
International Journal of Trade, Economics and Finance, Vol.2, No.1, February, 2011

2010-023X

78

Abstract—We propose a novel solution for semantic-based

XML schema matching, taking a mathematical programming

approach. This method identifies the globally optimal solution

for the problem of matching leaf nodes between two XML

schema trees by reducing the tree-to-tree matching problem to

simpler problems of path-to-path, node-to-node, and

word-to-word matching. We formulate these matching

problems as maximum-weighted bipartite graph matching

problems with different constraints, which are solved by

different mathematical programming techniques, including

integer programming and dynamic programming. Solutions to

simpler problems provide weights for the next stage until the

optimal tree-to-tree matching solution is obtained. The

effectiveness of this approach has been verified and

demonstrated by computer experiments.

Index Terms—E-business, XML schema matching,

maximum-weighted bipartite graph, semantic similarity,

mathematical programming.

I. INTRODUCTION

Over the past two decades, the eXtensible Markup

Language (XML) [1] and XML schemas [2] have been

widely used in the electronic business (e-Business)

transactions among enterprises to exchange business

documents with their partners (e.g., suppliers and customers

in the supply chain) [3]–[5]. Many enterprises and

organizations have defined their own XML schemas to

describe the structure and content of the business documents

to be used in the transactions. Many organizations have also

published standard XML schemas to be shared in the

transactions within specific industry domains (e.g.,

e-manufacturing, e-government, and e-health industries)

[6]–[8].

The popularity of XML leads to an integration problem as

different enterprises or organizations often choose different

XML representations for the same or similar concepts [4], [5].

One of the most critical steps to achieving the seamless

exchange of information between heterogeneous e-Business

 Manuscript received January 30, 2011. This work was supported in part

by NIST award 70NANB9H9145.

Jaewook Kim is with the Department of Computer Science and Electrical

Engineering, University of Maryland, Baltimore County, Baltimore, MD

21250 USA (e-mail: jaewook2@umbc.edu).

Yun Peng is with the Department of Computer Science and Electrical

Engineering, University of Maryland, Baltimore County, Baltimore, MD

21250 USA (e-mail: ypeng@umbc.edu).

Nenad Ivezic is with the National Institute of Standards and Technology,

Gaithersburg, MD 20899 USA (e-mail: nivezic@nist.gov).

Junho Shin is with the National Institute of Standards and Technology,

Gaithersburg, MD 20899 USA (e-mail: junho.shin@nist.gov).

systems is schema matching. Schema matching is a process

that takes as input two heterogeneous schemas and possibly

some auxiliary information, and returns a set of dependencies,

so called mappings that identify semantically related

elements and attributes [9]. This process has largely been

manual and is known to be costly and error-prone [10], [11].

An XML schema defines a set of discrete elements and

attributes for a class of XML documents, aiming at defining

the structure, content and semantics of XML documents [2].

XML documents that attempt to adhere to an XML schema

are said to be instances of that schema (i.e., XML instances).

XML schemas or instances are typically viewed as labeled

trees (i.e., rooted acyclic graphs) where each node represents

a data element or an attribute named by a label of English

word or concatenation of words or their abbreviations. Most

schema matching approaches analyze the similarity between

these labeled trees based on their syntactic and structural

information [9], [10]. For the structural similarities, they

analyze the differences in hierarchical tree structures. For

semantic similarities, they typically analyze the meaning

(semantics) of nodes in the labeled tree. Those semantics are

often obtained by lexical analysis of English words in the

labels of nodes.

XML schemas can be classified into two types according

to the types of the e-Business standard schemas. The first

type is the component schema. This type of schema contains

a set of global type components that can either be extended or

reused by other components (e.g., OAGIS UBL Common

Core Component schema [12]). The term “components” here

refers to either elements or types [2]. Component schemas

can be thought of as a collection of labeled trees, each of

which corresponds to a global type component. The second

type of XML schemas is the document schema. It defines the

syntax and structure of a single global type element for a

class of valid XML instance (e.g., Purchase Order Document

Schema). The document schema can reuse or extend the

components defined by the component schemas. It can be

viewed as a single labeled tree.

The component schema matching primarily seeks to

identify the relations between two sets of labeled trees (i.e.,

two sets of global type components), whereas the document

schema matching identifies relations between nodes

(elements or attributes) of two labeled trees (i.e., two

schemas).

The document schema matching problems can be further

classified according to their purposes. If two document

schemas need to be fully matched to create an integrated

schema, every node in one schema should be matched to

some nodes in the other schema. On the other hand, if the

An Optimization Approach for Semantic-based

XML Schema Matching

Jaewook Kim, Yun Peng, Nenad Ivezic, and Junho Shin

International Journal of Trade, Economics and Finance, Vol.2, No.1, February, 2011

2010-023X

79

matching is to determine how to transform one instance into

another, only leaf nodes in the schema trees need to be

matched. The leaf nodes are also called atomic nodes because

it cannot be further decomposed. In this paper we focus on

the latter which identifies matching between all atomic nodes

of two schemas or instances based on their semantics

(meaning of nodes). We call this problem tree-to-tree

matching as it attempts to matching all atomic nodes between

two schema trees. Matching between those atomic nodes

helps to determine how a certain value in one XML instance

can be transformed to certain value of the other for successful

exchange of information. Also, we only consider pair-wise

matchings of 1-to-1 cardinality (e.g., any atomic node in the

source schema can match no more than one atomic node in

the target schema).

We propose new innovative techniques to address two

challenging problems in this type of schema matching. First,

due to synonyms (different words meaning the same thing)

and multi-senses (one word having different meanings in

different contexts) found in natural languages, the meaning

of an atomic node cannot be determined solely by the words

in its label. Although XML does not provide means to

formally define the semantics, the semantic ambiguity can be

reduced by contextual information such as the labels of its

neighboring nodes. In this paper, we concentrate on one type

of context for an atomic node: the nodes along the path from

the root to the leaf in the schema tree.

