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Abstract—We propose a novel solution for semantic-based 

XML schema matching, taking a mathematical programming 

approach. This method identifies the globally optimal solution 

for the problem of matching leaf nodes between two XML 

schema trees by reducing the tree-to-tree matching problem to 

simpler problems of path-to-path, node-to-node, and 

word-to-word matching. We formulate these matching 

problems as maximum-weighted bipartite graph matching 

problems with different constraints, which are solved by 

different mathematical programming techniques, including 

integer programming and dynamic programming. Solutions to 

simpler problems provide weights for the next stage until the 

optimal tree-to-tree matching solution is obtained. The 

effectiveness of this approach has been verified and 

demonstrated by computer experiments. 

 
Index Terms—E-business, XML schema matching, 

maximum-weighted bipartite graph, semantic similarity, 

mathematical programming.  

 

I. INTRODUCTION 

Over the past two decades, the eXtensible Markup 

Language (XML) [1] and XML schemas [2] have been 

widely used in the electronic business (e-Business) 

transactions among enterprises to exchange business 

documents with their partners (e.g., suppliers and customers 

in the supply chain) [3]–[5]. Many enterprises and 

organizations have defined their own XML schemas to 

describe the structure and content of the business documents 

to be used in the transactions. Many organizations have also 

published standard XML schemas to be shared in the 

transactions within specific industry domains (e.g., 

e-manufacturing, e-government, and e-health industries) 

[6]–[8]. 

The popularity of XML leads to an integration problem as 

different enterprises or organizations often choose different 

XML representations for the same or similar concepts [4], [5]. 

One of the most critical steps to achieving the seamless 

exchange of information between heterogeneous e-Business 
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systems is schema matching. Schema matching is a process 

that takes as input two heterogeneous schemas and possibly 

some auxiliary information, and returns a set of dependencies, 

so called mappings that identify semantically related 

elements and attributes [9]. This process has largely been 

manual and is known to be costly and error-prone [10], [11]. 

An XML schema defines a set of discrete elements and 

attributes for a class of XML documents, aiming at defining 

the structure, content and semantics of XML documents [2]. 

XML documents that attempt to adhere to an XML schema 

are said to be instances of that schema (i.e., XML instances). 

XML schemas or instances are typically viewed as labeled 

trees (i.e., rooted acyclic graphs) where each node represents 

a data element or an attribute named by a label of English 

word or concatenation of words or their abbreviations. Most 

schema matching approaches analyze the similarity between 

these labeled trees based on their syntactic and structural 

information [9], [10]. For the structural similarities, they 

analyze the differences in hierarchical tree structures. For 

semantic similarities, they typically analyze the meaning 

(semantics) of nodes in the labeled tree. Those semantics are 

often obtained by lexical analysis of English words in the 

labels of nodes. 

XML schemas can be classified into two types according 

to the types of the e-Business standard schemas. The first 

type is the component schema. This type of schema contains 

a set of global type components that can either be extended or 

reused by other components (e.g., OAGIS UBL Common 

Core Component schema [12]). The term “components” here 

refers to either elements or types [2]. Component schemas 

can be thought of as a collection of labeled trees, each of 

which corresponds to a global type component. The second 

type of XML schemas is the document schema. It defines the 

syntax and structure of a single global type element for a 

class of valid XML instance (e.g., Purchase Order Document 

Schema). The document schema can reuse or extend the 

components defined by the component schemas. It can be 

viewed as a single labeled tree. 

The component schema matching primarily seeks to 

identify the relations between two sets of labeled trees (i.e., 

two sets of global type components), whereas the document 

schema matching identifies relations between nodes 

(elements or attributes) of two labeled trees (i.e., two 

schemas).  

The document schema matching problems can be further 

classified according to their purposes. If two document 

schemas need to be fully matched to create an integrated 

schema, every node in one schema should be matched to 

some nodes in the other schema. On the other hand, if the 
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matching is to determine how to transform one instance into 

another, only leaf nodes in the schema trees need to be 

matched. The leaf nodes are also called atomic nodes because 

it cannot be further decomposed. In this paper we focus on 

the latter which identifies matching between all atomic nodes 

of two schemas or instances based on their semantics 

(meaning of nodes). We call this problem tree-to-tree 

matching as it attempts to matching all atomic nodes between 

two schema trees. Matching between those atomic nodes 

helps to determine how a certain value in one XML instance 

can be transformed to certain value of the other for successful 

exchange of information. Also, we only consider pair-wise 

matchings of 1-to-1 cardinality (e.g., any atomic node in the 

source schema can match no more than one atomic node in 

the target schema). 

