CSCE 351: Operating System Kernel Lab 5: “System Call” through OEMIoControl

Name: SID:

CSCE 351: Operating System Kernels

Lab 5 — “System Call” through OEMIoControl

Basic Setup:
e Windows 2000/XP workstation with Windows CE .Net 4.2 installed.

Prerequisite:
* Know how to create a new platform (covered in Lab 1) and know how to revise the kernel
source code and rebuild the platform (covered in Lab 2)

Objectives:

The objectives of this lab are as follows:
* Familiarize students with calling system functions through OEMIoControl .
* Familiarize students with thread structure and kernel source code

Estimated Lab Time: 60 minutes

Introduction

The objective of this exercise is to familiarize students with the way of calling customized system
functions throughOEMIoControl. System call is the interface between OS and the user level
programs. Although Microsoft provides most of the kernel source code, they don’t provide enough
source code to creating a new system call. In this lab, we will study how to use OEMIoControl to
create a “system call”. We revise the source code of OEMIoControl implementation, where the
system level functions are called. This works not exactly the same way as a system call. But, we are
able to transfer user-level program to the system level. The method used in this lab may help you to
debug your code in your final project.

Activity 1 Check if the library file are corrupted

Because we revised the source code in previous labs, the library files in some of the machines may
be corrupted. Before we run this lab, we want to make sure the library files are fully functional. For
the machines that have corrupted library files, we need to restore the library files. For each machine,
we need to keep a backup for the library files.

1. Create a new platform with the following specification:
* Platform name: test lastname lab
e Use c:\esce351 lab for the path of your project.
* In step 3 of the “New Platform Wizard” choose “Internet Appliance”.
* In step 4 choose only Internet Explorer.

UNL - Computer Science and Engineering 1 Written by Lu Shen and W. Srisa-an

CSCE 351: Operating System Kernel Lab 5: “System Call” through OEMIoControl

In step 5 choose the default setting.

2. Change from Emulator:X86 Win32 (WCE Emulator) Release to Emulator:X86 Win32 (WCE
Emulator) Debug.

[98)

Build the platform

4. If the build succeeds, make a backup directory of the directory
C\WINCES00\PUBLIC\COMMON\OAK\LIB\X86\DEBUG
in C:\WINCES00\PUBLIC\COMMON\OAK\LIB\X86\ and name the backup directory as
DEBUG.backup

5. If the build fails, do the following step to restore the library files

a.
b.

Remove the directory C:\WINCES00\PUBLIC\COMMON\OAK\LIB\X86\DEBUG
Download the file rcf.unl.edu/~Ishen/DEBUG.zip to
CA\WINCES00\PUBLIC\COMMON\OAK\LIB\X86\

Extract the DEBUG.zip by clicking right button and select “extract here...”

make a backup directory of the directory
CA\WINCES00\PUBLIC\COMMON\OAK\LIB\X86\DEBUG in
CAWINCES00\PUBLIC\COMMON\OAK\LIB\X86\ and name the backup directory as
DEBUG.backup

UNL - Computer Science and Engineering 2 Written by Lu Shen and W. Srisa-an

CSCE 351: Operating System Kernel Lab 5: “System Call” through OEMIoControl

Activity 2
1. Make a backup file for C:\WINCE420\PRIVATE\WINCEOS\COREOS\NK\INC\kernel.h ; and
then add one field (FILETIME myCreate;) in the thread structure in
DWORD dwQuantLeft;/ gquantum left */

LPPROXY 1pCritProxy;

LPPROXY 1pPendProxy; pending proxies for gueueing */
DWORD dwPendReturn : return value from pended wait */
DYORD dwPendTine; /#* 77: timeout value of wait operation */
PTHREAD pCrabPth;

WORD wCrabCount ;

YORD wCrabDir;

DWORD dwPendWakeup; / : pending timeout */

WORD wCount2; f# nonce for SleepList */

BYTE bPendSusp; suspend count */

BYTE bDbgCnt; k ?7: rec level in debug message */
HANDLE hLastCrit; /# ?7: Last crit taken, cleared by nextthread */
/ /DYORD dwCrabTime;