Second, it is difficult to correctly identify the best set of

matching pairs for all atomic nodes between two schema

trees. This is because a leaf in one tree may match more than

one leaf in the other tree (with different semantic similarities)

and best-matching pairs identified in isolation do not

necessarily form the globally optimal set of matchings for all

atomic nodes. We propose to use mathematical programming

techniques to solve this combinatorial optimization problem.

To further reduce the computational complexity, we propose

to decompose the global problem into simpler matching

problems such as path-to-path, node-to-node, and

word-to-word matching. We formulate the sequence of

matching problems as maximum-weighted bipartite matching

problems with different sets of constraints. We solve these

optimization problems by different mathematical

programming techniques, including integer programming

[13] and dynamic programming [14]. Solutions to simpler

problems provide weights for the next stage until the optimal

tree-to-tree matching is obtained.

The remainder of the paper is organized as follows.

Section II provides a brief survey of the related works. The

detailed algorithms of the proposed approach are described in

Sections III. Section IV reports the experiments and results.

Section V concludes with the directions for future research.

II. RELATED WORKS

Many schema matching methods have been proposed [9],

[10]. Typically, these methods first attempt to identify

semantic similarity between the elements of two schemas. So

our survey starts with the existing semantic similarity

techniques that have been used to assist in matching between

two schemas.

A. Semantic similarity techniques

To compute the semantic similarity, string-based similarity

metric is commonly used to analyze the linguistic context of

names and name descriptions of schema entities. There are a

variety of string-based similarity metrics. Hamming distance

is one of the simplest metrics, which measures between two

strings of equal length the minimum number of substitutions

required to change one string into the other [15]. Levenshtein

distance, often called edit distance, provides an extended

version of hamming distance by measuring the amount of

difference between two string sequences [16]. Jaccard

similarity coefficient [17], a well-known statistical method

for similarity measure between two sets, is defined as the size

of the intersection divided by the size of the union of the two

sets: (,) | | / | |J A B A B A B= ∩ ∪ . Cosine coefficient [18] is a

common vector space similarity metric similar to Jaccard

coefficient in which the input string is transformed into

vector space so that the Euclidean cosine rule [19] can be

used to determine similarity. N-gram (q-gram) [20], [21] can

be also used to determine similarity. A string-distance can be

measured by counting the number of the occurrences of

different n-grams, i.e., the substrings of length n, in the two

strings. The more similar the strings are, the more n-gram

they will have in common. [22].

The string-based similarity metrics can be enhanced using

natural language preprocessing techniques for the input

string, such as tokenization, lemmatization, and elimination

[23]. To further enhance the string-based metrics, document

corpus resources can be utilized for more accurate and less

ambiguous semantics (e.g., synonyms or hyponyms) for

words in the node labels. One of the important resources is

the lexical taxonomy among the words (e.g., parents, children,

ancestor, and descendant relationships). Common knowledge

corpora, such as WordNet [24] and domain-specific corpora,

can be used to help to determine the meaning of the words.

Based on those corpora, several methods have been proposed

[25], [26].

A corpus also provides statistical information related to the

importance of words and the relationships between words.

The information content (IC)-based metric was proposed to

utilize this statistical information [27]–[29]. This approach

measures the similarity between two entities – two words,

two objects, or two structures – A and B based on how much

information is needed to describe (,),common A B the

commonality between them. Examples of commonality

include the features or hypernyms the two words share.

According to information theory [29], entities that appear

widely in many objects carry less information than rarely

appearing ones, and thus are considered less important

insemantic similarity measures. In other words, more specific

entities carry more information than generic and common

entities. Therefore, the more specific the (,)common A B is,

the more similar A and B will be. The information content of

a concept or word C is defined as [29]:

)(log)(CPCI −= . (1)

The (,)common A B can then be measured by the

information content of the most specific common hypernyms

International Journal of Trade, Economics and Finance, Vol.2, No.1, February, 2011

2010-023X

80

of A and B. Applying this approach to tree-like IS-A

taxonomies [29], one can measure the similarity between A

and B as

(,) (,)
(,) max () max (log ()),IC

C S A B C S A B
sim A B I C P C

∈ ∈
= = − (2)

where S(A, B) is the set of all concepts that subsume both A

and B, I(C) is the information content of C, and P(C) is based

on the frequency of C in a corpus.

Lin [28] proposed a normalized information content based

measure. In a general form, this measure is defined as

((,))
(,) ,

((,))
I

I comman A B
sim A B

I description A B
= (3)

where (,)description A B is the sum of (,),common A B and

(,)difference A B .

For tree-like IS-A taxonomies, Lin also suggested:

2 log ()
(,) ,

log () log ()
IC

P C
sim A B

P A P B

⋅
=

+
 (4)

where C is the most specific subsumer of A and B with the

smallest prior probability and the probabilities can be

obtained according to the frequencies in a corpus. Equation

(4) can be seen as a normalized version of (2).

Information contents of words or concepts can also be used

as their weights when computing composite similarity

measure between groups of words.

Based on these semantic similarity techniques, many

schema matching methods have been developed [9], [10]. We

now look at the state of the art schema matching approaches.

B. The state of the art schema matching approaches

Several hybrid and composite matching approaches have

been proposed recently. Reference [30] proposed a hybrid

matching approach for component schema matching, called

layered semantic similarity metrics. To compute the semantic

similarity between two global data elements defined in two

XML schemas, this approach divides the tree structure of

each schema into three layers (i.e., top, inner, and atom layers)

and applies different similarity metrics to these layers. The

layered approach is motivated by the fact that each layer

represents a unique aspect of the semantics of the global

element.

As an example of hybrid matching, the LSD system [31]

uses machine-learning techniques to match a pair of schemas.

The LSD is based on the combination of several match result

obtained by independent learners. The predictions of

individual learners are combined by a so called meta-learner,

which weighs the predictions from a learner according to its

accuracy shown during the training phrase.

For structure-level matching, a variety of graph-based

metrics have been proposed [9], [10]. Typically, these

metrics quantify the commonality between nodes by taking

into account the lexical and structural similarities of super

and sub-nodes (e.g., ancestors and descendents all the way to

leaf nodes).

