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ABSTRACT

Comprehensive two-dimensional gas chromatography (GCxGC) is

a new technology for chemical separation. Peak template match-

ing is a technique for automatic chemical identification in GCxGC

analysis. Peak template matching can be formulated as a Largest

Common Point Set problem (LCP). Minimizing Hausdorff dis-

tances is one of the many techniques proposed for solving the

LCP problem. This paper proposes two novel strategies to search

the transformation space based on Markov Chain Monte Carlo

(MCMC) methods. Experiments on seven real data sets indicate

that the transformations found by the new algorithms are effective

and searching with two Markov chains is much faster than search-

ing with one Markov chain.

1. INTRODUCTION

Comprehensive two-dimensional gas chromatography (GCxGC) is

a new technology for chemical separation that provides an order-

of-magnitude increase in separation capacity over traditional GC

[1, 2]. GCxGC separates chemical species with two capillary col-

umns interfaced by two-stage thermal desorption. Given a chem-

ical sample, the GCxGC output can be visualized as a 2D image,

with pixels arranged so that the X-axis (left-to-right) and the Y-

axis (bottom-to-top) are the elapsed times for the first and second

column separation respectively. Each pixel value indicates the rate

at which molecules are detected at a specific time. Each chem-

ical substance in the chemical sample produces a small peak or

cluster of pixels in the image with values that are larger than the

background values.

The goal of GCxGC analysis is to separate, quantify, and iden-

tify specific chemicals in a sample. The major image analysis tasks

include segmenting the image into individual peaks and back-

ground, measuring peaks, and identifying the chemical for each

peak of interest. GCxGC images easily contain several thousand

chemical peaks. Manually annotating the peaks is tedious and

time-consuming. Peak template matching offers a way to speed

the annotation process.

A peak template P is a set of peaks whose corresponding

chemicals are known. A target peak set Q is a set of peaks whose

corresponding chemicals are to be determined. Given P and Q,

the objective of template matching is to establish as many corre-

spondences as possible from the peaks in P to the peaks in Q.

After the correspondences are established, the information carried

by source peaks is copied to target peaks and the chemical identi-

fication is achieved.

A peak has many features such as peak location, area, volume,

shape, etc. In this paper, only peak location (the coordinates of the

pixel with the largest value within the peak) is used for matching.

As such, the peak template and the target peak set can be abstractly

represented by two point sets in two-dimensional space.

Let P = {pi(xi, yi)}
m
i=1 be the point template and Q =

{qi(ui, vi)}
n
i=1 be the target point set. The peak template match-

ing problem can be posed as the Largest Common Point Set (LCP)

problem [3, 4].

Given point template P , target point set Q, par-

tial directed Hausdorff distance ~dk
H , transformation

space T , and the desired number of points in P to

be matched k, compute:

min
t∈T

{

~d
k
H(t(P ), Q)

}

.

Generally, P may not be congruent to Q or any subset of Q. The

above formulation is merely intended to match a subset of P to a

subset of Q and minimize the distance. The solution to the LCP

problem is a transformation. From the transformation, the corre-

spondence from P to Q is then computed.

The partial directed Hausdorff from P to Q is defined as [5]:

~d
k
H(P, Q) = max

p∈P

k min
q∈Q

‖p − q‖

where ‖p− q‖ is the Euclidean distance between point p and point

q, and maxk means taking the kth largest distance. The par-

tial directed Hausdorff distance is a good choice here because it

has the effect of matching part of P to part of Q. In addition,

it is not required to specify which part of P is to be matched.

When k = |P |, the partial directed Hausdorff distance becomes

the directed Hausdorff distance which is denoted by ~dH(P, Q).

The partial directed Hausdorff distance can be computed in time

O((m + n) log(m + n)) [5].

Minimizing Hausdorff distances is one of the many techniques

proposed for solving the LCP problem. This technique uses Haus-

dorff distance (or its variations) as the similarity measure and

searches the transformation space for a transformation that min-

imizes the Hausdorff distance. The search strategies proposed in

the literature include exact computation [6, 7], rasterization of the

upper envelope of Voronoi surfaces [5], transformation space sub-

division [7], multi-instance learning [8], etc.

In this paper, we propose using Markov chain Monte Carlo

(MCMC) methods to search the transformation space. MCMC

methods are general tools for simulating complex distributions by

ergodic Markov chains [9]. When used for solving optimization



problems, MCMC methods map the objective functions to some

probability distributions and search the parametric space for a point

that optimizes the objective function [9].

