
Modeling the “Ecore to GenModel” Transformation

with EMF Henshin

Enrico Biermann1, Claudia Ermel1, and Stefan Jurack2

1 Technische Universität Berlin, Germany
{enrico,lieske}@cs.tu-berlin.de
2 Universität Marburg, Germany

sjurack@informatik.uni-marburg.de

Abstract. Our recently developed tool Henshin is an Eclipse plug-in supporting visual
modeling and execution of rule-based EMF model transformations. In this paper we de-
scribe how we use Henshin to define visual EMF model transformation rules and control
structures transforming an Ecore meta-model to a GenModel (case study 3 of TTC 2010). For
validation, the model transformation is applied to the Ecore model of a flowchart language.

1 Introduction: Transforming Ecore to GenModel

The most important benefit of the Eclipse Modeling Framework EMF is its ability to generate
code automatically. Most of the data needed by the EMF generator for generating code is stored
in the Ecore model, e.g. the classes to be generated and their names, attributes, and references.
There is, however, more information that needs to be provided to the generator, such as where
to put the generated code and what prefix to use for the generated factory and package class
names, that is not stored in the core model. The EMF code generator uses a particular EMF
model, the generator model to get this information. The generator model provides access to all
data needed for generation, including the Ecore part, by wrapping the corresponding Ecore model.
For example, class GenClass wraps (or decorates) EClass, class GenFeature decorates EAttribute
and EReference, and so on. The EMF generator runs off of a generator model instead of a core
model; thus, when using the generator, there are two model resources (files) in the project: a
.ecore file and a .genmodel file. The .ecore file is an XMI serialization of the Ecore model and
the .genmodel file is a serialized generator model with cross-document references to the .ecore file.

Separating the generator model from the Ecore model like this has the advantage that the actual
Ecore meta-model can remain pure and independent of any information that is only relevant for
code generation. The disadvantage of not storing all the information right in the core model is that
a generator model may get out of sync if the referenced core model changes. To handle this, the
generator model plug-in offers a facility to reconcile a generator model according to changes made
in its corresponding core model without loosing generator-related information.

2 Transformation Concepts of Henshin

The transformation approach we use in this paper is based on graph transformation concepts
which are lifted to EMF model transformation by also taking containment relations in meta-
models into account. Our recently developed tool Henshin3 is an Eclipse plug-in supporting visual

3 http://www.eclipse.org/modeling/emft/henshin/, originating from EMF Tiger [1,2,3]

modeling and execution of EMF model transformations based on structured data models and graph
transformation concepts.

In our approach, we use the original EMF meta-models Ecore and GenModel as source and
target language. In order to support our transformation rules, relations between source and target
EMF models are given in a self-provided EMF model Ecore2Gen, the so-called mapping model.
Apart from defining rules, we made use of the control structures offered by Henshin (called
transformation units), e.g. constructs for non-deterministic rule choices, rule sequences or rule
priority. Those constructs may be nested arbitrarily to define more complex control structures.
Passing of model elements and parameters from one rule to another is also possible by using input
and output ports. EMF transformation rule applications in Henshin change an EMF instance
model in-place, i.e. an EMF instance model is modified directly. Moreover, the pre-definition of
(parts of) the match is also supported by Henshin. Henshin currently consists of a graphical

editor for visually defining EMF model transformation rules and units, and a transformation engine
for executing rules and units on EMF models. The transformation engine provides classes which
can freely be integrated into existing Java projects which rely on EMF models. Currently there
exist two implementations of the transformation engine. One is written in Java while the other
translates the transformation rules to Agg [4]. This is useful for validation of consistent EMF
model transformations which behave like algebraic graph transformations, e.g. to show functional
behavior and correctness [5].

Fig. 1. Henshin GUI with tree view (1), transformation unit editor (2) and (3), and rule editor (4).

Fig. 1 shows the preliminary GUI of our Henshin tool. The tree view 1 allows the mod-
eler to define the needed EPackages for source, target and mapping models of the transformation
and the Henshin model itself. Moreover, new rules and transformation units can be created here.