We propose new innovative techniques to address two 

challenging problems in this type of schema matching. First, 

due to synonyms (different words meaning the same thing) 

and multi-senses (one word having different meanings in 

different contexts) found in natural languages, the meaning 

of an atomic node cannot be determined solely by the words 

in its label. Although XML does not provide means to 

formally define the semantics, the semantic ambiguity can be 

reduced by contextual information such as the labels of its 

neighboring nodes. In this paper, we concentrate on one type 

of context for an atomic node: the nodes along the path from 

the root to the leaf in the schema tree. 

Second, it is difficult to correctly identify the best set of 

matching pairs for all atomic nodes between two schema 

trees. This is because a leaf in one tree may match more than 

one leaf in the other tree (with different semantic similarities) 

and best-matching pairs identified in isolation do not 

necessarily form the globally optimal set of matchings for all 

atomic nodes. We propose to use mathematical programming 

techniques to solve this combinatorial optimization problem. 

To further reduce the computational complexity, we propose 

to decompose the global problem into simpler matching 

problems such as path-to-path, node-to-node, and 

word-to-word matching. We formulate the sequence of 

matching problems as maximum-weighted bipartite matching 

problems with different sets of constraints. We solve these 

optimization problems by different mathematical 

programming techniques, including integer programming 

[13] and dynamic programming [14]. Solutions to simpler 

problems provide weights for the next stage until the optimal 

tree-to-tree matching is obtained. 

The remainder of the paper is organized as follows. 

Section II provides a brief survey of the related works. The 

detailed algorithms of the proposed approach are described in 

Sections III. Section IV reports the experiments and results. 

Section V concludes with the directions for future research. 

 

II. RELATED WORKS 

Many schema matching methods have been proposed [9], 

[10]. Typically, these methods first attempt to identify 

semantic similarity between the elements of two schemas. So 

our survey starts with the existing semantic similarity 

techniques that have been used to assist in matching between 

two schemas. 

A. Semantic similarity techniques 

To compute the semantic similarity, string-based similarity 

metric is commonly used to analyze the linguistic context of 

names and name descriptions of schema entities. There are a 

variety of string-based similarity metrics. Hamming distance 

is one of the simplest metrics, which measures between two 

strings of equal length the minimum number of substitutions 

required to change one string into the other [15]. Levenshtein 

distance, often called edit distance, provides an extended 

version of hamming distance by measuring the amount of 

difference between two string sequences [16]. Jaccard 

similarity coefficient [17], a well-known statistical method 

for similarity measure between two sets, is defined as the size 

of the intersection divided by the size of the union of the two 

sets: ( , ) | | / | |J A B A B A B= ∩ ∪ . Cosine coefficient [18] is a 

common vector space similarity metric similar to Jaccard 

coefficient in which the input string is transformed into 

vector space so that the Euclidean cosine rule [19] can be 

used to determine similarity. N-gram (q-gram) [20], [21] can 

be also used to determine similarity. A string-distance can be 

measured by counting the number of the occurrences of 

different n-grams, i.e., the substrings of length n, in the two 

strings. The more similar the strings are, the more n-gram 

they will have in common. [22].  

The string-based similarity metrics can be enhanced using 

natural language preprocessing techniques for the input 

string, such as tokenization, lemmatization, and elimination 

[23]. To further enhance the string-based metrics, document 

corpus resources can be utilized for more accurate and less 

ambiguous semantics (e.g., synonyms or hyponyms) for 

words in the node labels. One of the important resources is 

the lexical taxonomy among the words (e.g., parents, children, 

ancestor, and descendant relationships). Common knowledge 

corpora, such as WordNet [24] and domain-specific corpora, 

can be used to help to determine the meaning of the words. 

Based on those corpora, several methods have been proposed 

[25], [26]. 

A corpus also provides statistical information related to the 

importance of words and the relationships between words. 

The information content (IC)-based metric was proposed to 

utilize this statistical information [27]–[29]. This approach 

measures the similarity between two entities – two words, 

two objects, or two structures – A and B based on how much 

information is needed to describe ( , ),common A B  the 

commonality between them. Examples of commonality 

include the features or hypernyms the two words share. 

According to information theory [29], entities that appear 

widely in many objects carry less information than rarely 

appearing ones, and thus are considered less important 

insemantic similarity measures. In other words, more specific 

entities carry more information than generic and common 

entities. Therefore, the more specific the ( , )common A B  is, 

the more similar A and B will be. The information content of 

a concept or word C is defined as [29]: 

)(log)( CPCI −= . (1) 

The ( , )common A B can then be measured by the 

information content of the most specific common hypernyms 
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of A and B. Applying this approach to tree-like IS-A 

taxonomies [29], one can measure the similarity between A 

and B as 

( , ) ( , )
( , ) max ( ) max ( log ( )),IC

C S A B C S A B
sim A B I C P C

∈ ∈
= = −  (2) 

where S(A, B) is the set of all concepts that subsume both A 

and B, I(C) is the information content of C, and P(C) is based 

on the frequency of C in a corpus. 

