is performing. If paging is used, and

the results do not fit on a single page, resubmit the query with pageNum="1", pageNum="2", etc., to access the

additional results (the first result page is page 0).

Do not use a pageSize value greater than 100, as this can lead to performance problems or even search engine

failure.

pageSize

See pageNum (page 110).

QUID

Automatically generated request ID.

rankConfig

As described in the ATG Merchandising Guide for Business Users, Oracle ATG Web Commerce Search can perform

customized rankings and other adjustments to the search using rank configuration. This process can also be

Appendix B. Search XML Reference 111

performed for the item results. At query time, Search can control which configuration to use with the following

attribute:

<query rankConfig="name"

The name value must be the name of a ranking configuration loaded into the index. If no value is given, no

ranking adjustments are made.

recurseDocuments

The query algorithm begins at the starting item set, and recursively descends to its children and their children.

At each item set, the algorithm collects index items according to other parameters and returns some number of

those. The collection of index items is controlled by the following attribute:

<query recurseDocuments="mode"

A mode value of on or true means that index items may be collected from child item sets. A mode value of off

or false means that index items may only be collected from the immediate item set, excluding any from child

sets. A mode value of empty means the same as off, unless the immediate item set has no documents. The

default value is off.

refineConfig

Facet sets allow users to refine a query by searching within an existing result set. For example, an end-user

conducts a search for luggage on a commerce site, then refines their search by color, price, or material. Oracle

ATG Web Commerce Search returns refinement results based on settings in a refineConfig.xml file. This file

defines which properties of the indexed products to return as possible facets. Before returning results, Oracle

ATG Web Commerce Search retrieves the possible values for the properties configured in refineConfig.xml.

Thus, the existing query can be resubmitted with an additional constraint that limits the results to one of the

enumerated property values.

At query time, Search can control which configuration to use and global parameters for the calculation, using

the following attributes:

<query refineConfig="name" refineConfigDefault="default"
refineConfigMapKey="key" refineConfigMapProp="prop" refineMax="max"
refineTop="top" refineMin="min"

The name value must be a valid name of a facet set loaded into the index. If no value is given, no calculation is

made.

refineConfigDefault

As described in the refineConfig (page 111) section, Oracle ATG Web Commerce Search can calculate

refinements based on the query results, in order to offer the end-user a quick way of narrowing the search. The

default value specifies the optional name of a configuration to use in case no configuration can be determined

based on the search results.

112 Appendix B. Search XML Reference

<query refineConfig="name" refineConfigDefault="default"

refineConfigMapKey

As described in the refineConfig (page 111) section, Oracle ATG Web Commerce Search can calculate

refinements based on the query results, in order to offer the end-user a quick way of narrowing the search.

The key value is a value of the refineConfigMapProp property to try to use first to pre-

empt the determination of a value from the search results. For example, if the property is

ancestorCategories.repositoryId, the key value should be a valid value of this property, such as cat1009.

<query refineConfig="$map" refineConfigDefault="default"
refineConfigMapProp="ancestorCategories.repositoryId"
refineConfigMapKey="cat1009"

refineConfigMapProp

As described in the refineConfig (page 111) section, Oracle ATG Web Commerce Search can calculate

refinements based on the query results, in order to offer the end-user a quick way of narrowing the search.

The prop value is the name of a property to use for automatically selecting a refinement configuration based on

the search results. This value must be accompanied by a refineConfig value of $map.

<query refineConfig="$map" refineConfigDefault="default"
refineConfigMapProp="ancestorCategories.repositoryId"
refineConfigMapKey="cat1009"

refineMax

As described in the refineConfig (page 111) section, Oracle ATG Web Commerce Search can calculate

refinements based on the query results, in order to offer the end-user a quick way of narrowing the search.

The max value specifies the maximum number of facet properties to return, even if the facet set could generate

more. The default value is 0, which means no calculation is made.

<query refineConfig="name" refineConfigDefault="default"
refineConfigMapKey="key" refineConfigMapProp="prop" refineMax="max"
refineTop="top" refineMin="min"

refineTop

As described in the refineConfig (page 111) section, Oracle ATG Web Commerce Search can calculate

refinements based on the query results, in order to offer the end-user a quick way of narrowing the search.

Appendix B. Search XML Reference 113

The top value specifies the maximum number of facet property values (per property). The values are selected in

sort order, which usually is in terms of the number of index items that has each value. The default value is 5.

refineMin

As described in the refineConfig (page 111) section, Oracle ATG Web Commerce Search can calculate

refinements based on the query results, in order to offer the end-user a quick way of narrowing the search.

The min value specifies the minimum size of a facet property value, in terms of the number of index items with

that value. The default value is 0.

relatedSets

See maxRelatedSets (page 105).

relQuestSettings

The relQuestSettings attribute represents low-level numeric variables that control the search and relevancy

processing. These settings can be declared in the XML using the format:

relQuestSettings="/param=value;/param=value;..."

They can also be changed in the <RelQuestSettings> tag in the global ATG Search configuration file

<ATG10dir>\Search10.1\SearchEngine\platform\bin\AEConfig.xml.

<RelQuestSettings>/param=value;/param=value;...</RelQuestSettings>

Query XML attributes override settings in the AEConfig.xml file. The param string is the name of the

parameter, and the value is an appropriate value for that parameter. Some parameters take a list of values,

separated by commas. The remainder of this section describes the parameters. See also the strategy (page

125) attribute, which allows you to set a number of parameters simultaneously.