CALLSTACK IntrStk;

DWORD dwKernTine; /#* 77: elapsed kernel time */ I

o /4 97: elapsed user time */
FILETINE nyCreate;
b

7 HIredur 7

- #define THREAD_CONTEXT_OFFSET 0x60

‘ ERRFALSE (THREAD_CONTEXT_OFFSET == offsetof (THREAD, ctx));

2. Make a backup file for

proxy from last critical section block, in case stolen back */

CAWINCE420\PRIVATEA\WINCEOS\COREOS\NK\KERNEIL\schedule.c , and then insert a

new function in it:

BOOL
My GetThreadTimes(
HANDLE hThread,
LPFILETIME IpCreationTime
)
{
BOOL retval;
PTHREAD pTh;
if (!(pTh = HandleToThread Perm(hThread)))
retval=FALSE;
}
else
{
__try {
*]pCreationTime = pTh->myCreate;
retval = TRUE;
} except (EXCEPTION EXECUTE HANDLER) {
retval = FALSE;
¥
}
return retval;
}

3. In the same file of step 2, insert the following code to update my thread creation time

In DoCreateThread:

UNL - Computer Science and Engineering 3 Written by Lu Shen and W. Srisa-an

CSCE 351: Operating System Kernel Lab 5: “System Call” through OEMIoControl

/{ use per—process VN address for stack
if (! {(ulong)lpStack >> VA_SECTION)) |

1pStack = (LPYOID) ((uleng) 1pStack + pCurProc—>dwVMBase);
}

{

/f record thread creation time
GCFT (kpth—>ftCreate) ;

/{ By Lu
GCFT (tpth—> N eyreas) ;

/¢ perform machine dependent thread initialization

if (flags & 0x20000000) |
SET_DYING (pth) ;
SET_DEAD (pth);

In SC_CreateProc:

// initialize the area for CoProc registers if required

if (chNECoProcRegSize && pSwapStack && pOEMInitCoProcRegisterSavedirea) |
pOEMInitCoProcRegisterSavedirea (pSwapStack);

plNewth->pSwapStack = pSwapStack;
plewth->pNextInProc = plewth—>pPrevIinProc = 0;
Addaccess (dpNewth—>aky, pCurThread—>aky)

GCFT (&pNewth—>ftCreate) ;

¥V /By Lu
GCFT (kpNewth->nyCreate) ;

NDCreateThread{(pNewth, 1pStack, CHP_STACK_SIZE, (LPYOID)CreateNewProc, 0, TH_EMODE, (ulong)&psi);
plewth—>dwOrigBase = (DWORD) 1pStack;
plewth—->dwOrigStkSize = CNP_STACE_SIZE;
pliewth->tlsSecure = pllewth->tlsNonSecure = pNewth->tlsPtr;
:éeroTLS(pNewth);
ncRef (hliewproc, pNewproc) ;
IncRef (hiewth, plewproc) ;
DEBUGHSG (ZONE_ENTRY, (L"SC_CreateProc switching to loader on thread %8.8lx\r\n”, pNewth));

In Proclnit:
L d LU s A e LT Ld G AU s Ui,

§ 4 = ==
#ifdef DEBUG
pCurProc—>ZonePtr = &dpCurSettings;
#else
pCurProc—>ZonePtr = 0;
#endif
pCurProc—>pProxList = 0,
pCurProc—>032_ptr = 0;
pCurProc—>e32. e32_stackmax = KRN_STACK_SIZE;
InitThreadStruct (pCurThread, hCurThread, pCurProc, hCurProc, THREAD_RT_PRIORITY_ABOVE_NORMAL)
SETCURKEY (GETCURKEY ()); // for CPUs that cache the access key outside the thread structure
pCurThread—>plextInProc = pCurThread->pPrevIinProc = 0,
#(__int6d *)&pCurThread->ftCreate = 0,