2

Transformation units can be defined in a visual editor 2 and may be of type IndependentU-

nit (all contained units are applied in arbitrary order), SequentialUnit (all its units are applied
sequentially), CountedUnit (its units are applied sequentially, each a given number of times), Pri-
orityUnit (a child unit of highest priority is applied next) and AmalgamatedUnit (for transforming
multi-object structures in one step where the number of actually occurring object structures in the
instance model is variable). The transformation unit shown in Fig. 1 2 is an IndependentUnit
(symbolized by a die as icon in the upper left corner) which contains rules as child units. The unit
has two input ports and one output port. When the uppermost child unit (rule createGenModel)

is double-clicked, a view for this unit opens 3 showing its own child units and its ports. Since

rule createGenModel has no further child units, this compartment in 3 is empty. However, colors
of the ports of rule createGenModel indicate a connection to ports of its parent unit. The rule
view 4 shows the visual rule editor which comprises three parts for the left-hand side LHS, the
right-hand side RHS and optional conditions Cond restricting matches into instance models.

Henshin rules and transformation units can be used in other Java projects by instantiating the
class RuleApplication or UnitApplication, respectively. The class RuleApplication requires a
Rule instance from the Henshin meta-model. Once instantiated, the rule can be applied by calling
the execute()-method of RuleApplication. Transformation units can be executed in a similar
way by using the class UnitApplication.

3 The Ecore2GenModel Transformation

Our mapping model combining the source EMF model Ecore and the target EMF model GenModel

is illustrated (without attributes) in Fig. 2. The left-hand side of Fig. 2 shows the Ecore model,
the right-hand side shows the GenModel model, and classes of type Rel in between map the
corresponding structures of both models.

An EMF model conforming to the Ecore meta-model is now translated by applying the rules
in the independent unit generateGenModel (see Fig. 1, 2). In the very beginning, only rule

createGenModel is applicable (see Fig. 1, 4). The rule has a nested application condition. The

structure of this condition can be seen in the tree view in Fig. 1, 1 , where below the LHS part
of rule createGenModel, there is an AND node connecting two application conditions (graph con-
straints on the rule’s LHS) which require that there are no super-packages of the EPackage in
the LHS and that there is no GenModel existing already. The rule creates a new GenModel node
with default values for various attributes. Similarly, GenModel structures are created for EClasses,
EPackages, EAttributes and EReferences by applying rules createGenClass, createGenPackage,

createGenFeatureForAttributes and createGenFeatureForReference. Screenshots of these rules
contained in unit generateGenModel can be found in Appendix B.

Our model transformation transforming an Ecore model to a GenModel (without annotations
yet) is applied exemplarily to an Ecore model of a flowchart language4 from within a Java appli-
cation by a call to the main transformation unit generateGenModel’s execute method with the
source model’s file and its URI as input parameters (see lines 89–91 in the complete listing of the
Java class file in Appendix A).

4 http://is.ieis.tue.nl/staff/pvgorp/events/TTC2010/cases/ttc2010_attachment_5_

v2010-04-15.zip

3

Fig. 2. A part of the mapping meta model for the Ecore2Genmodel transformation

4 Extension 2: Transforming GenModel annotations in the source

Ecore model by using reflection

We deal with this task by making use of Henshin’s ability to create a transformation rule by
applying another transformation rule. This is a sort of reflection mechanism in Henshin which
is possible because the Henshin transformation system, i.e. rules, transformation units and so
one, are defined by an Ecore model. Hence, transformation rules can be applied also to Henshin
instance models, i.e. to transformation systems and structures within transformation systems such
as rules. Depending on the annotations in the source Ecore model, in a first step we generate a
customized transformation rule which is tailored to the type of attributes used in the annotation
to be processed. In the second step, we apply this customized rule and change the GenModel
accordingly by setting the value of the particular attribute in the corresponding GenModel class.

Fig. 3 shows the main unit prepareCustomizationUnit to be executed for realizing the ex-
tended transformation. Rule createCustomizationUnit is called once and creates a container (a
SequentialUnit) for the customized rule (see Fig. 3). Unit singleProcessUnit is applied as long
as possible (collecting all EAnnotations) and contains two rules to be applied sequentially: rule
processAnnotationEntries looking for an EAnnotation (connected to a class EStringToString-
MapEntry which contains a (key, value) pair of an attribute type and its value) in the Ecore
model. The (key, value) data together with two more parameters genType and UId become input
parameters to rule createCustomizedRule. The input parameter UId is an attribute of the Rel

4

node connecting the EModelElement to the GenModel element. The parameter genType denotes the
type name of the GenModel class (e.g. "GenClass", "GenPackage" or "GenFeature") the created
customized rule is supposed to match. With the help of the input parameters key and value, the
generated rule is able to select the attribute with name key and to set its value to value.