Because most schemas can be viewed as labeled trees,

many matching algorithms have been developed based on

either top-down or bottom-up traversal techniques [10]. As

an example of the top-down approach, TransScm [32]

provides a schema matching method for data translation and

conversion based on the syntactic analysis of the structures.

The matching is performed node-by-node, considering 1-to-1

matching cardinality in a top-down fashion. Tess [33] is

another example of a top-down algorithm, which deals with

schema evolution. Tess takes definitions of the old and new

types and identifies pairs of types as matching candidates. It

then recursively tries to match their substructure in a

top-down fashion.

Similarity flooding (SF) [34] provides bottom-up

matching based on similarity propagation. This method

begins with a string-based comparison of the schema

elements and analyzes the structure-level relationships on the

assumption that if two nodes from two schemas are similar,

then their neighbors may also be somehow similar.

A generic schema matching method, called Cupid [35],

was proposed by Microsoft Research [36]. It is comprised of

element- and structure-level matching approaches, and it

computes the similarity with domain-specific thesauri as the

linguistic information resources. The Cupid algorithm

provides an effective algorithm to traverse the tree in a

combined bottom-up and top-down manner.

Figure 1. Matching algorithm overview.

Another effective bottom-up method, called S-Match [37],

follows a graph-based matching algorithm, which

decomposes the tree matching problem into a set of node

matching problems. Each node matching problem is

translated into a propositional formula, which can then be

efficiently resolved using state of the art propositional

S1

input

User feedback
Matching

candidates

Matching

result

matching

iteration

path matching

feedback
node matching

feedback

word matching

feedback
output

user interaction
(optional)

stage 3 stage 2 stage 1

Tree-to-Tree matching Path-to-Path matching Node-to-Node matching Word-to-Word matching

stage 4

S2

Schema

word sense word node atomic

nodes

International Journal of Trade, Economics and Finance, Vol.2, No.1, February, 2011

2010-023X

81

satisfiability deciders.

In general, top-down approaches are less expensive but

can be misled if the top-level schema structures are very

different [10]. On the other hand, bottom-up approaches take

a more comprehensive view [9]. However, existing

bottom-up methods identify optimal matches in an ad hock

manner without solid theoretical foundations.

Another group of graph-based metrics is based on

terminological taxonomy that can be applied to ‘IS-A’

hierarchies such as ontologies. The edge counting approach

is well-known traditional approach based on conceptual

distance in a taxonomy [38]. The principle of the edge

counting is simple and intuitive. It computes the shortest path

between two nodes in the taxonomy, presents the most

intuitive method to evaluate the semantic similarity in a

hierarchical taxonomy. Another taxonomy-based approach,

known as bounded path matching [39], takes two paths, with

links between classes defined by the hierarchical

relationships, compares terms and their positions along these

paths, and identifies similar terms.

To identify the matching between different paths, it is

common to compare the similarities of nodes that compose

these two paths. Work in [40] introduced the concept of the

path context coefficient (PCC) to capture the degree of

similarity for two paths. The algorithm, called LocalMatch,

finds the best 1-to-1 matching pair of elements within two

path contexts by summing up the linguistic similarities for all

of the matched elements. This solution can be inaccurate if

there are additional nodes within the path that were not

matched.

To find the optimal path similarity, [41] proposes criteria

for matching the paths between XML query and documents.

To calculate the similarity between two paths, [41] also

proposes a similarity score for each criterion and combines

them with the given weights. References [42], [43] apply

these criteria for the path similarity measure to the schema

matching solution. Work in [42] only considers identical

string matches between nodes, and [43] investigates further

to deal with the string-based similarities between nodes.

However, they do not utilize other semantic information such

as linguistic resources. In addition, their scoring algorithm

only considers adding weight to the higher levels of the tree

without considering the differences in importance of nodes.

III. ALGORITHM

We propose a novel schema-based matching algorithm to

solve the combinatorial optimization problem of matching

atomic nodes between two schemas. Our approach finds the

globally optimal set of pair-wise matchings between atomic

nodes in a principled manner by mathematical programming.

We obtain the semantic similarities between words using

WordNet.

A. Matching algorithm overview

The matching algorithm takes two schemas as input and

identifies the set of matching pairs of all atomic nodes with

the highest semantic similarity among all possible sets of

pair-wise matchings. Fig. 1 illustrates the matching process

of our approach for two input schemas, S1 and S2.

The algorithm breaks the complex combinatorial

optimization problem into four matching stages: tree-to-tree

(between the sets of atomic nodes of the two schemas),

path-to-path (between the sets of nodes on the paths of two

atomic nodes), node-to-node (between sets of words in the

labels of two nodes), and word-to-word (between multiple

senses of two words) matchings. As can be seen in Fig. 2,

each stage works on a bipartite graph, consisting of two sets

of vertices and a weight matrix between them, with the

objective of finding the 1-to-1 matching between vertices in

one set to the other with the highest combined weight.

Therefore, we formulate these sub-problems as

maximum-weighted bipartite graph matching problems [44].

Except for the word-to-word matching at the bottom stage,

the weight matrix between edges for each stage is a similarity

matrix calculated by the previous stage. For example, the

similarity matrix for tree-to-tree matching stage is provided

by path-to-path matching stage. The word-to-word matching

stage uses WordNet to compute the semantic similarity

between two words by identifying the optimal matching pairs

for their respective senses.

Figure 2. Weighted bipartite graph modeling for different types of nodes in

two labeled trees.

Except for the path-to-path matching stage, optimal

matching at each stage can be obtained according to the

general Maximum-weighted Bipartite Matching algorithm

(MBM) [45]. The path-to-path matching requires an

additional ordering criterion [41] that path P1 includes most

of the nodes of path P2 in the correct order as shown in Fig.

2(b), and is called Ordered Maximum-weighted Bipartite

Matching (OMBM) problem. Algorithms for solving the

MBM and the OMBM problems are described in the

following sections.