Matching Statement Parameters

Oracle ATG Web Commerce Search constructs a candidate list of matching statements, sorted by an estimated

relevancy metric. From the candidate list, the top candidates are matched in detail and have their final relevancy

computed. The parameters described in this section apply to these candidate statements.

Note: The defaults are optimized to balance processing speed with result quality. Be cautious in making

changes.

Parameter Name Syntax and Default Parameter Description

Statement matching

maximum

/retMax=5000; Limits the number of top candidates.

114 Appendix B. Search XML Reference

Parameter Name Syntax and Default Parameter Description

Statement matching cut-off /retLimit=3000; Detailed matching will end before the

maximum of top candidates is reached

if the number of relevant statements

reaches this parameter value.

In this context, a relevant statement is one

whose relevancy exceeds the Statement

Minimum Relevance (see next row). The

value of this parameter should be less

than or equal to the retMax value.

Statement minimum

relevance

/relevMinFAQ=10;

/relevMinSent=10;

Candidates that have a relevancy score

less than this parameter are eliminated

from the results. The relevMinFAQ

parameter is used for preferred answer

statement matches, relevMinSent for all

other statement matches.

Statement relevance cut-off /relevCutoff=0; Candidates that have a relevancy score

less than a percentage of the most

relevant statement are eliminated from

the results; the percentage is controlled

by this parameter.

For example, if the highest relevancy

score is 80 and the relevancy cut-off

percentage is 70%, then all candidates

that have score less than 56 are

eliminated. The default is 0, which

disables this mechanism.

Estimation minimum

relevance

/estimateMin=10; Only candidates that have an estimated

relevancy that is greater than or equal

to this parameter are matched in more

detail. Normally, this value is less than

or equal to the Statement Minimum

Relevance threshold.

Statement candidate

maximum

/estimateMax=50000; The number of total candidates is limited

by this parameter. Since this parameter

takes effect before the statements are

sorted, the candidate statements are

collected on a first come, first served basis.

However, the query terms are processed

in inverse frequency order, guaranteeing

the most highly weighted terms will fill in

the statement candidates first.

Appendix B. Search XML Reference 115

Matching Document Parameters

Oracle ATG Web Commerce Search constructs a candidate list of retrieved documents, sorted by a term

frequency (TF-IDF) metric. From this list, the top candidates are inspected for matching statements.

Parameter Name Syntax and Default Parameter Description

Document retrieval

maximum

/maxDocuments=1000; The number of top candidates is limited by

the parameter.

Document candidate

maximum

/estimateDocMax=10000; The number of total candidates is limited

by the parameter.

Since this parameter takes effect before

the documents are sorted, the candidate

documents are collected on a first come,

first served basis. However, the query

terms are processed in inverse frequency

order, guaranteeing the most highly

weighted terms will fill in the document

candidates first.

Filtering by Thesaurus Link Strength

Oracle ATG Web Commerce Search expands query terms using a thesaurus. Thesaurus entries are characterized

by link strength, ranging from equality to weak. By default, Search uses all link types during retrieval, but this

behavior is controlled by the following parameter:

/link=none;/link=equality;/link=strong;/link=medium;/link=weak;

The value of none clears out any previous values, which would result in no term expansions being used during

search. Any subsequent values are appended to the list of link types to use. Normally, only the following four

setting combinations should be used:

/link=none;/link=equality;/link=strong;/link=medium;

/link=none;/link=equality;/link=strong;

/link=none;/link=equality;

/link=none;

The first example excludes weak links, the second excludes weak and medium links, the third excludes all but

equal links, and the fourth disables all term expansion.

116 Appendix B. Search XML Reference

Extending Statement Result Text

By default, Oracle ATG Web Commerce Search retrieves a sentence term vector and constructs a statement result

with the text of the sentence as the result string. However, some statements can be very small fragments, such

as a section header, and lack enough context to be useful as a search result. Search can extend the statement

text with subsequent statement text that is also retrieved by the query. This functionality is controlled by three

parameters.

Parameter Name Syntax and Default Description

Minimum Answer

Length

/minAnswerLength=75; The maximum size of a statement text that can be

extended, in number of characters. Any statement

text that is greater than or equal this value will

not be extended.

Maximum Answer

Length

/maxAnswerLength=250; The maximum size of an extended statement, in

number of characters. If the extended statement

size would exceed this value, the statement is not

extended. The statement text is extended with

successive statements until this limit is reached.

Maximum Intervening

Characters

/maxIntervening=5; The maximum intervening characters that can

appear between the statement and its extension.

Normally, only white space appears between

statements, and large white space tends to

indicate a separation of content which should not

be joined together.

Statement Relevance Parameters

The parameters described in this section all act according to the computed weight of a statement. Oracle ATG

Web Commerce Search relevancy computation uses a weighted sum of factors for a main score and a tie-breaker

score, together forming the final relevancy value or weight.

Parameter Name Syntax and Default Parameter Description

Literal weight relevancy factor /literalWgt=25;

/literalMain=1;

Quantifies how closely the surface

query terms match the statement terms,

discounting indirect matches through term

expansions.

literalWgt must be a non-negative integer

from 0 to 100.

literalMain is a Boolean variable. If true,

this factor is main; if not, this is a tie-breaker

factor.

Appendix B. Search XML Reference 117

Parameter Name Syntax and Default Parameter Description

Exact weight relevancy factor /exactWgt=0;

/exactMain=1;

Quantifies if the query text matches exactly

within the statement text, without regard

to case and white space. The weight of this

factor and whether it is a main factor are

controlled by the parameters.

exactWgt must be a non-negative integer

from 0 to 100.

exactMain is a Boolean variable. If true,

this factor is main; it not, this is a tie-breaker

factor.