All rules are shown in detail in Appendix C. In our Java application we first execute the main
transformation unit prepareCustomizationUnit (see lines 97–101 in the listing in Appendix A),
and afterwards apply the generated rules (see lines 103-108 in Appendix A).

Fig. 3. Transformation units for processing annotated Ecore models

5 Conclusion

We presented a transformation from Ecore models to the GenModel format using the EMF trans-
formation toolHenshin. Our solution is made available under SHARE via link http://is.tm.tue.
nl/staff/pvgorp/share/?page=ConfigureNewSession&vdi=XP-TUe_TTC10_Henshin.vdi. We pro-
pose a solution for the basic case study and for Extension 2 considering also GenModel annotations
in the source Ecore model and using Henshin’s reflection ability to generate customized rules to
set attributes of different GenModel classes. Being able with Henshin to work directly on EMF
models and to define visual rules and control units helped a lot to come up with a straightforward
translation algorithm.

References

1. TFS-Group, TU Berlin: EMF Tiger. (2009) http://tfs.cs.tu-berlin.de/emftrans.

5

2. Biermann, E., Ehrig, K., Köhler, C., Kuhns, G., Taentzer, G., Weiss, E.: Graphical definition of in-place
transformations in the Eclipse Modeling Framework. In: Proc. MoDELS’06. Volume 4199 of LNCS.
Springer, Berlin (2006) 425–439

3. Biermann, E., Ermel, C., Lambers, L., Prange, U., Taentzer, G.: Introduction to AGG and EMF Tiger
by modeling a conference scheduling system. Software Tools for Technology Transfer (2010) To appear.

4. TFS-Group, TU Berlin: AGG. (2009) http://tfs.cs.tu-berlin.de/agg.
5. Biermann, E., Ermel, C., Taentzer, G.: Precise semantics of EMF model transformations by graph

transformation. In: Proc. MoDELS’08. Volume 5301 of LNCS., Springer (2008) 53–67

A Java Code of the Transformation Application

1

2 package tcc10 ;
3

4 import java . i o . F i l e ;
5 import java . i o . IOException ;
6

7 import org . e c l i p s e . emf . codegen . eco re . genmodel . GenModel ;
8 import org . e c l i p s e . emf . codegen . eco re . genmodel . GenModelPackage ;
9 import org . e c l i p s e . emf . codegen . eco re . genmodel . impl . GenModelPackageImpl ;

10 import org . e c l i p s e . emf . common . u t i l .URI ;
11 import org . e c l i p s e . emf . e co re . EObject ;
12 import org . e c l i p s e . emf . e co re . EPackage ;
13 import org . e c l i p s e . emf . e co re . r e s ou r c e . Resource ;
14 import org . e c l i p s e . emf . e co re . r e s ou r c e . ResourceSet ;
15 import org . e c l i p s e . emf . e co re . r e s ou r c e . impl . ResourceSetImpl ;
16 import org . e c l i p s e . emf . e co re . xmi . impl . EcoreResourceFactoryImpl ;
17 import org . e c l i p s e . emf . e co re . xmi . impl . XMIResourceFactoryImpl ;
18 import org . e c l i p s e . emf . henshin . common . u t i l . EmfGraph ;
19 import org . e c l i p s e . emf . henshin . i n t e r p r e t e r . EmfEngine ;
20 import org . e c l i p s e . emf . henshin . i n t e r p r e t e r . Uni tAppl i cat ion ;
21 import org . e c l i p s e . emf . henshin . model . Sequent ia lUn i t ;
22 import org . e c l i p s e . emf . henshin . model . TransformationSystem ;
23 import org . e c l i p s e . emf . henshin . model . TransformationUnit ;
24 import org . e c l i p s e . emf . henshin . model . impl . HenshinPackageImpl ;
25 import org . e c l i p s e . emf . henshin . model . r e s ou r c e . HenshinResourceFactory ;
26

27 /∗∗
28 ∗ This implementation o f an Ecore to Genmodel t rans fo rmat ion by <a
29 ∗ hr e f=”http ://www. e c l i p s e . org /modeling /emft/ henshin/”>Henshin was

crea ted
30 ∗ along the <a
31 ∗ hr e f=”http :// i s . i e i s . tue . n l / s t a f f /pvgorp/ events /TTC2010/”>Transformation

Tool
32 ∗ Contest 2010 organ ized as s a t e l l i t e workshop to <a
33 ∗ hr e f=”http :// malaga2010 . l c c . uma . es/”>TOOLS 2010.