Lin [28] proposed a normalized information content based 

measure. In a general form, this measure is defined as 

( ( , ))
( , ) ,

( ( , ))
I

I comman A B
sim A B

I description A B
=  (3) 

where ( , )description A B is the sum of ( , ),common A B and 

( , )difference A B . 

For tree-like IS-A taxonomies, Lin also suggested: 

2 log ( )
( , ) ,

log ( ) log ( )
IC

P C
sim A B

P A P B

⋅
=

+
 (4) 

where C is the most specific subsumer of A and B with the 

smallest prior probability and the probabilities can be 

obtained according to the frequencies in a corpus. Equation 

(4) can be seen as a normalized version of (2). 

Information contents of words or concepts can also be used 

as their weights when computing composite similarity 

measure between groups of words. 

Based on these semantic similarity techniques, many 

schema matching methods have been developed [9], [10]. We 

now look at the state of the art schema matching approaches. 

B. The state of the art schema matching approaches 

Several hybrid and composite matching approaches have 

been proposed recently. Reference [30] proposed a hybrid 

matching approach for component schema matching, called 

layered semantic similarity metrics. To compute the semantic 

similarity between two global data elements defined in two 

XML schemas, this approach divides the tree structure of 

each schema into three layers (i.e., top, inner, and atom layers) 

and applies different similarity metrics to these layers. The 

layered approach is motivated by the fact that each layer 

represents a unique aspect of the semantics of the global 

element.  

As an example of hybrid matching, the LSD system [31] 

uses machine-learning techniques to match a pair of schemas. 

The LSD is based on the combination of several match result 

obtained by independent learners. The predictions of 

individual learners are combined by a so called meta-learner, 

which weighs the predictions from a learner according to its 

accuracy shown during the training phrase. 

For structure-level matching, a variety of graph-based 

metrics have been proposed [9], [10]. Typically, these 

metrics quantify the commonality between nodes by taking 

into account the lexical and structural similarities of super 

and sub-nodes (e.g., ancestors and descendents all the way to 

leaf nodes).  

Because most schemas can be viewed as labeled trees, 

many matching algorithms have been developed based on 

either top-down or bottom-up traversal techniques [10]. As 

an example of the top-down approach, TransScm [32] 

provides a schema matching method for data translation and 

conversion based on the syntactic analysis of the structures. 

The matching is performed node-by-node, considering 1-to-1 

matching cardinality in a top-down fashion. Tess [33] is 

another example of a top-down algorithm, which deals with 

schema evolution. Tess takes definitions of the old and new 

types and identifies pairs of types as matching candidates. It 

then recursively tries to match their substructure in a 

top-down fashion. 

Similarity flooding (SF) [34] provides bottom-up 

matching based on similarity propagation. This method 

begins with a string-based comparison of the schema 

elements and analyzes the structure-level relationships on the 

assumption that if two nodes from two schemas are similar, 

then their neighbors may also be somehow similar.  

A generic schema matching method, called Cupid [35], 

was proposed by Microsoft Research [36]. It is comprised of 

element- and structure-level matching approaches, and it 

computes the similarity with domain-specific thesauri as the 

linguistic information resources. The Cupid algorithm 

provides an effective algorithm to traverse the tree in a 

combined bottom-up and top-down manner. 

 

Figure 1.  Matching algorithm overview. 

Another effective bottom-up method, called S-Match [37], 

follows a graph-based matching algorithm, which 

decomposes the tree matching problem into a set of node 

matching problems. Each node matching problem is 

translated into a propositional formula, which can then be 

efficiently resolved using state of the art propositional 
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satisfiability deciders.  

In general, top-down approaches are less expensive but 

can be misled if the top-level schema structures are very 

different [10]. On the other hand, bottom-up approaches take 

a more comprehensive view [9]. However, existing 

bottom-up methods identify optimal matches in an ad hock 

manner without solid theoretical foundations. 

Another group of graph-based metrics is based on 

terminological taxonomy that can be applied to ‘IS-A’ 

hierarchies such as ontologies. The edge counting approach 

is well-known traditional approach based on conceptual 

distance in a taxonomy [38]. The principle of the edge 

counting is simple and intuitive. It computes the shortest path 

between two nodes in the taxonomy, presents the most 

intuitive method to evaluate the semantic similarity in a 

hierarchical taxonomy. Another taxonomy-based approach, 

known as bounded path matching [39], takes two paths, with 

links between classes defined by the hierarchical 

relationships, compares terms and their positions along these 

paths, and identifies similar terms. 

To identify the matching between different paths, it is 

common to compare the similarities of nodes that compose 

these two paths. Work in [40] introduced the concept of the 

path context coefficient (PCC) to capture the degree of 

similarity for two paths. The algorithm, called LocalMatch, 

finds the best 1-to-1 matching pair of elements within two 

path contexts by summing up the linguistic similarities for all 

of the matched elements. This solution can be inaccurate if 

there are additional nodes within the path that were not 

matched.  