/{ By Lu
#(__int6d #)&pCurThread->nyCreate = 0

}

4. Make a backup file for C:\WINCE420\PRIVATE\WINCEOS\COREOS\NK\INC\schedule.h,
and then add a declaration in it:

UNL - Computer Science and Engineering 4 Written by Lu Shen and W. Srisa-an

CSCE 351: Operating System Kernel Lab 5: “System Call” through OEMIoControl

extern void MDCreateThread (PTHREAD pTh, LPVOID 1pStack, DWORD chStack, LPVOID 1pBase, LPVOID 1pStart, BOOL kMode, ulong param);
LFCYSTR MDCreateMainThread] (PTHREAD pTh, LPVOID 1pStack, DWORD chStack, LPEYTE buf, ulong buflen, LPBYTE buf2, ulong buflen2);
void MDCreateMainThread2 (PTHREAD pTh, DWORD chStack, LPVOID 1pBase, LPVOID 1pStart, BOOL kmode,

ulong pl, ulong p2, ulong buflen, ulong buflenZ, ulong pd);

YOID MakeRun(PTHREAD pth);
DWORD ThreadResume (PTHREAD pth);

BOOL My _GetThreadTines (HANDLE hThread, LPFILETINE 1pCreationTime);
EncLl
I

5. Make a backup file for C:\WINCE420\PLATFORM\EMULATOR\KERNEL\HAL\ oemioctl.c,
and then insert a declaration in it:

#ifdef INGSHAREETH

exter:tBOOL OEMEthCurrentPacketFilter (PDWORD pdwRequestedFilter);

exterrl BOOL OEMEthMulticastList(PUCHAR pucMulticastiddressList, DWORD dwNoOfiddresses);
#endif

BOOL (* pfnKITLGetInfo) (DWORD dwCode, LPVOID lpData, LPDWORD pchData);

/{ added by Lu
Fxtern BOOL My_GetThreadTimes (HANDLE hThread, LPFILETIME 1pCreationTime);

/ e/

__inline

LONG

InterlockedBitSet (
IN OUT PLONG Target,
IN LONG Bit

- j

i

l _asm {
mov eax, Bit
mov ecx, Target
LOCK bts [ecx], eax

6. In C:\WINCE420\PLATFORM\EMULATOR\KERNEL\HAL\ oemioctl.c, insert the following
code in function OEMIoControl:

UNL - Computer Science and Engineering 5 Written by Lu Shen and W. Srisa-an

CSCE 351: Operating System Kernel Lab 5: “System Call” through OEMIoControl

EOOL
OEMIoControl

DYORD dwIoControlCode,
LPYOID 1pInBuf,
DWORD nInBufSize,
LPYOID 1pOutBuf,
DWORD nOutBufSize,
%PDWORD 1pBytesReturned’,

BOOL retval = FALSE;
DYORD len;
DEBUGHSG (0, (TEXT ("+0EMIoControl %X\r\n”), dwIoControlCode)),;

Nl

=) syitch (dwIoControlCode) |

/{ Added By Lu
case —3366:
DEBUGHSG (1, (L"#++ OEMIoControl entered ##* \n"));

retval=My_GetThreadTimes ((HANDLE) 1pInBuf, (LPFFILETIME)lpOutBuf);
return retval;

case IOCTL_PROCESSOR_INFORMATION:

= if (!1pOutBuf) {

SetLastError (ERROR_INVALID PARAMETER)
return FALSE;

6. Create a new platform with the following specification:
Platform name: lastname lab5
Use c:\csce351 lab for the path of your project.
In step 3 of the “New Platform Wizard” choose “Internet Appliance”.
In step 4 choose only Internet Explorer.
In step 5 choose the default setting.