34 ∗ Authors are (in a l phab e t i c a l order) :
35 ∗
36 ∗ < l i >Enrico Biermann
37 ∗ < l i >Claudia Ermel

6

38 ∗ < l i >Ste fan Jurack
39 ∗
40 ∗
41 ∗ <i>Remark:</ i> As proo f o f concept only , in the f o l l ow i n g source

(. e co re) and
42 ∗ t a r g e t (. gemodel) model f i l e s are hard−coded . However , an adaption to a
43 ∗ f u l l −f l e dg ed p lug in prov id ing a context menu entry f o r eco re f i l e s i s
44 ∗ s t r a i gh t f o rwa rd .
45 ∗/
46 public class Ecore2GenmodelTrafo {
47

48 /∗∗ De f i n i t i o n o f a number o f f i l e paths ∗/
49 private stat ic f ina l St r ing BASE = "model/" ;
50

51 /∗∗ Mapping model ∗/
52 private stat ic f ina l St r ing ECORE E2G = "ecore2gen.ecore" ;
53 private stat ic f ina l St r ing ECORE E2G FULL = BASE + ECORE E2G;
54 /∗∗ Henshin f i l e conta in ing r e l e van t r u l e s ∗/
55 private stat ic f ina l St r ing HENSHIN E2G FULL = BASE
56 + "Ecore2Genmodel.henshin" ;
57 /∗∗ Ecore source model to be transformed ∗/
58 private stat ic f ina l St r ing ECORE SOURCE = "flowchartdsl.ecore" ;
59 private stat ic f ina l St r ing ECORE SOURCE FULL = BASE + ECORE SOURCE;
60 /∗∗ Genmodel t a r g e t model ∗/
61 private stat ic f ina l St r ing GENMODELTARGETFULL = BASE
62 + "flowchartdsl2.genmodel" ;
63

64 /∗∗ Common re sou r c e s e t ∗/
65 ResourceSet r e s ou r c eSe t = new ResourceSetImpl () ;
66

67 /∗∗
68 ∗ Method compris ing the main con t r o l f low f o r the t rans fo rmat ion .
69 ∗/
70 public void generateEcore2Genmodel () {
71

72 i n i t i a l i z eR e s o u r c eF a c t o r i e s () ;
73

74 TransformationSystem t s = (TransformationSystem)
loadModel (HENSHIN E2G FULL) ;

75 EPackage mappingModel = (EPackage)
loadModel (ECORE E2G FULL) ;

76

77 EPackage ecoreModel = (EPackage)
loadModel (ECORE SOURCE FULL) ;

78

79 // Create Henshin i n t e r p r e t e r ob j e c t s
80 EmfGraph graphM = new EmfGraph () ;
81 graphM . addRoot (ecoreModel) ;
82 EmfEngine engineM = new EmfEngine (graphM) ;
83

84 // Generate genmodel from ecore model (without annotat ions) .

7

85 TransformationUnit un i t1 =
t s . findUnitByName ("generateGenModel" , true) ;

86 UnitAppl i cat ion unitApp1 = new UnitAppl i cat ion (engineM ,
uni t1) ;

87 // f i l e name and p lug in name cannot be r e l i a b l y deduced by
the model

88 // e lements thus need to be s e t .
89 unitApp1 . setPortValue ("inModelFileName" , ECORE SOURCE) ;
90 unitApp1 . setPortValue ("inPluginName" , ecoreModel . getName ()) ;
91 boolean r e s u l t = unitApp1 . execute () ;
92

93 graphM . addRoot (t s) ;
94 graphM . addRoot (GenModelPackage . eINSTANCE) ;
95 graphM . addRoot (mappingModel) ;
96

97 // Process annotat ions and generate r e l a t e d Henshin r u l e s .
98 TransformationUnit un i t2 = t s . findUnitByName (
99 "prepareCustomizationUnit" , true) ;

100 UnitAppl i cat ion unitApp2 = new UnitAppl i cat ion (engineM ,
uni t2) ;

101 unitApp2 . execute () ;
102

103 // Apply generated r u l e s to t r a n s f e r annotat ions to the
genmodel .