To find the optimal path similarity, [41] proposes criteria 

for matching the paths between XML query and documents. 

To calculate the similarity between two paths, [41] also 

proposes a similarity score for each criterion and combines 

them with the given weights. References [42], [43] apply 

these criteria for the path similarity measure to the schema 

matching solution. Work in [42] only considers identical 

string matches between nodes, and [43] investigates further 

to deal with the string-based similarities between nodes. 

However, they do not utilize other semantic information such 

as linguistic resources. In addition, their scoring algorithm 

only considers adding weight to the higher levels of the tree 

without considering the differences in importance of nodes.  

 

III. ALGORITHM 

We propose a novel schema-based matching algorithm to 

solve the combinatorial optimization problem of matching 

atomic nodes between two schemas. Our approach finds the 

globally optimal set of pair-wise matchings between atomic 

nodes in a principled manner by mathematical programming. 

We obtain the semantic similarities between words using 

WordNet. 

A. Matching algorithm overview 

The matching algorithm takes two schemas as input and 

identifies the set of matching pairs of all atomic nodes with 

the highest semantic similarity among all possible sets of 

pair-wise matchings. Fig. 1 illustrates the matching process 

of our approach for two input schemas, S1 and S2. 

The algorithm breaks the complex combinatorial 

optimization problem into four matching stages: tree-to-tree 

(between the sets of atomic nodes of the two schemas), 

path-to-path (between the sets of nodes on the paths of two 

atomic nodes), node-to-node (between sets of words in the 

labels of two nodes), and word-to-word (between multiple 

senses of two words) matchings. As can be seen in Fig. 2, 

each stage works on a bipartite graph, consisting of two sets 

of vertices and a weight matrix between them, with the 

objective of finding the 1-to-1 matching between vertices in 

one set to the other with the highest combined weight. 

Therefore, we formulate these sub-problems as 

maximum-weighted bipartite graph matching problems [44]. 

Except for the word-to-word matching at the bottom stage, 

the weight matrix between edges for each stage is a similarity 

matrix calculated by the previous stage. For example, the 

similarity matrix for tree-to-tree matching stage is provided 

by path-to-path matching stage. The word-to-word matching 

stage uses WordNet to compute the semantic similarity 

between two words by identifying the optimal matching pairs 

for their respective senses. 

 

Figure 2.  Weighted bipartite graph modeling for different types of nodes in 

two labeled trees. 

Except for the path-to-path matching stage, optimal 

matching at each stage can be obtained according to the 

general Maximum-weighted Bipartite Matching algorithm 

(MBM) [45]. The path-to-path matching requires an 

additional ordering criterion [41] that path P1 includes most 

of the nodes of path P2 in the correct order as shown in Fig. 

2(b), and is called Ordered Maximum-weighted Bipartite 

Matching (OMBM) problem. Algorithms for solving the 

MBM and the OMBM problems are described in the 

following sections. 

B. Maximum-weighted bipartite matching algorithm 

Tree-to-tree, node-to-node, and word-to-word matching 

stages can be formulated as the general weighted bipartite 

graph matching problems. Let G be a weighted bipartite 

graph with two sets of vertices, 1 2{ , ,..., }mU u u u=  and 

1 2{ , ,..., }nV v v v= , and the set of edges E. Edge eij in the graph 

connects the vertices ui and vj whose weight wij is given in the 

weight matrix W. Vertices of the same set are not connected. 

A matching M of graph G is a subset of E such that no two 

P
1
 P

2

N
1

N
2

EP 

EN

(b) path-to-path

(c) node-to-node

T
1

T
2

P1

P2 

(a) tree-to-tree

ET

W
1
 W

2

Ew

(d) word-to-word

atomic 

node 

node 

word 

word sense



International Journal of Trade, Economics and Finance, Vol.2, No.1, February, 2011 

2010-023X 

 

 

 

82

edges in M share a common vertex. In other words, the 

matching M consists of a set of pair-wise matchings of 1-to-1 

cardinality. The maximum-weighted bipartite matching is a 

matching whose sum of the weights of the edges is the 

highest among all possible sets of pair-wise matchings. The 

optimal matching M can be found by integer programming 

defined below: 

Maximize: 

ij

ij ij

e E

w x
∈

∑  (5) 

subject to:  

1

1, 1, ,
m

ij

i

x j V
=

= ∀ =∑ "
, 1

1, 1, ,
n

ij

j

x i U
=

= ∀ =∑ "
,   

{0,1}ijx ∈
, where ijx

 is 1 if 
Meij ∈

 and 0 otherwise. 