This factor is disabled by default, but can be

enabled as part of a search strategy (see the

strategy (page 125) attribute).

Proximity weight relevancy

factor

/proxWgt=8;

/proxMain=1;

Quantifies how close in proximity do the

query terms match the statement terms.

The weight of this factor and whether it is a

main factor are controlled by the following

parameters.

proxWgt must be a non-negative integer

from 0 to 100.

proxMain is a Boolean variable. If true,

this factor is main; it not, this is a tie-breaker

factor.

Document weight relevancy

factor

/docWgt=8;

/docMain=0;

Quantifies how well the document pertains

to the query, using the term frequency

calculation. The weight of this factor and

whether it is a main factor are controlled by

the parameters.

docWgt must be a non-negative integer from

0 to 100.

docMain is a Boolean variable. If true, this

factor is main; it not, this is a tie-breaker

factor.

118 Appendix B. Search XML Reference

Parameter Name Syntax and Default Parameter Description

Context relevancy factor /contextWgt=17;

/contextMain=0;

/contextSize=2;

Quantifies how well the surrounding

statements also match the query. The weight

of this factor and whether it is a main factor

are controlled by the parameters.

contextWgt must be a non-negative integer

from 0 to 100.

contextMain is a Boolean variable. If true,

this factor is main; it not, this is a tie-breaker

factor.

contextSize controls the size of the

context, in number of statements, and must

be a positive integer.

Metadata relevancy factor /metaWgt=25;

/metaMain=1;

/metaWgtMax=100;

Quantifies how well the metadata of the

statement’s index item match the weighted

properties passed in with the query. The

weight of this factor and whether it is a main

factor are controlled by the parameters.

metaWgt must be a non-negative integer

from 0 to 100.

metaMain is a Boolean variable. If true,

this factor is main; it not, this is a tie-breaker

factor.

metaWgtMax specifies the maximum

weighted property weight.

Match denominator /matchDenom=0; The recall factor is the percentage of

statement term weight that the query

matched. This calculation is biased towards

small statements, which have small total

term weights. Use this parameter to force all

statements to have the same total weight in

terms of this recall calculation.

A value of 0 means the normal recall

calculation is performed. A positive integer

value means that that value is used as

the recall denominator, in place of the

statement’s total term weight.

Appendix B. Search XML Reference 119

Parameter Name Syntax and Default Parameter Description

Duplicate term factor /dupTermFactor=2; The recall factor is the percentage of

statement term weight that the query

matched. This calculation is biased towards

statements with repeated terms, since each

instance of a term is counted separately.

Use this parameter to limit the number of

occurrences that are significant in the recall

calculation.

A value of 0 means the normal recall

calculation is performed. A value of 1 means

that only 1 occurrence of each term is used.

An integer value greater than 1 means that

up to that number of occurrences are used in

the calculation.

Exclude unknown terms /exUnk=1; A query term that does not exist in the

dictionary and has not occurred in the index

items provides no information to the system

and it cannot retrieve anything.

A value of 1 means that the unknown terms

are excluded from the query processing and

do not effect the relevancy.

A value of 0 means that unknown terms are

included in the query processing and will

hurt the relevancy of the results (since they

cannot retrieve anything).

Special treatment for all-caps

terms

/autoAllCapsMode=0; In a mixed case query, often terms in all

capital letters refer to the most important

information.

A 0 value means that no special treatment is

given to these terms.

A 1 value means that these terms are

required to appear in the statement results,

the equivalent of the single + query operator.

A value greater than 1 means that these

terms are required to appear in the

document results, the equivalent of the

double ++ query operator.

Document Relevance Parameters

Oracle ATG Web Commerce Search constructs a candidate list of retrieved documents, sorted by a term

frequency (TF-IDF) metric. The parameters described in this section all act according to the computed weight

120 Appendix B. Search XML Reference

of a document. Search relevancy computation uses a weighted sum of factors for a main score and a tie-breaker

score, together forming the final relevancy value or weight.

All terms are used in the statement matching algorithm, giving them some effect on the final results.

Parameter Name Syntax and Default Parameter Description

Document Weight Term Threshold /docWgtTermThresh=20; Terms whose weight is less than

this parameter are excluded from

retrieval.

Document Weight Link Threshold /docWgtExpansion=equal; Search uses term expansions

for candidate retrieval, but

excludes terms expansions

whose link strength is less than

this parameter.

The default value of equal

restricts the retrieval to only

equally-linked terms, retrieving

results that are most similar to

the original query terms. The

other valid values are: strong,

medium, and weak.

Search Fields

Oracle ATG Web Commerce Search indexes structured content and records the fields from which each sentence

term vector was created. Queries can then be constrained to a limited set of those fields, also called a fielded

search. The following parameter establishes which fields are included in a search of structured content such as

Oracle ATG Web Knowledge Manager solutions or an Oracle ATG Web Commerce catalog:

/activeSolutionZones=role:id,role:goal,role:symptom,role:question;

This parameter can also take a special value to denote all fields should be searched:

/activeSolutionZones=*;

This is the default value.

Oracle ATG Web Commerce Search also indexes unstructured content and records the fields from which each

sentence term vector was created. However, in this case, all sentences from the body of the unstructured

content reside in a single field, called doc. The title of the content is stored in a role:title field and the

URL is stored in a role:url field. The following parameter establishes which fields are included in search of

unstructured content; all other fields are excluded from the search:

/activeSentenceZones=doc;

Appendix B. Search XML Reference 121

This parameter can also take a special value to denote all fields should be searched:

/activeSentenceZones=*;

To include the title and URL fields in the search, use the following:

/activeSentenceZones=doc,role:title,role:url;

Conditional Keyword Interpretation

If the query’s mode (page 108) is nlp, Oracle ATG Web Commerce Search can treat user queries differently

depending on the content of the query.