B. Maximum-weighted bipartite matching algorithm

Tree-to-tree, node-to-node, and word-to-word matching

stages can be formulated as the general weighted bipartite

graph matching problems. Let G be a weighted bipartite

graph with two sets of vertices, 1 2{ , ,..., }mU u u u= and

1 2{ , ,..., }nV v v v= , and the set of edges E. Edge eij in the graph

connects the vertices ui and vj whose weight wij is given in the

weight matrix W. Vertices of the same set are not connected.

A matching M of graph G is a subset of E such that no two

P
1
 P

2

N
1

N
2

EP

EN

(b) path-to-path

(c) node-to-node

T
1

T
2

P1

P2

(a) tree-to-tree

ET

W
1
 W

2

Ew

(d) word-to-word

atomic

node

node

word

word sense

International Journal of Trade, Economics and Finance, Vol.2, No.1, February, 2011

2010-023X

82

edges in M share a common vertex. In other words, the

matching M consists of a set of pair-wise matchings of 1-to-1

cardinality. The maximum-weighted bipartite matching is a

matching whose sum of the weights of the edges is the

highest among all possible sets of pair-wise matchings. The

optimal matching M can be found by integer programming

defined below:

Maximize:

ij

ij ij

e E

w x
∈

∑ (5)

subject to:

1

1, 1, ,
m

ij

i

x j V
=

= ∀ =∑ "
, 1

1, 1, ,
n

ij

j

x i U
=

= ∀ =∑ "
,

{0,1}ijx ∈
, where ijx

 is 1 if
Meij ∈

 and 0 otherwise.

Because integer programming is typically NP-hard (i.e.,

harder than a nondeterministic polynomial-time problem and

for worst case with running time exponential to the problem

size) [46], we approximate it by a simple greedy algorithm as

follows:

Figure 3. Greedy algorithm for maximum-weighted bipartite matching.

The greedy algorithm simply sorts the weight matrix W in

descending order and at each iteration it chooses an edge with

the highest weight. The initial weight matrix W is calculated

by the previous matching stage. The chosen edge will be the

matching candidate if it shares no vertex with edges in M.

This process is repeated until there is no vertex to be matched

in either U or V. The algorithm returns the optimal matching

M and the average weight of all edges in M as the measure of

similarity between U and V. In this greedy algorithm, the

most expensive step is the sorting of the weight matrix W of

size | | | |U V× . We use a quicksort algorithm [47] that takes

(log())O k k to sort k items. Thus, the complexity of this

greedy algorithm is (| || | log(| || |))O U V U V .

C. Ordered maximum-weighted bipartite matching

algorithm

Some have suggested using the longest common sequence

(LCS) to address the ordering criterion in the path-to-path

matching [41]–[43]. However, none of the suggestions

utilizes the semantic similarities of the nodes on the two path

contexts. To consider semantic similarities of the nodes, we

have developed the ordered maximum-weighted bipartite

matching algorithm based on dynamic programming.

Let G be a weighted bipartite graph with two ordered sets

of vertices 1 2{ , ,..., }mU u u u= and 1 2{ , ,..., }nV v v v= , and the

set of edge E. The core algorithm, OMBM (U, V), finds the

optimal matching M between U and V by recursively

partitioning it into smaller sub-problems until the solution

becomes trivial.

For a sequence S=s1s2…sd, a sequence shortened from the

end is denoted Sk=s1s2…sk, where k d≤ . We call Sk the prefix

of S. The prefixes of U are U1, U2 ,…, Um, and the prefixes of

V are V1,V2,…Vn. Let OMBM (Ui, Vj) be the function that

finds the optimal matching of prefixes Ui and Vj. This

problem can be reduced to three alternative simpler

sub-problems with shortened prefixes and returns the one

with maximum sum of weights:

1) ui and vj match each other. Then, the optimal matching

for Ui and Vj can be formed by attaching edge eij to the

optimal matching of two shortend sequences
1iU −
 and

1jV − , denoted (OMBM (Ui-1, Vj-1), eij).

2) ui and vj do not match each other. Then, either of them

can be removed to shorten one of the matching

sequences and OMBM (Ui, Vj) is reduced to either

OMBM (Ui-1, Vj) or OMBM (Ui, Vj-1).

Thus OMBM (Ui, Vj) can be computed by the following

recursive function:

()

1

1

1 1

(,),
(,)

(,),

(,),

i j

i j

i j

i j ij

if i = 0 or j = 0

OMBM U V
OMBM U V

max OMBM U V otherwise

OMBM U V e

−

−

− −

∅⎧
⎪

⎛ ⎞⎪⎪ ⎜ ⎟= ⎨ ⎜ ⎟⎪ ⎜ ⎟⎪ ⎜ ⎟⎪ ⎝ ⎠⎩

, (6)

where the function max() returns the optimal matching

among the three matchings from the sub-problems based on

the similarity scores returned by OMBM; it returns empty if

either Ui or Vj is reduced to nill (i = 0 or j = 0). The similarity

score calculated by OMBM (Ui, Vj), denoted simOBMB (Ui, Vj),

is the average weight of all edges in the matching as follows:

()
(),

2
,

ij i j

OMBM i j ij
e OMBM U V

sim U V w
i j∈

= Σ ⋅
+

. (7)

The optimal matching M of two sets of ordered vertices U

and V, |U| = m, |V| = n, is then computed as:

() (), ,m nM OMBM U V OMBM U V= = . (8)

The similarity score of M, denoted simOBMB (U, V), is the

average weights of all edges in M:

()
2

,
| | | |ij

OMBM ij
e M

sim U V w
U V∈

= Σ ⋅
+

. (9)

The example below shows how the optimal matching and

similarity score between two simple path contexts is

calculated by (8) and (9).

Example 1: Consider two path contexts PO / BillTo / Zip

and PurchaseOrder / Customer / Address / Postal. Let P1 and

P2 be the set of nodes on these two paths:

1 { , , }P O B illT o Z ipP n n n= , and

2 { , , , }PurchaseOrder Customer Address PostalP n n n n= .

Suppose that the similarity scores between nodes are as

follows:

(), 1.0N

PO PurchaseOrdersim n n = , (), 0.6N

BillTo Customersim n n = ,

(), 0.4N

BillTo Addresssim n n = , (), 1.0N

Zip Postalsim n n = .