Because integer programming is typically NP-hard (i.e., 

harder than a nondeterministic polynomial-time problem and 

for worst case with running time exponential to the problem 

size) [46], we approximate it by a simple greedy algorithm as 

follows: 

 

Figure 3.  Greedy algorithm for maximum-weighted bipartite matching. 

The greedy algorithm simply sorts the weight matrix W in 

descending order and at each iteration it chooses an edge with 

the highest weight. The initial weight matrix W is calculated 

by the previous matching stage. The chosen edge will be the 

matching candidate if it shares no vertex with edges in M. 

This process is repeated until there is no vertex to be matched 

in either U or V. The algorithm returns the optimal matching 

M and the average weight of all edges in M as the measure of 

similarity between U and V. In this greedy algorithm, the 

most expensive step is the sorting of the weight matrix W of 

size | | | |U V× . We use a quicksort algorithm [47] that takes 

( log( ))O k k  to sort k items. Thus, the complexity of this 

greedy algorithm is (| || | log(| || |))O U V U V . 

C. Ordered maximum-weighted bipartite matching 

algorithm 

Some have suggested using the longest common sequence 

(LCS) to address the ordering criterion in the path-to-path 

matching [41]–[43]. However, none of the suggestions 

utilizes the semantic similarities of the nodes on the two path 

contexts. To consider semantic similarities of the nodes, we 

have developed the ordered maximum-weighted bipartite 

matching algorithm based on dynamic programming. 

Let G be a weighted bipartite graph with two ordered sets 

of vertices 1 2{ , ,..., }mU u u u=  and 1 2{ , ,..., }nV v v v= , and the 

set of edge E. The core algorithm, OMBM (U, V), finds the 

optimal matching M between U and V by recursively 

partitioning it into smaller sub-problems until the solution 

becomes trivial. 

For a sequence S=s1s2…sd, a sequence shortened from the 

end is denoted Sk=s1s2…sk, where k d≤ . We call Sk the prefix 

of S. The prefixes of U are U1, U2 ,…, Um, and the prefixes of 

V are V1,V2,…Vn. Let OMBM (Ui, Vj) be the function that 

finds the optimal matching of prefixes Ui and Vj. This 

problem can be reduced to three alternative simpler 

sub-problems with shortened prefixes and returns the one 

with maximum sum of weights: 

1) ui and vj match each other. Then, the optimal matching 

for Ui and Vj can be formed by attaching edge eij to the 

optimal matching of two shortend sequences 
1iU −
 and 

1jV − , denoted (OMBM (Ui-1, Vj-1), eij). 

2) ui and vj do not match each other. Then, either of them 

can be removed to shorten one of the matching 

sequences and OMBM (Ui, Vj) is reduced to either 

OMBM (Ui-1, Vj) or OMBM (Ui, Vj-1). 

Thus OMBM (Ui, Vj) can be computed by the following 

recursive function:  

( )

1

1

1 1

( , ),
( , )

( , ),

( , ),

i j

i j

i j

i j ij

if  i = 0 or j = 0

OMBM U V
OMBM U V

max OMBM U V otherwise

OMBM U V e

−

−

− −

∅⎧
⎪

⎛ ⎞⎪⎪ ⎜ ⎟= ⎨ ⎜ ⎟⎪ ⎜ ⎟⎪ ⎜ ⎟⎪ ⎝ ⎠⎩

, (6) 

where the function max() returns the optimal matching 

among the three matchings from the sub-problems based on 

the similarity scores returned by OMBM; it returns empty if 

either Ui or Vj is reduced to nill (i = 0 or j = 0). The similarity 

score calculated by OMBM (Ui, Vj), denoted simOBMB (Ui, Vj), 

is the average weight of all edges in the matching as follows: 

( )
( ),

2
,

ij i j

OMBM i j ij
e OMBM U V

sim U V w
i j∈

= Σ ⋅
+

.  (7) 

The optimal matching M of two sets of ordered vertices U 

and V, |U| = m, |V| = n, is then computed as: 

( ) ( ), ,m nM OMBM U V OMBM U V= = .  (8) 

The similarity score of M, denoted simOBMB (U, V), is the 

average weights of all edges in M: 

( )
2

,
| | | |ij

OMBM ij
e M

sim U V w
U V∈

= Σ ⋅
+

.  (9) 

The example below shows how the optimal matching and 

similarity score between two simple path contexts is 

calculated by (8) and (9). 

Example 1: Consider two path contexts PO / BillTo / Zip 

and PurchaseOrder / Customer / Address / Postal. Let P1 and 

P2 be the set of nodes on these two paths: 

1 { , , }P O B illT o Z ipP n n n= , and  

2 { , , , }PurchaseOrder Customer Address PostalP n n n n= . 

Suppose that the similarity scores between nodes are as 

follows: 

( ), 1.0N

PO PurchaseOrdersim n n = , ( ), 0.6N

BillTo Customersim n n = ,   

( ), 0.4N

BillTo Addresssim n n = , ( ), 1.0N

Zip Postalsim n n = . 