104 Sequent ia lUn i t customizat ionUnit = (Sequent ia lUn i t) unitApp2
105 . getPortValue ("seqUnit") ;
106 UnitAppl i cat ion unitApp3 = new UnitAppl i cat ion (engineM ,
107 customizat ionUnit) ;
108 unitApp3 . execute () ;
109

110 // Save r e s u l t i n g genmodel .
111 i f (r e s u l t) {
112 System . out . p r i n t l n ("Successful") ;
113 GenModel gm = (GenModel)

unitApp1 . getPortValue ("outGenModel") ;
114 saveGenModel (gm) ;
115 } else {
116 System . out . p r i n t l n ("Not successful") ;
117 }// i f e l s e
118

119 }// generateEcore2Genmodel
120

121 /∗∗
122 ∗ Saves the content o f the genmodel to the s p e c i f i e d f i l e (s e e
123 ∗ {@link #createGenModelResource () }) .
124 ∗
125 ∗ @param gen
126 ∗/
127 private void saveGenModel (GenModel gen) {
128 URI modelUri = URI . createFi l eURI (new

F i l e (GENMODELTARGETFULL)

8

129 . getAbsolutePath ()) ;
130 Resource r e s = re sou r c eSe t . c reateResource (modelUri ,

"genmodel") ;
131 try {
132 r e s . getContents () . add (gen) ;
133 r e s . save (null) ;
134 } catch (IOException e) {
135 e . pr intStackTrace () ;
136 }// try catch
137 }// saveGenModel
138

139 /∗∗
140 ∗ Loads the model at the g iven path and re tu rn s the root element .
141 ∗
142 ∗ @param modelPath
143 ∗ @return
144 ∗/
145 private EObject loadModel (S t r ing modelPath) {
146 URI modelUri = URI . createFi l eURI (new

F i l e (modelPath) . getAbsolutePath ()) ;
147 Resource resourceModel = re sou r c eSe t . getResource (modelUri ,

true) ;
148 return resourceModel . getContents () . get (0) ;
149 }// loadEmfModel
150

151 /∗∗
152 ∗ Reg i s t e r s appropr ia t e r e s ou r c e f a c t o r i e s f o r ecore,
153 ∗ genmodel and henshin f i l e s .
154 ∗/
155 private void i n i t i a l i z eR e s o u r c eF a c t o r i e s () {
156 Resource . Factory . Reg i s t ry .INSTANCE. getExtensionToFactoryMap () . put (
157 "ecore" , new EcoreResourceFactoryImpl ()) ;
158 Resource . Factory . Reg i s t ry .INSTANCE. getExtensionToFactoryMap () . put (
159 "genmodel" , new XMIResourceFactoryImpl ()) ;
160 Resource . Factory . Reg i s t ry .INSTANCE. getExtensionToFactoryMap () . put (
161 "henshin" , new HenshinResourceFactory ()) ;
162

163 // I n i t i a l i z e packages
164 GenModelPackageImpl . i n i t () ;
165 HenshinPackageImpl . i n i t () ;
166 }// i n i t i a l i z eR e s o u r c eF a c t o r i e s
167

168 /∗∗
169 ∗ @param args
170 ∗/
171 public stat ic void main (S t r ing [] a rgs) {
172 Ecore2GenmodelTrafo s = new Ecore2GenmodelTrafo () ;
173 s . generateEcore2Genmodel () ;
174 }// main
175

176 }// c l a s s

9

B Rules contained in Unit generateGenModel

Fig. 4. Rule createGenModel

Fig. 5. Rule createGenClass

10

Fig. 6. Rule createGenPackage

Fig. 7. Rule createGenFeatureForAttribute

11

Fig. 8. Rule createGenFeatureForReference

C Rules contained in Unit singleProcessUnit

Fig. 9. Rule processAnnotationEntries

12

Fig. 10. Rule createCustomizedRule

Fig. 11. Rule GeneratedRule: Example for a generated rule

13