The similarities between all other pairs are 0. By (6), (7),

and (8), the OMBM (P1, P2) between the two paths returns

the optimal matching

{(,), (,), (,)}.PO PurchaseOrder BillTo Customer Zip PostalM n n n n n n=

By (9), the similarity score is

algorithm MBM-greedy (U,V,W)

 m=|U|, n=|V|; M = ∅;

 sort W;

 while (|U|>0 and |V|>0)
Choose vertices u and v connected with an edge e that has the
highest weight w in the weight matrix W;

if edges in M share neither u nor v

 then M := M ∪{e}, U := U-{u}, V := V-{v}, wsum := wsum + w;
W [u,v] := 0;

 sim := 2 * wsum / (m + n);

return {M sim};

International Journal of Trade, Economics and Finance, Vol.2, No.1, February, 2011

2010-023X

83

() () ()()1, 2 1.0 0.6 1.0 2 / 3 4 0.74.OMBMsim P P = + + × + =

To efficiently execute the algorithm, we use a bottom-up

approach [13]. The algorithm is as follows:

Figure 4. Bottom-up dynamic programming algorithm for ordered

maximum-weighted bipartite matching.

This algorithm starts from the simplest matching between

U1 and V1 and continues to more complex matching problems.

The calculated similarity scores for the optimal matchings

(average weights by (7)) are stored in a two dimensional

array A[i,j] in Fig. 4 for future use to avoid repeated

calculations of smaller problems. The weights of W are

calculated by the previous matching stage (i.e., node-to-node

matching stage). The complexity is only O (|U||V|), i.e.,

linear to the size of table A.

The following algorithm deals with a simple matter of

finding the matching between two sets of nodes U and V that

is identified by bottom-up dynamic programming algorithm

of Fig. 4.

Figure 5. Dynamic programming algorithm for ordered

maximum-weighted bipartite matching.

How this bottom-up dynamic programming algorithm

works is illustrated below using the same example defined in

Example 1.

Example 2: Consider P1 and P2 for the two path contexts

defined in Example 1. The weight matrix W is initialized by

the similarity scores between nodes as shown below:

TABLE I. AN EXAMPLE OF WEIGHT MATRIX

W
3 2 1

POn
BillTon

Zipn

4 PurchaseOrdern 1.0 0.0 0.0

3 Customern 0.0 0.6 0.0

2 Addressn 0.0 0.4 0.0

1 Postaln 0.0 0.0 1.0

The array A[] for calculating the matching similarity scores

can be represented as follows.

TABLE II. AN EXAMPLE OF MATCHING SIMILARITY SCORE TABLE FOR

BOTTOM-UP APPROACH

A 3 2 1 0

4 1.0+1.6=2.6 1.6 1.0 0.0

3 1.6 0.6+1.0=1.6 1.0 0.0

2 1.6 0.4+1.0=1.4 1.0 0.0

1 1.0 1.0 1.0 0.0

0 0.0 0.0 0.0 0.0

Note that values in the array are not normalized. According

to the algorithm OMBM-A () in Fig. 4, the value of A[i,j] is

obtained from the maximum of the three values: A[i-1,j],

A[i,j-1], and A[i-1,j-1] + W[i,j], where 1 3i≤ ≤ and

1 4j≤ ≤ . The initial values of A[] set to zero.

The calculation starts from the simplest matching array

A[1,1]. The algorithm compares three values: A[1,0] = 0,

A[0,1] = 0, and A[0,0] + W[1,1] = 1.0 and the maximum score

1.0 is chosen. To find the optimal matching by the ordered

maximum weighted bipartite matching algorithm, look at the

first entry A[3,4]. It is calculated by the maximum value

among three matching scores: A[2,4] = 1.6, A[3,3] = 1.6, and

A[2,3] + W[3,4] = 1.6 + 1.0 = 2.6. The maximum value is 2.6,

telling us the normalized similarity by the average length of

two paths is 2.6 (2 /(3 4)) 0.74,× + = which is the same as

what was calculated in Example 1.

According to algorithm OMBM () in Fig. 5, the optimal

matching result can be obtained by following the traces to

reach the first entity A[3,4]. As highlighted in Table II, the

entities used to calculate A[3,4] are A[3,4], A[2,3], A[1,2],

and A[1,1]. Then, the entities added their similarity scores are

selected as matching: A[3,4], A[2,3], and A[1,1], which lead

to the optimal matching

{(,), (,), (,)}.PO PurchaseOrder BillTo Customer Zip PostalM n n n n n n=

Algorithm OMBM-A and OMBM are further enhanced by

considering the differences in importance for the individual

nodes measured by their information contents. We collect

each node’s frequency-of-occurrence in the schema trees and

compute the information contents by (1). Fig. 6 shows the

modified algorithm of OMBM-A.

Figure 6. Algorithm enhanced by information contents.

Algorithm OMBM-A-IC gives more weights to

higher-level nodes because lower-level nodes are typically

generic entities that appear widely as the descendants of the

higher-level nodes. In addition, it also considers the

differences in importance of nodes at the same level. The

complexity of this algorithm is still O (|U||V|).

D. Overall schema matching algorithm

Fig. 7 gives the algorithm for overall schema matching and

how each stage obtains the weight matrix by calling the

optimization algorithm for the previous stage.

The algorithm views matching two schema trees as

matching two sets of atomic nodes with their respective

path-contexts. Each path consists of a sequence of nodes

along the path from the root to the leaf of the schema tree.