The similarities between all other pairs are 0. By (6), (7), 

and (8), the OMBM (P1, P2) between the two paths returns 

the optimal matching  

{( , ), ( , ), ( , )}.PO PurchaseOrder BillTo Customer Zip PostalM n n n n n n=  

By (9), the similarity score is 

algorithm MBM-greedy (U,V,W) 

    m=|U|, n=|V|; M = ∅;     

    sort W; 

    while (|U|>0 and |V|>0) 
Choose vertices u and v connected with an edge e that has the 
highest weight w in the weight matrix W; 

if edges in M share neither u nor v  

     then M := M ∪{e}, U := U-{u}, V := V-{v}, wsum := wsum + w;
W [u,v] := 0; 

    sim := 2 * wsum / (m + n); 

return {M sim};
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( ) ( ) ( )( )1, 2 1.0 0.6 1.0 2 / 3 4 0.74.OMBMsim P P = + + × + =  

To efficiently execute the algorithm, we use a bottom-up 

approach [13]. The algorithm is as follows:  

 

Figure 4.  Bottom-up dynamic programming algorithm for ordered 

maximum-weighted bipartite matching. 

This algorithm starts from the simplest matching between 

U1 and V1 and continues to more complex matching problems. 

The calculated similarity scores for the optimal matchings 

(average weights by (7)) are stored in a two dimensional 

array A[i,j] in Fig. 4 for future use to avoid repeated 

calculations of smaller problems. The weights of W are 

calculated by the previous matching stage (i.e., node-to-node 

matching stage). The complexity is only O (|U||V|), i.e., 

linear to the size of table A. 

The following algorithm deals with a simple matter of 

finding the matching between two sets of nodes U and V that 

is identified by bottom-up dynamic programming algorithm 

of Fig. 4. 

 

Figure 5.  Dynamic programming algorithm for ordered 

maximum-weighted bipartite matching. 

How this bottom-up dynamic programming algorithm 

works is illustrated below using the same example defined in 

Example 1.  

Example 2: Consider P1 and P2 for the two path contexts 

defined in Example 1. The weight matrix W is initialized by 

the similarity scores between nodes as shown below: 

TABLE I.  AN EXAMPLE OF WEIGHT MATRIX 

W 
3 2 1 

POn  
BillTon  

Zipn  

4 PurchaseOrdern  1.0 0.0 0.0 

3 Customern  0.0 0.6 0.0 

2 Addressn  0.0 0.4 0.0 

1 Postaln  0.0 0.0 1.0 

The array A[] for calculating the matching similarity scores 

can be represented as follows.  

TABLE II.  AN EXAMPLE OF MATCHING SIMILARITY SCORE TABLE FOR 

BOTTOM-UP APPROACH 

A 3 2 1 0

4 1.0+1.6=2.6 1.6 1.0 0.0

3 1.6 0.6+1.0=1.6 1.0 0.0

2 1.6 0.4+1.0=1.4 1.0 0.0

1 1.0 1.0 1.0 0.0

0 0.0 0.0 0.0 0.0

Note that values in the array are not normalized. According 

to the algorithm OMBM-A () in Fig. 4, the value of A[i,j] is 

obtained from the maximum of the three values: A[i-1,j], 

A[i,j-1], and A[i-1,j-1] + W[i,j], where 1 3i≤ ≤  and 

1 4j≤ ≤ . The initial values of A[] set to zero. 

The calculation starts from the simplest matching array 

A[1,1]. The algorithm compares three values: A[1,0] = 0, 

A[0,1] = 0, and A[0,0] + W[1,1] = 1.0 and the maximum score 

1.0 is chosen. To find the optimal matching by the ordered 

maximum weighted bipartite matching algorithm, look at the 

first entry A[3,4]. It is calculated by the maximum value 

among three matching scores: A[2,4] = 1.6, A[3,3] = 1.6, and 

A[2,3] + W[3,4] = 1.6 + 1.0 = 2.6. The maximum value is 2.6, 

telling us the normalized similarity by the average length of 

two paths is 2.6 (2 /(3 4)) 0.74,× + =  which is the same as 

what was calculated in Example 1.  

According to algorithm OMBM () in Fig. 5, the optimal 

matching result can be obtained by following the traces to 

reach the first entity A[3,4]. As highlighted in Table II, the 

entities used to calculate A[3,4] are A[3,4], A[2,3], A[1,2], 

and A[1,1]. Then, the entities added their similarity scores are 

selected as matching: A[3,4], A[2,3], and A[1,1], which lead 

to the optimal matching 

{( , ), ( , ), ( , )}.PO PurchaseOrder BillTo Customer Zip PostalM n n n n n n=  

Algorithm OMBM-A and OMBM are further enhanced by 

considering the differences in importance for the individual 

nodes measured by their information contents. We collect 

each node’s frequency-of-occurrence in the schema trees and 

compute the information contents by (1). Fig. 6 shows the 

modified algorithm of OMBM-A. 