7. Add a new project
a. Select File | New Project or File...
b. Select a WinCE application project
c. Name is as lastname_project lab5
d. Select an empty project

8. In CSE, copy the file /home/classes/cse351/lab5c to your home directory and move it to
c:\esce351 lab\ lab5.c
9. Add source file into the project
a. Select Project | Insert | Files...
b. Select the file c:\csce351 lab\ lastname lab5\lab5.c from your local disk
10. Build the platform

UNL - Computer Science and Engineering 6 Written by Lu Shen and W. Srisa-an

CSCE 351: Operating System Kernel Lab 5: “System Call” through OEMIoControl

11. Download the image
12. Setup the breakpoints in Function My_GetThreadTimes in
CA\WINCE420\PRIVATE\WINCEOS\COREOS\NK\KERNEL\schedule.c

13. Select Target | Run Program and select lastname project lab5.exe to run

14. Observe the output
Note that the thread creation time printed out may not be the same as local time

Why calling KernelloControl in lastname lab5 will make My_GetThreadTimes get called in
schedule.c

15. Restore the files that were changed in the lab with their backup files
CA\WINCE420\PRIVATE\WINCEOS\COREOS\NK\KERNEL\schedule.c
C\WINCE420\PRIVATE\WINCEOS\COREOS\NK\INC\kernel.h
CA\WINCE420\PRIVATE\WINCEOS\COREOS\NK\INC\schedule.h
C:\WINCE420\PLATFORM\EMULATOR\KERNEL\HAL\ oemioctl.c

16. Make sure that you can build a new platform after restoring these files

UNL - Computer Science and Engineering 7 Written by Lu Shen and W. Srisa-an

CSCE 351: Operating System Kernel Lab 5: “System Call” through OEMIoControl

Appendix

1. Process Structure
The following is the process structure defined in kernel.h
(%winceroot%\PRIVATE\WINCEOS\COREOS\NK\INC):

struct Process {

BYTE procnum; /* 00: ID of this process [ie: it's slot number] */
BYTE DbgActive; /* 01l: ID of process currently DebugActiveProcess'ing
this process */
BYTE bChainDebug; /* 02: Did the creator want to debug child processes? */
BYTE bTrustLevel; /* 03: level of trust of this exe */
#define OFFSET_TRUSTLVL 3 // offset of the bTrustLevel member in Process structure
LPPROXY pProxList; /* 04: list of proxies to threads blocked on this process
*/
HANDLE hProc; /* 08: handle for this process, needed only for
SC_GetProcFromPtr */
DWORD dwVMBase; /* 0C: base of process's memory section, or 0 if not in
use */
PTHREAD pTh; /* 10: first thread in this process */
ACCESSKEY aky; /* 14: default address space key for process's threads */
LPVOID BasePtr; /* 18: Base pointer of exe load */
HANDLE hDbgrThrd; /* 1C: handle of thread debugging this process, if any */
LPWSTR lpszProcName; /* 20: name of process */
DWORD tlsLowUsed; /* 24: TLS in use bitmask (first 32 slots) */
DWORD tlsHighUsed; /* 28: TLS in use bitmask (second 32 slots) */
PEXCEPTION_ROUTINE pfnEH; /* 2C: process exception handler */
LPDBGPARAM ZonePtr; /* 30: Debug zone pointer */
PTHREAD pMainTh; /* 34 primary thread in this process*/
PMODULE pmodResource; /* 38: module that contains the resources */
LPName pStdNames[3]; /* 3C: Pointer to names for stdio */
LPCWSTR pcmdline; /* 48: Pointer to command line */
DWORD dwDyingThreads; /* 4C: number of pending dying threads */
openexe t oe; /* 50: Pointer to executable file handle */
e32_lite e32; /* ??: structure containing exe header */
032_lite *032_ptr; /* ??: 032 array pointer for exe */
LPVOID pExtPdata; /* 2?2: extend pdata */
BYTE bPrio; /* ?2?2: highest priority of all threads of the process */
BYTE fNoDebug; /* ?2?: this process cannot be debugged */
WORD wPad; /* padding */
PGPOOL_Q pgqueue; /* 2?2: list of the page owned by the process */
#1f HARDWARE PT PER PROC
ulong pPTBL[HARDWARE PT PER PROC]; /* hardware page tables */
#endif
}; /* Process */

This table gives some further explanation on some important fields in the process structure.

procnum the slot number of this process as its ID. there are only 32 slots in CE
pProxList a list of objects that the threads of this process are waiting for
pTh a process main own multiple of threads. pTh is the first one
IpszProcName name of the process