2. THE MCMC-BASED SEARCHING ALGORITHMS

In the LCP problem, the goal is to minimize the objective function
~dk
H(t(P ), Q). We define a distribution π on a finite transformation

space T as:

π(t) =
exp(−~dk

H(t(P ), Q))

Z

where t ∈ T and Z is a normalization factor such that
∫

T
π(t)dt =

1.0 . Because π(t) and ~dk
H(t(P ), Q) are inversely related, if some

t maximizes π(t), it minimizes ~dk
H(t(P ), Q). So the solution to

the LCP problem is argmax π(t).

2.1. Searching with one Markov chain

In this paper, the Metropolis-Hastings algorithm [10] is used to

search the transformation space T by sampling. The algorithm

samples T according to π by performing random walk on a Markov

chain whose state space is T . The walk starts with some initial

transformation (state) and makes each transition as follows: a new

transformation t′ is proposed from an uncorrelated Gaussian distri-

bution N(t, Σt), where the mean value t is the current transforma-

tion and Σt is a diagonal covariance matrix. The new transforma-

tion t′ will be accepted with the Metropolis-Hastings acceptance

probability:

At(t
′) = min

{

1,
π(t′)Gt′(t)

π(t)Gt(t′)

}

where Gt′(t) and Gt(t
′) are the pdf’s of N(t′, Σt′) and N(t, Σt).

If ~dk
H(t′(P ), Q) < ~dk

H(t(P ), Q), t′ is always accepted ( At(t
′) =

1.0).

In the experiments presented in Section 3, the same Σ is used

for every state. In such a case, At(t
′) is simplified as:

At(t
′) = min

{

1, exp(~d
k
H(t(P ), Q) − ~d

k
H(t′(P ), Q))

}

.

2.2. Searching with two Markov chains

One difficulty with the above searching algorithm is how to set Σt.

If standard deviations in Σt are too large, the proposed new trans-

formation stays away from the current transformation with high

probability. As a consequence, the Markov chain tends to make

big jumps in the transformation space, overshooting the global op-

timal transformation. On the other hand, if standard deviations in

Σt are too small, the proposed new transformation may oscillate

around a local optimal transformation [9].

The selection of Σt becomes easier when using two Markov

chains instead of one. Then, the searching algorithm runs two

Metropolis-Hastings processes, ℜg and ℜl, simultaneously. Pro-

cesses ℜg and ℜl use two different covariance matrices, Σg and

Σl, with larger standard deviations for Σg and smaller standard

deviations for Σl. The start transformation of ℜl is set to the

best transformation that ℜg has found so far after each fixed num-

ber of steps. The algorithm can be roughly thought of as a two-

level multi-resolution searching, where process ℜg looks through

T quickly for a good start point at the course resolution and pro-

cess ℜl starts from that point and searches its neighborhood at the

fine resolution.

3. EXPERIMENTAL RESULTS

3.1. Data sets

The seven data sets, summarized in Table 1, were acquired at three

different laboratories on three different GCxGC instruments. Each

data set has several images generated from the same chemical sam-

ple or from related samples with the same chemicals. Selected

peaks in each data set were annotated using GCImageTM soft-

ware [11]. The selected peaks form a peak set for each image.

Peak correspondences across images in each data set were estab-

lished for testing the effectiveness of the algorithm. Also, for com-

putational stability, peak locations are normalized. The normaliza-

tion is done for each data set separately. Let (µx, µy) and (σx, σy)
be the mean and standard deviation of the peak locations in some

data set. Then, the peak location (x, y) in that data set is normal-

ized as:
{

x′ = x−µx

(σx+σy)/2

y′ =
y−µy

(σx+σy)/2

where (x′, y′) is the new peak location.

Table 1. Data sets
Data set Number of images Number of selected

peaks

D2287 sdalk 3 15

D2287 sdgas 3 580

Doixin 3 26

GCC2002 12 14

Linearity 5 18

NYSDH 5 10

PCB 4 17

3.2. Estimating T

The transformation model used in this paper is global constrained

affine transformation. The global constrained affine transforma-

tion from p(xp, yp) to q(uq, vq) is:

[

uq

vq

]

=

[

sx hx(= 0.0)
hy sy

] [

xp

yp

]

+

[

tx

ty

]

with hx set to 0.0 because the x coordinates (first column separa-

tion time) are independent of the y coordinates (the second column

separation time) in GCxGC images. Experimental results (not re-

ported here) indicate that the above transformations work well for

largely removing image-to-image distortions.

Given the global constrained affine transformation model, the

complexity of finding a matching primarily depends on the ranges

that the transformation parameters vary. If all five parameters vary

freely, searching for a solution is expensive. However, experiments

show that the least-squares optimal transformations are clustered

in the transformation space. Consequently, a search over a small

region typically will find a good matching.