If the user query consists of N terms or fewer and the query is a simple list of content terms, then the engine

will treat the query as a boolean AND on the documents. If the AND of the terms fails to return any results, the

normal nlp mode is used instead. If the AND of terms succeeds, only those documents with all of the terms are

returned.

The interpretation depends on the form of the user query. It must be a simple list of content terms, such as

“book garden summer”, rather than a statement, such as “a book about gardening in the summer”. Search treats

the simple list as an AND, but not the more complex statements or questions.

/implicitAndSize=N

The default value is 4. To disable this feature, set the value to 0.

requestMode

Normally, Oracle ATG Web Commerce Search treats each user query as a separate isolated request, with no pre-

existing state or context. However, many user searches are interrelated, and you may want to provide context.

Search captures several types of search context in its query request XML, and it is controlled by the following

special element and attribute:

<query requestMode="mode"

<priorInput>context</priorInput>

The mode value specifies how the context string in the priorInput element is interpreted, and can be one of

the following values:

• normal – The default value, no search context processing.

• subtractDoc – Using the context as a preliminary query, eliminate from the current search results any that

are from index items also returned by the context query.

• subtractAns – Using the context as a preliminary query, eliminate from the current search results any that

are statements also returned by the context query.

• penalizeDoc – Using the context as a preliminary query, penalize any current search results that are from

index items also returned by the context query. If the penalty exceeds the relevancy, the result is eliminated.

122 Appendix B. Search XML Reference

• penalizeAns – Using the context as a preliminary query, penalize any current search results that are

statements also returned by the context query. If the penalty exceeds the relevancy, the result is eliminated.

• withinDoc – Using the context as a preliminary query, restrict the current search results to index items also

returned by the context query.

• withinAns – Using the context as a preliminary query, restrict the current search results to statements also

returned by the context query.

The subtract modes represent the search scenario known as not like this, where the end-user does a search

that returns relevant but poor results, and then directs the system to find results not like the poor results.

The penalize modes represent the search scenario known as less like this, where the end-user does a search

that returns relevant but poor results, and then directs the system to find results less like the poor results, but

not necessarily eliminating them.

The within modes represent the search scenario known as search within, where the end-user does a search that

returns generally relevant results, and then directs the system to find results of a new query within those initial

results.

responseNumberSettings

If grouping is in use (see the sorting (page 124) attribute), these settings controls control how grouping is

performed. The values can be set in two ways:

• Through the AEConfig.xml global Oracle ATG Web Commerce Search configuration file:

<ResponseNumberSettings>paramValue,paramValue,...</ResponseNumberSettings>

• Per-query as an attribute to the browse XML:

responseNumberSettings="paramValue,paramValue,..."

The XML attributes override settings in the AEConfig.xml file. The param is the name of the parameter, which is

prepended to the numeric value Value, as described in the following table:

Grouping Type Description

Group-by-document Groups the raw search results by document, returning up to some maximum

number of groups of a certain size, as defined by these parameters, with the

default values shown:

doc10,perDoc3,perSol1,

- doc–Maximum number of document result groups to return.

- perDoc–Maximum size of a group from an unstructured index item.

- perSol–Maximum size of a group from a structured index item.

Note: An additional mode, docrank, is the same as document, but it also uses

the relevancy of the document instead of the relevancy of the statement to rank

results.

Appendix B. Search XML Reference 123

Grouping Type Description

Group-by-property Groups the raw search results by a metadata property value, returning up to some

maximum number of groups of a certain size, as defined by these parameters,

with the default values shown:

prop10,perProp3,

The prop parameter is the maximum number of property result groups to return,

and the perProp parameter establishes the maximum size of a group.

To group by property, the mode value requires a sortProp attribute with the

type, name, and default value for the grouping property. See the sortProp (page

125) section in this guide.

Result Type Weights Normally, all statement results receive the same treatment in the relevancy

calculation. However, you may want certain statement types to be weighted

higher or lower in the search results. For example, two identical statements

from two similar documents usually receive nearly identical relevancy, with

minor differences in the context and document weight factors. However, if

the statements are from two different text fields (such as role:goal and

role:fact), and these fields were weighted differently, then their relevancy

could vary greatly. Oracle ATG Web Commerce Search supports these weighting

factors with the following parameters:

f*1.0,o*1.0,s*1.0,ROLE:ID*2.0

f*—The weight (or multiplier) of preferred answer statement relevance.

o*—The weight of structured statement results.

s*—The weight of unstructured statement results.

A weight of 1.0 means the original (pure) relevancy is used.

Individual structured types (or fields) can be defined separately, as shown:

role:goal*1.2,role:symptom*1.1,role:fact*0.5

Whole Field Result Text Normally, the result text is the matching statement text plus some additional

context for small sentences. However, for structured content, which contains

potentially multi-sentence fields of text, you might want to return the entire text

of the field as the result. This behavior is controlled by the following parameter:

wholefield0

The wholefield parameter holds a Boolean value which, if non-zero, means that

the entire enveloping field text for the result’s matching statement is returned as

the text.

124 Appendix B. Search XML Reference

Grouping Type Description

Suppress Similar

Statements

When using Oracle ATG Web Commerce Search with Oracle ATG Web Knowledge

Manager, you may want to retrieve documents that have unique matching text.