 

Figure 6.  Algorithm enhanced by information contents. 

Algorithm OMBM-A-IC gives more weights to 

higher-level nodes because lower-level nodes are typically 

generic entities that appear widely as the descendants of the 

higher-level nodes. In addition, it also considers the 

differences in importance of nodes at the same level. The 

complexity of this algorithm is still O (|U||V|). 

D. Overall schema matching algorithm 

Fig. 7 gives the algorithm for overall schema matching and 

how each stage obtains the weight matrix by calling the 

optimization algorithm for the previous stage. 

The algorithm views matching two schema trees as 

matching two sets of atomic nodes with their respective 

path-contexts. Each path consists of a sequence of nodes 

along the path from the root to the leaf of the schema tree. 

Each node represents either an element or an attribute named 

algorithm OMBM-A-IC (U,V,W) 

    for i from 1 to |U| 
        ic-sum := ic-sum + ic(ui); 

    for j from 1 to |V| 
        ic-sum := ic-sum + ic(vj); 

    for i from 1 to |U| 

        for j from 1 to |V|  
            ic_w = W [ui, vj]*(ic(ui)+ic(vj)); 
            A[i,j] := maximum of A[i-1,j], A[i,j-1], and A[i-1,j-1] + ic_w; 
    sim := A[|U|,|V|]/ ic-sum; 

return {A, sim};

algorithm OMBM (U,V,W) 

M = ∅;     
{A, sim} := OMBM-A (U,V,W); 
    i := |U|, j :=|V|; 

    while i > 0 and j > 0 

        if A[i,j] equal to A[i-1,j] then i--; 

             elseif A[i,j] equal to A[i,j-1] then j--; 

                 else M := M ∪ {ei,j}, i--, j--; 

    return {M, sim}; 

algorithm OMBM-A (U,V,W) 

    for i from 1 to |U| 

        for j from 1 to |V| 
              A [i,j] := maximum of A[i-1,j], A[i,j-1], and A[i-1,j-1]+W [i,j]; 
    sim := 2*A[|U|,|V|] / (|U| + |V|); 

    return {A, sim}; 
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by a label of English word or concatenation of words or their 

abbreviations. To compute semantics similarities between 

words, we analyze optimal pair-wised matchings between 

multiple senses of two words.  

 

Figure 7.  Overall schema matching algorithm. 

The word-to-word matching algorithm uses two semantic 

similarity measure functions: word-sense-sim() based on 

WordNet taxonomy and word-desc-sim() based on textual 

description. In WordNet, nouns are organized into 

taxonomies in which each node has a set of synonyms (a 

synset), each of which representing a single sense [24]. If a 

word has multiple senses, it will appear in multiple synsets at 

various locations in the taxonomy. To compute the semantic 

similarity between two words (two sets of senses), we use the 

MBM-greedy () algorithm with the input of two set of senses 

for words W1 and W2, respectively, and the similarities 

between the senses are calculated by (4). 

If a word does not exist in WordNet, we extract the textual 

description of a given word from the internet and then use 

string-similarity measures, such as the cosine similarity [18], 

to calculate the similarity between the two textual 

descriptions of the two words 

 

IV. EXPERIMENTS AND RESULTS 

We have implemented a prototype system of our approach 

based on Java and Java WordNet Library (JWNL) [48] for 

experimental validation. In the experiments, we used five real 

world XML schemas for purchase orders (i.e., CIDX, 

Apertum, Excel, Norris, and Paragon) from [49], [50]. Table 

III summarizes the characteristics of those XML schemas. 

TABLE III.  CHARACTERISTICS OF PO XML SCHEMAS 

Schemas 
CID

X 
Apertum Excel 

Norri

s 
Paragon

max depth 4 5 4 4 6 

# nodes 40 145 55 65 80 

Schemas 
CID

X 
Apertum Excel 

Norri

s 
Paragon

# leaf nodes 33 116 42 54 68 

In the experiment, as suggested in [50], we compute the 

tree-to-tree similarity of the ten pairs of the five XML 

schemas. Then for each schema, we accept a matching to any 

of the other four if the similarity score is above a fixed 

threshold 0.6. To evaluate the quality of our match result, we 

used several performance metrics including Precision, Recall, 

F-measure, and Overall [50], [51], against the results from 

manual matching [50]. These measures are then compared 

with the performances of other approaches for the same 

setting [35], [43], [50]. Note that the Overall measure, 

proposed by [50] to estimate the post-match efforts, varies in 

[-1,1] and other three vary in [0,1]. 