Each node represents either an element or an attribute named

algorithm OMBM-A-IC (U,V,W)

 for i from 1 to |U|
 ic-sum := ic-sum + ic(ui);

 for j from 1 to |V|
 ic-sum := ic-sum + ic(vj);

 for i from 1 to |U|

 for j from 1 to |V|
 ic_w = W [ui, vj]*(ic(ui)+ic(vj));
 A[i,j] := maximum of A[i-1,j], A[i,j-1], and A[i-1,j-1] + ic_w;
 sim := A[|U|,|V|]/ ic-sum;

return {A, sim};

algorithm OMBM (U,V,W)

M = ∅;
{A, sim} := OMBM-A (U,V,W);
 i := |U|, j :=|V|;

 while i > 0 and j > 0

 if A[i,j] equal to A[i-1,j] then i--;

 elseif A[i,j] equal to A[i,j-1] then j--;

 else M := M ∪ {ei,j}, i--, j--;

 return {M, sim};

algorithm OMBM-A (U,V,W)

 for i from 1 to |U|

 for j from 1 to |V|
 A [i,j] := maximum of A[i-1,j], A[i,j-1], and A[i-1,j-1]+W [i,j];
 sim := 2*A[|U|,|V|] / (|U| + |V|);

 return {A, sim};

International Journal of Trade, Economics and Finance, Vol.2, No.1, February, 2011

2010-023X

84

by a label of English word or concatenation of words or their

abbreviations. To compute semantics similarities between

words, we analyze optimal pair-wised matchings between

multiple senses of two words.

Figure 7. Overall schema matching algorithm.

The word-to-word matching algorithm uses two semantic

similarity measure functions: word-sense-sim() based on

WordNet taxonomy and word-desc-sim() based on textual

description. In WordNet, nouns are organized into

taxonomies in which each node has a set of synonyms (a

synset), each of which representing a single sense [24]. If a

word has multiple senses, it will appear in multiple synsets at

various locations in the taxonomy. To compute the semantic

similarity between two words (two sets of senses), we use the

MBM-greedy () algorithm with the input of two set of senses

for words W1 and W2, respectively, and the similarities

between the senses are calculated by (4).

If a word does not exist in WordNet, we extract the textual

description of a given word from the internet and then use

string-similarity measures, such as the cosine similarity [18],

to calculate the similarity between the two textual

descriptions of the two words

IV. EXPERIMENTS AND RESULTS

We have implemented a prototype system of our approach

based on Java and Java WordNet Library (JWNL) [48] for

experimental validation. In the experiments, we used five real

world XML schemas for purchase orders (i.e., CIDX,

Apertum, Excel, Norris, and Paragon) from [49], [50]. Table

III summarizes the characteristics of those XML schemas.

TABLE III. CHARACTERISTICS OF PO XML SCHEMAS

Schemas
CID

X
Apertum Excel

Norri

s
Paragon

max depth 4 5 4 4 6

nodes 40 145 55 65 80

Schemas
CID

X
Apertum Excel

Norri

s
Paragon

leaf nodes 33 116 42 54 68

In the experiment, as suggested in [50], we compute the

tree-to-tree similarity of the ten pairs of the five XML

schemas. Then for each schema, we accept a matching to any

of the other four if the similarity score is above a fixed

threshold 0.6. To evaluate the quality of our match result, we

used several performance metrics including Precision, Recall,

F-measure, and Overall [50], [51], against the results from

manual matching [50]. These measures are then compared

with the performances of other approaches for the same

setting [35], [43], [50]. Note that the Overall measure,

proposed by [50] to estimate the post-match efforts, varies in

[-1,1] and other three vary in [0,1].

Precision, Recall, F-measure, and Overall for our results

are 0.85, 0.85, 0.85, and 0.69. To increase the precision, we

used a relative threshold which is chosen as the similarity of

the matching with the largest gap to the next best matching,

among matching candidates with similarities ranging from

0.5 to 0.6. Fig. 8 shows the performance analysis of the

matching result that our solution produced.

The experimental results show that our matching

performances of average Precision, Recall, F-measure, and

Overall are 0.93, 0.83, 0.88, and 0.77, respectively.

Comparing to the previous results that use a fixed threshold,

the Recall is slightly decreased while the Precision is

significantly increased. The relative threshold also helps to

increase F-measure and Overall. For comparison purposes,

the average scores of performance metrics by some other

methods are given in Fig. 9.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Precision

Recall

F-measure

Overall

Figure 8. Performance analysis.

0.93 0.91

0.74

0.83 0.83

0.68

0.88 0.87

0.710.77 0.75

0.44

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Our solution Thang Cupid

Precision

Recall

F-measure

Overall

(a) Thang and Cupid

algorithm T2T-matching (T1, T2)

 for i from 1 to |T1|

 for j from 1 to |T2|
 t2t-smatix[i,j] :=
 P2P-matching (path of T1’s ith atom, path of T2’s jth atom);

 return MBM-greedy (T1’s atoms, T2’s atoms, t2t-smatix);

algorithm P2P-matching (P1, P2)

 for i from 1 to |P1|

 for j from 1 to |P2|
 p2p-smatix[i,j] := N2N-matching (P1’s ith node, P2’s jth node);

 return OMWM-IC (P1’s nodes, P2’s nodes, p2p-smatix);

algorithm N2N-matching (N1, N2)

 for i from 1 to |N1|

 for j from 1 to |N2|
 n2n-smatix[i,j] := W2W-matching (N1’s ith word, N2’s jth word);

 return MWM-greedy (N1’s words, N2’s words, n2n-smatix);

algorithm W2W-matching (W1, W2)

 if wordnet definitions for W1 and W2 exists then

 for i from 1 to |W1|

 for j from 1 to |W2|
 w2w-smatix[i,j] := word-sense-sim (W1’s ith sense, W2’s jth

sense);

 return MWM-greedy (W1’s senses, W2’s senses, w2w-smatix);
 else

d d ()

International Journal of Trade, Economics and Finance, Vol.2, No.1, February, 2011

2010-023X

85

(b) COMA: matcher combinations

Figure 9. Performance analysis.

The first comparison, as illustrated in Fig. 9(a), is with

Thang [43] who proposed an XML schema matching

solution that combines linguistic, data type, and path-context

similarity measures. He also implemented the Cupid [35]

algorithm for comparison purpose. We compared our result

to both algorithms. In general, all performance metrics of our

approach are slightly better than Thang’s and significantly

better than Cupid’s.