Search allows you to suppress documents from the current page if they share a

matching text statement. This behavior is controlled by the following parameter:

suppress0

The suppress parameter holds an integer value that determines the number of

matching statements to compare for suppression. For example, if the value is 2,

then the top-2 matching statements for each document result are compared. If

two documents share a matching statement, the first one on the page is returned,

the other is suppressed. Note that the comparison is case-sensitive and ignores

whitespace and punctuation.

Note that the total number of results that is reported from the engine does not

take into account this suppression.

ruleMode

Oracle ATG Web Commerce Search includes a query module that analyzes user queries and executes special

actions which can modify the search behavior (see the Query Rules chapter in the ATG Search Administration

Guide. This functionality is controlled by the following parameter:

<query ruleMode="mode"

The mode value must be one of the following:

• ignore – No query analysis will be performed.

• display – Perform the query analysis, but simply return feedback about the results in the response.

• exec – Perform the query analysis and execute the actions, returning feedback about what was executed.

The default value is display, although only an index that contains query rules will return results.

sorting

 Search results contain a ranked list of matching statements, sorted by relevancy. These raw results could contain

duplicate or similar statements or come from a limited set of documents, offering little variety of information for

the end-user. To prevent these problems, Oracle ATG Web Commerce Search offers two grouping levels.

In grouping by document, Search reviews the list of matching statements and collapses those that come from

the same index item, forming groups of document results. Parameters control the size of result groups and the

number of the result groups to return. Individual results that belong to a group that exceeds the size limit are

eliminated from the response.

For example, if the query requests the first 20 result groups by document, but restricts the number of the groups

to 1, then Search returns the 20 most relevant statements from 20 unique documents, eliminating less relevant

statements from the same documents. If the query restricts the number of groups to 3, then Search returns the

Appendix B. Search XML Reference 125

60 most relevant results in groups of 3, one group for each unique document. The result objects of the response

denote which group they belong to.

Grouping by document allows the user to make a quick survey of the kinds of answers available in the returned

documents, but less relevant statements can end up higher on the results list than more relevant statements.

In grouping by property, Search groups matching statements according to a metadata property of their

documents. Thus, the grouped results may not share the same document or the same text. The typical scenario

for this is a commerce application where you index SKUs as searchable items, but want to return results at the

product level. The results can be grouped by a product ID metadata property, so that all SKUs with the same

product ID value are in the same group.

The sorting attribute determines which grouping mode is used for browse results:

<browse sorting="mode"

The mode value can be document or property.

sortProp

If the mode identified in the sorting attribute of the query element is property (see sorting (page 124)),

additional information is required by the query.

<query sorting="property" sortProp="type:name:default"

The sortProp includes:

• type—One of the six valid property types: enum, string, integer, float, boolean, and date.

• Name—A valid property name of the given type.

• Default—A valid value for the property of the given type; this value is used for results that do not contain the

given property.

strategy

Oracle ATG Web Commerce Search has a large number of parameters that control searching. To simplify the

adjustment of these settings, Search provides five search strategies that implement sets of parameter values.

The search strategy is selected by the following attribute:

<query strategy="strat"

The strat can be one of the following five values:

• everything – Try unlimited search, without any parameter values that can restrict the search algorithm; also

try all term expansions during document candidate retrieval.

• expand – Try an expanded search, increasing the default parameter values that can restrict the search

algorithm.

• normal – Default system settings, optimized for fast search with good search quality; this is the default value.

126 Appendix B. Search XML Reference

• restrict – Try a restricted search, decreasing the default parameter values which will further restrict the

search algorithm; disable non-equal term expansions; adjust relevancy calculation to prefer literal matches.

• exact – Try an exact search, which is the same as restrict plus a heavy increase in the /exactWgt setting.

This forces results to contain the literal query string.

If there is a conflict, the strategy selection overrides any other preset values.

suggestCat

Oracle ATG Web Commerce Search applies rules to determine what categories of a taxonomy are relevant to the

user queries. This allows the end-user to manually refine the search. This categorization feedback is controlled

by the following attribute:

<query suggestcat="max" suggestcatPrune="prune"

<query suggestcat="maxp"

The max value is the maximum number of categories to return in the feedback. If the max value is appended with

a p or the suggestCatPrune value is true, then the optional taxonomy pruning post-processing algorithm is

used during categorization.

suggestCatPrune

See suggestCat (page 126).

textProps

Oracle ATG Web Commerce Search returns metadata properties associated with the index item of each result.

Since Oracle ATG Web Commerce views text fields such as displayName as properties too, a way is needed to

specify which text fields should be returned as if they were metadata. The textProps attribute specifies these

properties as shown:

<query textProps="prop,prop,…"

Each prop value is the name of a text field. For structured content such as catalogs and solution knowledge

bases, these names begin with role:, such as role:product.displayName. These names will appear

alongside any metadata properties for use in the presentation of results.

queryAction

This element contains action arguments and a rule child element. See query rules in the ATG Search

Administration Guide for information on rules. It is a child of the answer (page 91) element.

Appendix B. Search XML Reference 127

queryRule

This element contains query analysis rule results, and an operation child element. See query rules in the ATG

Search Administration Guide. It is a child of the answer (page 91) element.

queryTerms

This element contains advanced query term vector data, and term child elements. It is a child of the

answer (page 91) element.

question

This element contains the text of the user query after auto-correction has been applied. It is a child of the

query (page 99) and answer (page 91) elements. See also the userquestion (page 132) element.

refineConstraint

This element consists of a constraint expression, and is a child of the query (page 99) element.

refinements

This element contains query refinement data in the form of child elements representing different data types for

refinement. It is a child of the answer (page 91) element.

reportData

This element contains a subset of information used for search reports (see the ATG Search Administration Guide

for information on reports), and is a child of the query (page 99) element.