Given a training data set, optimal transformations are com-

puted from each peak set to every other peak set based on least-

squares estimation. An uncorrelated Gaussian model N(µ, Σ) is

then fit to the distribution of the resultant transformations using

common techniques such as those in [12]. T is set to be a rectangu-

lar region A in the transformation space, where
∫

A
N(µ, Σ)dt ≥

certain probability threshold and t is a variable defined in

transformation space. Figure 1 and 2 illustrate the spatial distri-

butions of the scale parameters and translation parameters of the

transformations generated from the seven data sets.
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Fig. 1. Scale parameter distribution.

-0.2

-0.15

-0.1

-0.05

 0

 0.05

 0.1

 0.15

 0.2

 0.25

-0.04 -0.03 -0.02 -0.01  0  0.01  0.02  0.03  0.04

ty

tx

D2887 sdalk
D2887 sdgas

Dioxin
GCC2002

Linearity
NYSDH

PCB

Fig. 2. Translation parameter distribution.

3.3. Selecting the standard deviations

In the experiments described in Section 3.4 and 3.5, when one

Markov chain is used, the standard deviations of Σ is set to those

of the covariance matrix of the Gaussian distribution that models

the transformation space (See Section 3.2). When two Markov

chains are used, Σg is set to be the Σ. For Σl, the standard de-

viations are selected based on the desired matching accuracy. For

example, if the desired matching accuracy is E, we set Σl such

that
∫

E(0)
N(0, Σt)dt ≥ certain probability threshold. Here,

the accuracy is defined as the neighborhood E(q) around a target

point q. Template point p is said to be matched to target point q if

p lies in E(q). It is clear that the smaller the E, the more accurate

the matching.

3.4. Effectiveness of transformations found by the MCMC-

based searching algorithms

For point template P and target point set Q, assume that the

MCMC-based searching algorithms return transformation tf , and

based on tf the point correspondences between P and Q are then

computed. To evaluate the effectiveness of tf , ~dH(tf (P ), Q) is

computed and compared to ~dH(to(P ), Q), where to is the least-

squares optimal transformation. The experimental results on the

seven data sets are reported in Table 2. Note that when one data

set is used for testing, all other six data sets are used as training

data for estimating the search range and the standard deviations.

Also, within the testing data set, one peak set is selected to be the

template, and all others are target sets. Table 2 only reports the

average distances for each data set. The average number of steps

used to find the transformations are described in Section 3.5. The

results show that the transformations found in limited steps by the

algorithms work well compared to the least-squares optimal trans-

formations. For four out of the seven data sets, the algorithms

found better transformations in terms of ~dH , which is the objec-

tive function. For the other data sets, the results of the algorithms

are comparable to the least-squares optimal transformations.

Table 2. Effectiveness of the transformations found by the

MCMC-based searching algorithm.

Data set ~dH(to(P ), Q) ~dH(tf (P ), Q)
D2287 sdalk 0.0382 0.0369

D2287 sdgas 0.0436 0.0385

Doixin 0.0415 0.0430

GCC2002 0.0902 0.0728

Linearity 0.0711 0.0613

NYSDH 0.0404 0.0422

PCB 0.0492 0.0498

3.5. Computational efficiency

The experiments in this section evaluate and compare the compu-

tational efficiency of the two MCMC-based searching algorithms.

Because the behavior of MCMC methods depends on random

number generation and thus varies from one run to another, the

experiments run the two algorithms 20 times under the same con-

figuration and report only the average results.

The average numbers of steps that the two algorithms take to

find tf (see Section 3.4) are reported in Figure 3 and 4. For the

results in Figure 3, both algorithms start with identity transforma-

tion. For the results in Figure 4, both algorithms start with some

identical randomly generated transformation in T . The results

clearly indicate that searching with two Markov chains is statis-

tically much more efficient than searching with one Markov chain.
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Fig. 3. Comparison of the two algorithms with the initial state

being identity transformation.
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Fig. 4. Comparison of the two algorithms with the initial state

being a random transformation in T .

4. CONCLUSION

Peak template matching is an automatic chemical identification

method for GCxGC. This paper proposes two novel MCMC-based

searching algorithms for solving the problem. Experiments indi-

cate that the algorithms work effectively. On average, the algo-

rithms find transformations with smaller partial directed Hausdorff

distances than the least-squares optimal transformations. Experi-

ments also show that searching with two Markov chains is statisti-

cally much faster than searching with a one Markov chain.

Our future work includes:

• trying different formulations of the distribution π(t),

• using more data sets to test the searching efficiency of the

searching algorithms, and

• adjusting standard deviations based on some local proper-

ties of the transformation space to accelerate the searching.
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