The second comparison is with COMA (COmbination

MAtch) [50], which used various ways for combining

different matchers. Because COMA only provides

performance graphs without the specific scores as shown in

Fig. 9(b), it is difficult to compare the performances with our

result precisely. However, comparison between Fig. 8 and

Fig. 9(b) shows that our result is, in general, at least equal to

or slightly better than COMA’s results even if some of their

matchers used the manual matching called SchemaM [50].

V. CONCLUSIONS

In this paper, we have described a solution to identify

semantic-based optimal XML schema matching using

mathematical programming. This solution identifies the

optimal matching between two XML schemas on the

assumption that the tree-to-tree matching problem can be

globally optimized by reducing it to simpler problems, such

as path-to-path, node-to-node, and word-to-word matching.

We have implemented a prototype system for our solution

and conducted the experiments with actual industry XML

schemas. We compared our result to some other XML

schema matching approaches. The results were encouraging.

The average matching performances of Precision, Recall,

F-measure, and Overall were 0.93, 0.83, 0.88, and 0.77,

which are better than or at least equal to other approaches’.

Although our approach primarily targets the XML schema

matching problem, the solution can be applied to other

matching problems - such as XML instance matching if the

instances can be represented as labeled trees. Our solution is

limited to the assumptions that only 1-to-1 matching

cardinality is considered and that schema designers correctly

use the English terminologies when labeling the

elements/attributes in the schemas. These limitations call for

further research. Other directions of research include

methods to improve the performance by utilizing domain

specific terminology and taxonomy, ontologies with formally

defined concept semantics, and user feedback.

DISCLAIMER

Certain commercial software products are identified in this

paper. These products were used only for demonstration

purposes. This use does not imply approval or endorsement

by National Institute of Standards and Technology (NIST),

nor does it imply that these products are necessarily the best

available for the purpose.

REFERENCES

[1] W3.org “Extensible Markup Language (XML) 1.1 specification”.

Available: http://www.w3.org/TR/xml11/

[2] W3.org, “XML schema 1.1 specification”. Available:

http://www.w3.org/TR/xmlschema11-1/

[3] R. Kalakota, and M. Robinson, E-business: roadmap for Success,

Addison-Wesley, Reading, MA, 1999.

[4] J.M. Nurmilaakso and P. Kotinurmi, “A review of XML-based

supply-chain integration,” Production Planning and Control, vol. 15,

no. 6, Sep. 2004, pp. 608–621, doi: 10.1080/09537280412331283937.

[5] R. Skinstad, “Business Process Integration through XML”, Netfish

Technologies, 2000. Available:

http://www.infoloom.com/gcaconfs/WEB/paris2000/S10-03.HTM

[6] S.Y. Shim, V.S. Pendyala, M. Sundaram, and J.Z. Gao,

“Business-to-business e-commerce frameworks,” IEEE Computer, vol.

33, no. 10, Oct. 2000, pp. 40-47, doi: 10.1109/2.876291.

[7] B. Medjahed, B. Benatallah, A. Bouguettaya, A. Ngu, and A.

Elmagarmid, “Business-to-business interactions: issues and enabling

technologies,” VLDB Journal, vol. 12, no. 1, May 2003, pp. 59–85, doi:

10.1007/s00778-003-0087-z.

[8] C. Bussler, “B2B protocol standards and their role in semantic B2B

integration engines,” Bull Tech Comm Data Eng, vol. 24, no. 1, 2001,

pp. 3–11.

[9] P. Shvaiko, and J. Euzenat, “A survey of schema-based matching

approaches,” Journal on Data Semantics IV, LNCS 3730, 2005, pp.

146-171, doi: 10.1007/11603412_5.

[10] E. Rahm and P.A. Bernstein, “A survey of approaches to automatic

schema matching,” VLDB Journal, vol. 10, no. 4, 2001, pp. 334-350,

doi: 10.1007/s007780100057.

[11] A. Gal, “Why is schema matching tough and what can we do about it?,”

ACM Sigmod Record, vol. 35, no. 4, 2006, pp. 2-5. doi:

10.1145/1228268.1228269.

[12] B. Meadows, and L. Seaburg, “Universal Business Language (UBL)

1.0,” 2004. Available: http://docs.oasis-open.org/ubl/cd-UBL-1.0/

[13] K.H. Elster, Modern mathematical methods of optimization, Vch Pub.

1993, ISBN 3-05-501452-9.

[14] R.E. Bellman, Dynamic Programming, Princeton University Press,

Princeton, NJ, 1957, Republished 2003: Dover, ISBN 0486428095.

[15] R.W. Hamming, “Error detecting and error correcting codes,” Bell

System Technical Journal, vol. 29, no. 2, 1950, pp. 147–160,

MR0035935.

[16] V.I. Levenshtein, “Binary codes capable of correcting deletions,

insertions, and reversals PDF,” Soviet Physics Doklady, vol. 10, no. 8,

1966, pp. 707–710.

[17] C.J. Van Rijsbergen, Information retrieval (2nd ed)., London:

Butterworths, 1979.

[18] H.A. Sneath, “Then application of computers to taxonomy,” Journal of

General Microbiology, vol. 17, no. 1, 1957, pp. 201-226, doi:

10.1099/00221287-17-1-201.

[19] Euclid, Euclid's Elements, Sir Thomas Little Heath, New York, Dover,

1956.

[20] J. R. Ullmann, “A binary n-gram technique for automatic correction of

substitution, deletion, insertion and reversal errors in words,” The

Computer Journal, vol. 20, no. 2, 1977, pp. 141–147.

[21] E. Ukkonen, “Approximate string matching with q-grams and maximal

matches,” Theoretical Computer Science, vol. 92, no. 1, 1992, pp.

191-211.

[22] E. Sutinen and J. Tarhio, “On using q-gram locations in approximate

string matching,” In Proceedings of Third Annual European

Symposium on Algorithms (ESA’95), 1995, pp. 327–340.

[23] B. Jeong, “Machine learning-based semantic similarity measures to

assist discovery and reuse of data exchange XML schemas,” Ph.D.

thesis, Department of Industrial and Management Engineering, Pohang

University of Science and Technology, June 2006.