128 Appendix B. Search XML Reference

response

This element contains a single search result.

Attributes Description

score Relevancy score of the result.

id Result index in this response.

answerGroup Result group identifier.

type Type of result.

viewable Whether or not the document or preferred answer is viewable.

field The text field name.

sortprop Value of the docSort property.

The response element has the following child elements:

• text (page 131)

• document (page 96)

• debug (page 101)

responseTree

This element provides a categorization of the query results. It contains a responseGroup child element, which

is the document set of returned results, and is a child of the answer (page 91) element.

securityRole

The securityRole element is a child of the parserOptions (page 98) element. It has no child elements.

For statement-level security, Oracle ATG Web Commerce Search requires a processing option to specify which

roles are accessible for the current query:

<securityRole>role</securityRole>

Appendix B. Search XML Reference 129

The role is the name of a security region, as expressed in the XHTML. Multiple elements of this type represent a

logical OR of accessible regions. These role values are converted into statement features and act as a filter on the

candidate statements.

spellchecker

The spellchecker element is a child of the parserOptions (page 98) element. It has no child elements.

Oracle ATG Web Commerce Search includes two spelling checkers, which are used with natural language

processing. The first is an internal module, which uses the indexed content to analyze spelling errors. The second

is a third-party library called Wintertree, which uses a dictionary of common terms to guide its analysis.

The internal module does not correct terms that exist in the content, including proper names and other special

terms, and it only suggests corrections that exist in the content. Conversely, the third-party module does not

correct terms that appear in its common term list, whether they appear in the content or not, and does suggest

corrections from its common term list, even if they do not appear in the content.

By default, Search uses both spelling modules to achieve spelling suggestions that reflect the content but are

not hampered if the content is limited. The following option controls how these modules interact:

<spellChecker>value</spellChecker>

The value can be any one of the following:

• internal—Use only the internal module.

• wintertree—Use only the third-party spelling checker.

• internal-wintertree—Use both modules (the default); prefer the internal module’s suggestions.

• wintertree-internal—Use both modules, prefer the Wintertree module’s suggestions.

• none—Perform no spelling correction.

Additional options allow you to control how spelling suggestions are returned:

• spellMaxSuggestions—Controls how many suggestions are made for misspelled words.

<spellMaxSuggestions>4</spellMaxSuggestions>

• spellSuggestionCutoff—Controls when to stop suggestion corrections.

<spellSuggestionCutoff>60</spellSuggestionCutoff>

• spellSuggestionFactor—Controls spelling suggestions for query terms that appear in the index and

therefore are not considered misspelled. Normally, no spelling suggestions are returned for such terms. If

spellSuggestionFactor is set, suggestable terms are returned if their frequency is greater than the original

query term’s frequency multiplied by the spellSuggestionFactor. Set to 0 to disable.

<spellSuggestionFactor>10</spellSuggestionFactor>

130 Appendix B. Search XML Reference

spelling

This element contains spelling suggestions and feedback in the form of term child elements. It is a child of the

answer (page 91) element.

spellSplitWords

The spellSplitWords element is a child of the parserOptions (page 98) element. It has no child elements.

This option determines whether the search engine attempts to split unknown words longer than five letters into

two known words, and if it does so, whether it does this before or after applying spelling correction. This feature

can compensate for simple user errors such as a missing space between two search terms.

The possible values are:

• false—Unknown terms are not split.

• before—Unknown terms are subject to splitting before applying spelling correction. This is the default

behavior.

• after—Unknown words are not subject to splitting until after spelling correction has been applied, and only

if the term is still unknown.

For example:

<spellSplitWords>after</spellSplitWords>

startCategory

This element contains the category used as a starting point for category navigation, if applicable. It is a child

of the query (page 99) element, and contains question (page 127), userquestion (page 132), and

priorinput (page 99) elements.

targetLanguage

The targetLanguage element is a child of the parserOptions (page 98) element. It has no child elements.

Oracle ATG Web Commerce Search supports multiple languages within the same index, to support separate

language-specific searches on different document collections. However, Search also supports cross-language

searches, which involve searching in one language and retrieving results in one or more different languages.

Appendix B. Search XML Reference 131

A use case for this functionality is shopping sites, where customers might not speak or write the site language

but can read prices and sizes. In this scenario, users could query in Spanish and get English results and still

achieve satisfactory results. In order to perform cross-language searches, both query and target languages must

be loaded into the index, as well as special cross-language bridge data (see the ATG Search Administration Guide).

At query time, the target language is specified with the following option:

<targetLanguage>lang</targetLanguage>

The lang value is the name of any valid language, or one of two special values:

• All means that all languages with indexed content are target languages.

• Same means that the same language as the query is the target, and is the default. Multiple instances of this

option are allowed, which will establish target languages.

text

The text element is a child of the response (page 128) element, and contains the matching statement. A

response can include one or more of these elements in the form:

<text score="number" name="field">string</text>

If the textSort attribute on the query is true, text statements are sorted in document order (the default sort

is by relevance). Sorting by document order allows you to present a meaningful excerpt to the user. You can see

the starting position of the <text> statements in the goto="N" attribute.

If the highlight attribute on the query is true, the matching terms in the response text of each result are

surrounded with {beginHighlight} and {endHighlight}, as shown:

"{beginHighlight}filter{endHighlight}, oil lubrication
car maintenance {beginHighlight}Air{endHighlight} and Fuel."