Precision, Recall, F-measure, and Overall for our results 

are 0.85, 0.85, 0.85, and 0.69. To increase the precision, we 

used a relative threshold which is chosen as the similarity of 

the matching with the largest gap to the next best matching, 

among matching candidates with similarities ranging from 

0.5 to 0.6. Fig. 8 shows the performance analysis of the 

matching result that our solution produced. 

The experimental results show that our matching 

performances of average Precision, Recall, F-measure, and 

Overall are 0.93, 0.83, 0.88, and 0.77, respectively. 

Comparing to the previous results that use a fixed threshold, 

the Recall is slightly decreased while the Precision is 

significantly increased. The relative threshold also helps to 

increase F-measure and Overall. For comparison purposes, 

the average scores of performance metrics by some other 

methods are given in Fig. 9. 

0
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Figure 8.  Performance analysis. 

0.93 0.91

0.74

0.83 0.83

0.68

0.88 0.87

0.710.77 0.75

0.44

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Our solution Thang Cupid

Precision

Recall

F-measure

Overall

 
(a) Thang and Cupid 

algorithm T2T-matching (T1, T2) 

    for i from 1 to |T1| 

        for j from 1 to |T2| 
            t2t-smatix[i,j] :=  
                 P2P-matching (path of T1’s ith atom, path of T2’s jth atom); 

    return MBM-greedy (T1’s atoms, T2’s atoms, t2t-smatix); 
 

algorithm P2P-matching (P1, P2) 

    for i from 1 to |P1| 

        for j from 1 to |P2| 
            p2p-smatix[i,j] := N2N-matching (P1’s ith node, P2’s jth node); 

    return OMWM-IC (P1’s nodes, P2’s nodes, p2p-smatix); 
 

algorithm N2N-matching (N1, N2) 

    for i from 1 to |N1| 

        for j from 1 to |N2| 
            n2n-smatix[i,j] := W2W-matching (N1’s ith word, N2’s jth word); 

    return MWM-greedy (N1’s words, N2’s words, n2n-smatix); 
 

algorithm W2W-matching (W1, W2) 

    if wordnet definitions for W1 and W2 exists then 

        for i from 1 to |W1| 

            for j from 1 to |W2| 
                w2w-smatix[i,j] := word-sense-sim (W1’s ith sense, W2’s jth 

sense); 

        return MWM-greedy (W1’s senses, W2’s senses, w2w-smatix); 
    else  

d d ( )
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(b) COMA: matcher combinations 

Figure 9.  Performance analysis. 

The first comparison, as illustrated in Fig. 9(a), is with 

Thang [43] who proposed an XML schema matching 

solution that combines linguistic, data type, and path-context 

similarity measures. He also implemented the Cupid [35] 

algorithm for comparison purpose. We compared our result 

to both algorithms. In general, all performance metrics of our 

approach are slightly better than Thang’s and significantly 

better than Cupid’s. 

The second comparison is with COMA (COmbination 

MAtch) [50], which used various ways for combining 

different matchers. Because COMA only provides 

performance graphs without the specific scores as shown in 

Fig. 9(b), it is difficult to compare the performances with our 

result precisely. However, comparison between Fig. 8 and 

Fig. 9(b) shows that our result is, in general, at least equal to 

or slightly better than COMA’s results even if some of their 

matchers used the manual matching called SchemaM [50]. 

 

V. CONCLUSIONS 

In this paper, we have described a solution to identify 

semantic-based optimal XML schema matching using 

mathematical programming. This solution identifies the 

optimal matching between two XML schemas on the 

assumption that the tree-to-tree matching problem can be 

globally optimized by reducing it to simpler problems, such 

as path-to-path, node-to-node, and word-to-word matching. 

We have implemented a prototype system for our solution 

and conducted the experiments with actual industry XML 

schemas. We compared our result to some other XML 

schema matching approaches. The results were encouraging. 

The average matching performances of Precision, Recall, 

F-measure, and Overall were 0.93, 0.83, 0.88, and 0.77, 

which are better than or at least equal to other approaches’. 

Although our approach primarily targets the XML schema 

matching problem, the solution can be applied to other 

matching problems - such as XML instance matching if the 

instances can be represented as labeled trees. Our solution is 

limited to the assumptions that only 1-to-1 matching 

cardinality is considered and that schema designers correctly 

use the English terminologies when labeling the 

elements/attributes in the schemas. These limitations call for 

further research. Other directions of research include 

methods to improve the performance by utilizing domain 

specific terminology and taxonomy, ontologies with formally 

defined concept semantics, and user feedback.  

DISCLAIMER 

Certain commercial software products are identified in this 

paper. These products were used only for demonstration 

purposes. This use does not imply approval or endorsement 

by National Institute of Standards and Technology (NIST), 

nor does it imply that these products are necessarily the best 

available for the purpose. 
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