International Journal of Trade, Economics and Finance, Vol.2, No.1, February, 2011

2010-023X

86

[24] G.A. Miller, “WORDNET: a lexical database for English,”

Communications of ACM, vol. 38, no. 11, 1995, pp. 39-41. doi:

10.1145/219717.219748.

[25] P. Qin, Z. Lu, Y. Yan, and F. Wu, “A new measure of word semantic

similarity based on WordNet hierarchy and DAG theory,” In

Proceedings of International Conference on Web Information Systems

and Mining, 2009, pp. 181-185, doi: 10.1109/WISM.2009.44.

[26] D. Yang, and D.M.W. Powers, “Measuring semantic similarity in the

taxonomy of WordNet,” In Proceedings of the 28th Australasian

Computer Science Conference, 2005, pp. 315-322, doi: 10.1.1.87.678.

[27] P. Resnik, “Using information content to evaluate semantic similarity

in a taxonomy,” In Proceedings of the 14th International Joint

Conference on Artificial Intelligence, 1995, pp. 448-453, doi:

10.1.1.55.5277.

[28] D. Lin, “An Information-theoretic definition of similarity,” In

Proceedings of the 15th International Conference on Machine Learning,

1998, pp. 296-304. doi: 10.1.1.55.1832.

[29] T.M. Cover and J.A. Thomas, Elements of information theory, Wiley

series in telecommunications and signal processing. Wiley, New York,

1991, ISBN 0-471-06259-6.

[30] J. Kim, Y. Peng, B. Kulvatunyou, N. Ivezik, and A. Jones, “A layered

approach to semantic similarity analysis of XML schemas,” in

Proceedings of the IEEE International Conference on Information

Reuse and Integration, Las Vegas, NV, 2008, pp. 274 - 279.

[31] A. Doan, P. Domingos, and A. Halevy, “Reconciling schemas of

disparate data sources: A machine-learning approach,” In Proceedings

of the International Conference on Management of Data (SIGMOD),

2001, pp. 509–520.

[32] T. Milo and S. Zohar, “Using schema matching to simplify

heterogeneous data translation,” In Proceedings of the 24th

International Conference on Very Large Data Bases, 1998, pp. 122-133.

doi: 10.1.1.30.2620.

[33] B.S. Lerner, “A model for compound type changes encountered in

schema evolution,” ACM Transactions on Database Systems, vol. 25,

no. 1, 2000, pp. 83-127, doi: 10.1.1.105.1542.

[34] S. Melnik, H. Garcia-Molina, and E. Rahm, “Similarity flooding - a

versatile graph matching algorithm,” In Proceedings of 18th

International Conference of Data Engineering, 2002, pp. 117-128. doi:

10.1.1.61.4266.

[35] J. Madhavan, P.A. Bernstein, and E. Rahm, “Generic schema matching

with Cupid,” In Proceedings of the 27th International Conference on

Very Large Data Bases, 2001, pp. 49-58. doi: 10.1.1.17.4650.

[36] Microsoft Research, Microsoft Corporation, Available:

http://www.research.microsoft.com/

[37] F. Giunchiglia, P. Shvaiko, and M. Yatskevich, “S-Match: an algorithm

and an implementation of semantic matching,” In Proceedings of the

European Semantic Web Symposium (ESWS), 2004, pp. 61–75, doi:

10.1007/978-3-540-25956-5_5.

[38] Roy Rada, Hafedh Mili, Ellen Bicknell, and Maria Blettner,

“Development and application of a metric on semantic nets,” IEEE

Transaction on Systems, Man, and Cybernetics, February 1989, pp.

17-30.

[39] N. Noy, and M. Musen, “Anchor-PROMPT: using non-local context

for semantic matching,” In Proceedings of the workshop on Ontologies

and Information Sharing at the International Joint Conference on

Artificial Intelligence (IJCAI), 2001, pp. 63–70.

[40] L.L. Mong, Y.H. Liang, H. Wynne, Y. Xia, “XClust: clustering XML

schemas for effective integration,” In Proceedings in 11th ACM

International Conference on Information and Knowledge Management

(CIKM), McLean, Virginia, November 2002, doi:

10.1145/584792.584841.

[41] D. Carmel, Y. Maarek, Y. Mass, N. Efraty, and G. Landau, “An

extension of the vector space model for querying XML documents via

XML fragments,” in ACM SIGIR 2002 Workshop on XML and

Information Retrieval, Tampere, Finland, August 2002.

[42] A. Boukottaya and C. Vanoirbeek, “Schema matching for transforming

structured documents,” In DocEng, 2005, pp. 2-4, doi:

10.1145/1096601.1096629.

[43] H.O. Thang, V.S. Nam, “XML schema automatic matching solution,”

International Journal of Computer Systems Science and Engineering,

vol. 4, no. 1, 2008, pp. 68-74.

[44] A.L. Dulmage and N.S. Mendelsohn, “Coverings of bipartite graphs,”

Canadian Journal of Mathematics, vol. 10, 1958, pp. 517–534.

[45] W.B. Douglas, Introduction to Graph Theory (2nd ed.), Prentice Hall,

Chapter 3, 1999, ISBN 0-13-014400-2.

[46] C. H. Papadimitriou, “On the complexity of integer programming,” J.

ACM, vol. 28, 1981, pp. 765–768.

[47] C.A.R. Hoare, ”Quicksort,” Computer Journal, vol. 5. no. 1, 1962, pp.

10-15.

[48] Java WordNet Library (JWNL), Available: http://sourceforge.net/

apps/mediawiki/jwordnet

[49] BizTalk Server, Available: http://www.microsoft.com/biztalk/

[50] D. Aum¨uller, H.H. Do, S. Massmann, and E. Rahm, “Schema and

ontology matching with COMA++,” In Proceedings of the

International Conference on Management of Data (SIGMOD),

Software Demonstration, 2005.

[51] J. Makhoul, F. Kubala, R. Schwartz, and R. Weischedel, “Performance

measures for information extraction,” In Proceedings of DARPA

Broadcast News Workshop, Herndon, VA, February 1999.