You can use this information in the Format droplet, as shown in this example:

<dsp:droplet name="/atg/dynamo/droplet/Format">
 <!-- this parameter is the text with the curly brace highlight info -->
 <dsp:param name="format" value="${result.text}"/>
 <!-- the following two dsp:param tags supply the replacement text for
 the {Xhighlight} encodings -->
 <dsp:param name="beginHighlight" value="<div class='highlight'>"/>
 <dsp:param name="endHighlight" value="</div>"/>
 <dsp:oparam name="output">
 <!-- converted text is output here -->
 <dsp:valueof param="message" conververter="Nullable" />
 </dsp:oparam>
</dsp:droplet>

132 Appendix B. Search XML Reference

topicMaximum

The topixMaximum element is a child of the parserOptions (page 98) element. It has no child elements.

Oracle ATG Web Commerce Search can perform categorization on the query text for automatic category

constraints or category feedback. The number of categories used by these processes is controlled by the

following options:

<topicMaximum>max</topicMaximum>
<topicConfidence>conf</topicConfidence>
<topicRelevance>relev</topicRelevance>

The max value specifies the maximum categories to return per request. A value of 0 means there is no limit. The

default value is 10.

The conf value is the confidence threshold for any assigned categories, ranging from 0 to 100. The default is 0.

The relev value is the relevance threshold for any assigned categories, ranging from 0 to 100. The default is 1.

userquestion

The userquestion element contains the raw user search string, unmodified. It is a child of startCategory (page

130), and has no child elements.

weightedProps

The weightedProps element is a child of the query (page 99) element. See Weighted Metadata Preference

Expressions (page 47).

wildcardMax

The wildcardMax element is a child of the parserOptions (page 98) element. It has no child elements.

Oracle ATG Web Commerce Search can handle wildcard and regular expressions in the user’s query, as described

in the User-Entered Operators (page 33) chapter. These patterns are expanded to a set of index terms which are

then used during retrieval. Search limits the number of expansions to prevent an explosion of terms that could

greatly degrade performance, such as s*. The maximum expansions per pattern are specified by the following

option:

<wildcardMax>max</wildcardMax>

Appendix B. Search XML Reference 133

The value defaults to 20. Setting this option to 0 disables the interpretation of wild card and regular expressions

in user queries.

134 Appendix B. Search XML Reference

Index 135

Index

A
activeSentenceZones, 39

activeSolutionZones, 39

adaptors, 94

AEConfig.xml, 122

alphabetic matching, 33

andFeedback attribute, 100

answer element, 91

ATG server, 2

ATG10dir, 2

audience, 1

autocat attribute, 101

autoCatPrune attribute, 101

autospell attribute, 101

B
Boolean syntax, 109

C
caching queries, 53

Cache Administration page, 58

compressing cache entries, 55

configuring, 54

disabling cache invalidation, 54

queries with timestamps, 57

case

restricting matches, 36

catalog constraints, 18

categories element, 93

categorization feedback, 102

category element, 94

category navigation, 62

ChunkedTimeInterval, 57

click-through events

reporting on, 81

collection constraints, 42

Commerce Search

reporting, 81

CommerceFacetTrailDroplet, 64, 85

configuring, 85

configuring

CommerceFacetTrailDroplet, 85

GetClickThroughId, 88

Patch Bay, 51

reporting, 81

constraints, 16

catalog, 18

constructing, 16

constraints, on queries, 41

content labels, 10

context element, 94

contextMain parameter, 118

contextSize parameter, 118

contextWgt parameter, 118

conventions, 2

D
date element, 45

debug attribute, 101

debug element, 96

dimensions

configuring dimension services, 77

Search Merchandising, 77

displaying results, 21

doc element, 44

doc parameter, 106, 122

docFlags attribute, 102

docMain parameter, 117

docProps attribute, 103

docSetSort attribute, 102

docSort attribute, 103

docSortCase, 105

docSortOrder, 104

docSortPred, 105

docSortProp, 105

docSortPropDefault, 105

docSortPropVal, 105

document set constraints, 41

document sets, 41

documentSets element, 97

docWgt parameter, 117

docWgtExpansion parameter, 120

docWgtTermThresh parameter, 120

double quotes, 33

dupTermFactor parameter, 119

DynamicTargetGenerator, 11

DynamicTargetSpecifier, 12

E
envName element, 97

estimateDocMax parameter, 115

estimateMax parameter, 114

estimateMin parameter, 114

136 Index

exactWgt parameter, 117

exactMain parameter, 117

exclude in document operator, 35

exclude in statement operator, 35

exclusion operator, 35

expandedStemming element, 98

F
facet sets (see query refinement)

facet trails, 63

facet trail string, 72

FacetTrail object, 66

FacetTrailString, 66

last range indicator, 64

Faceted Search, 59

facet trails, 63

facets, 59

formatting facet values, 74

queries, 61

rendering facets, 66

selecting refinement configurations, 73

specifying the category, 62

facets, 59

CommerceFacetTrailDroplet, 64

facet trails, 64

filtering, 68

formatting values, 74

in JSPs, 60, 66

incorporating search results, 72

multiple selection values, 65, 71

priority, 68

refinement counts, 71

removing selections, 70

skipping values already in trail, 69

FacetTrailString, 66

feedback, 130

feedback attribute, 105

fielded search

operators, 39

fields operator, 39

filtering facets, 68

form handlers (see search form handlers)

format element, 44

G
GetClickThroughId, 81, 87

configuring, 88

configuring the cache, 82

grouping options, 15

I
index item file extension constraint, 44

index item format constraint, 44

index item language constraint, 44

index item modified date constraint, 45

index item URL constraints, 44

J
JMS events, 49, 49

Patch Bay configuration, 51

suppressing, 50

L
language

of query, 98

of result, 130

language element, 44, 98

LanguageDimensionService, 77

link parameter, 115

literalMain parameter, 116

literalWgt parameter, 116

local Routing, 9

locale attribute, 105

M
matchDenom parameter, 118

maxAnswerLength parameter, 116

maxDocuments parameter, 115

maxIntervening parameter, 116

maxRelatedSets attribute, 105

metadata, 42, 103

weighted preference expressions, 47

metaMain parameter, 118

metaWgt parameter, 118

metaWgtMax parameter, 118

minAnswerLength parameter, 116

minScore attribute, 108

mode attribute, 108

MultisiteConstraint, 12

N
natural language processing options (see parserOptions)

number ranges, 38

numprop element, 42

O
operators, 33

and fielded search, 39

Boolean, 109

case restriction, 36

combining, 38

exclude in document, 35

exclude in statement, 35

exclusion, 35

literal, 33

Index 137

required in document, 34

required in statement, 34

optimize attribute, 110

P
pageNum attribute, 110

pageSize attribute, 110

paging of results, 23

page requests, 24

page size, 23

paging types, 24

resubmitting requests, 26

parser options, 15

parserOptions element, 98

Patch Bay configuration, 51

perDoc parameter, 106, 122

perProp parameter, 107, 123

perSol parameter, 106, 122

prerequisites, 1

price lists

indexing data in, 18

specifying default, 20

PriceListPropertyMapping, 19

priorInput element, 121

priorinput elment, 99

priority of facets, 68

prop element, 42

prop parameter, 107, 123

property constraints, 42

property mappings, 19

proxMain parameter, 117

proxWgt parameter, 117

Q
queries

constraints, 16

constructing, 13

docProps, 14

Faceted Search, 61

parser options, 15

relQuestSettings attributes, 13

responseNumberSettings attributes, 13

textProps, 14

query analysis, 124

query constraints, 41

combining, 45

query language, 98

query refinement, 111

query refinements, 47

query request, 99

categorizing, 101, 126

debugging, 101

feedback, 105

optimizing, 110

rank configurations, 110

result groups (see result groups)

results, 91, 96

spelling, 101

queryAction element, 126

queryRule element, 127

queryTerms element, 127

question element, 127

QUID attribute, 110

R
ranges

numeric, 38

rankConfig attribute, 110

recurseDocuments attribute, 111

redirection rules, 79

refineConfig attribute, 111

refineConfig.xml, 111

refineConfigDefault attribute, 111

refineConfigMapKey, 112

refineConfigMapProp attribute, 112

refineConstraint element, 127

refineMax attribute, 112

refinement counts, 71

refinements element, 127

RefinementValueDroplet, 89

refineMin attribute, 113

refineTop attribute, 112

regular expressions, 37

relatedSets attribute, 105, 113

relevancy threshold, 108

relevCutoff parameter, 114

relevMinFAQ parameter, 114

relevMinSent parameter, 114

relQuestSettings

parameters, 113

relQuestSettings attributes, 13

remote Routing, 9

reportData element, 127

reporting, 81

request objects

constraints, 16

docProps, 14

parser options, 15

processing, 17

properties, 13

relQuestSettings attributes, 13

responseNumberSettings attributes, 13

textProps, 14

requestMode attribute, 121

required in document operator, 34

required in statement operator, 34

138 Index

response element, 128

response objects, 21

processing, 17

responseNumber settings, 122

responseNumberSettings attributes, 13

responseTree element, 128

result groups, 124

by document, 106, 122, 124

by property, 107, 123, 125

result language, 130

results

displaying, 21

grouping, 15

paging, 24

query, 91

results objects

number of results, 21

repository items, 22

retLimit parameter, 113

retMax parameter, 113

Routing, 9

ruleMode attribute, 124

S
sample search application, 9

search configurations

determining which to use, 77

dimension tree, 77

search environments, 11

search form handlers, 7

classes, 7

configuring, 8

invoking multiple, 20

JMS events , 49

request properties, 13

sample application, 9

SearchContext component, 9

using with facets, 72

Search Merchandising

determining language, 78

redirection rules, 79

selecting search configurations, 77

search results

incorporating in facets, 72

page requests, 24

page size, 23

paging, 23

paging types, 24

SearchClickThroughServlet, 82

SearchContext component, 9

SearchSession object, 9

securityRole element, 128

ServiceDimensionService, 77

servlet beans, 85

CommerceFacetTrailDroplet, 85

GetClickThroughId, 81, 87

RefinementValueDroplet, 89

set element, 41, 47

site-specific content, 11

SiteDimensionService, 77

sorting

by secondary criteria, 103

sorting attribute, 124

sortProp attribute, 125

spellchecker element, 129

spelling element, 130

spelling feedback, 101, 129

startCategory element, 130

stemming, 98

strategy attribute, 125

strprop element, 42, 47

subdirs attribute, 41

suggestcat attribute, 126

suggestCatPrune attribute, 126

T
target types, 10

targetLanguage element, 130

term element, 130

term expansion

disabling, 33

text element, 131

text processing options (see parserOptions)

textProps attribute, 126

thesaurus, 115

topicMaximum element, 132

type element, 44

type-ahead, 29

autocompleter function, 29

search page, 30

type-ahead page, 30

U
userquestion element, 132

W
Web spiders

suppressing events for, 50

weightedProps tag

in standard query, 132

wildcardMax element, 132

wildcards, 132

in queries, 36

Wintertree, 129

Index 139

Z
zones operator, 39

140 Index