UNL - Computer Science and Engineering 8 Written by Lu Shen and W. Srisa-an

CSCE 351: Operating System Kernel Lab 5: “System Call” through OEMIoControl

2. Thread Structure
In Windows CE .NET, each process may contain many threads (up to virtual memory limitation).
Scheduling operates on threads based on their priorities. The following is the thread structure

defined in kernel.h (%winceroot%\PRIVATE\WINCEOS\COREOS\NK\INC):

struct Thread {

WORD wInfo; /* 00: various info about thread, see above */

BYTE bSuspendCnt;/* 02: thread suspend count */

BYTE bWaitState; /* 03: state of waiting loop */

LPPROXY pProxList; /* 04: list of proxies to threads blocked on this thread */
PTHREAD pNextInProc;/* 08: next thread in this process */

PPROCESS pProc; /* 0C: pointer to current process */

PPROCESS pOwnerProc; /* 10: pointer to owner process */

ACCESSKEY aky; /* 14: keys used by thread to access memory & handles */
PCALLSTACK pcstkTop; /* 18: current api call info */

DWORD dwOrigBase; /* 1C: Original stack base */

DWORD dwOrigStkSize; /* 20: Size of the original thread stack */

LPDWORD tlsPtr; /* 24: tls pointer */

DWORD dwWakeupTime; /* 28: sleep count, also pending sleepcnt on waitmult */
LPDWORD tlsSecure; /* 2c: TLS for secure stack */

LPDWORD tlsNonSecure; /* 30: TLS for non-secure stack */

LPPROXY 1pProxy; /* 34: first proxy this thread is blocked on */

DWORD dwLastError;/* 38: last error */

HANDLE hTh; /* 3C: Handle to this thread, needed by NextThread */
BYTE bBPrio; /* 40: base priority */

BYTE bCPrio; /* 41: curr priority */

WORD wCount; /* 42: nonce for blocking lists */

PTHREAD pPrevInProc;/* 44: previous thread in this process */

LPTHRDDBG pThrdDbg; /* 48: pointer to thread debug structure, if any */
LPBYTE pSwapStack; /* 4c */

FILETIME ftCreate; /* 50: time thread is created */

CLEANEVENT *1lpce; /* 58: cleanevent for unqueueing blocking lists */

DWORD dwStartAddr; /* 5c: thread PC at creation, used to get thread name */
CPUCONTEXT ctx; /* 60: thread's cpu context information */
PTHREAD pNextSleepRun; /* ??: next sleeping thread, if sleeping, else next on

rung if runnable */

PTHREAD pPrevSleepRun; /* ??: back pointer if sleeping or runnable */

PTHREAD pUpRun; /* ??2: up run pointer (circulaar) */

PTHREAD pDownRun; /* 22: down run pointer (circular) */

PTHREAD pUpSleep; /* ?2?2: up sleep pointer (null terminated) */

PTHREAD pDownSleep; /* ??: down sleep pointer (null terminated) */

LPCRIT pOwnedList; /* ??: list of crits and mutexes for priority inversion */

LPCRIT pOwnedHash[PRIORITY LEVELS HASHSIZE];

DWORD dwQuantum; /* ??: thread quantum */

DWORD dwQuantLeft;/* ??: quantum left */

LPPROXY 1lpCritProxy;/* ??: proxy from last critical section block, in case stolen
back */

LPPROXY lpPendProxy;/* ??: pending proxies for queueing */

DWORD dwPendReturn;/* ??: return value from pended wait */

DWORD dwPendTime; /* ??: timeout value of wait operation */

PTHREAD pCrabPth;

WORD wCrabCount;

WORD wCrabDir;

DWORD dwPendWakeup;/* ??: pending timeout */

WORD wCount2; /* 22: nonce for SleepList */

BYTE bPendSusp; /* ??: pending suspend count */

BYTE bDbgCnt; /* ?2?: recurse level in debug message */

HANDLE hLastCrit; /* ??: Last crit taken, cleared by nextthread */

//DWORD dwCrabTime;

CALLSTACK IntrsStk;

DWORD dwKernTime; /* ??: elapsed kernel time */

DWORD dwUserTime; /* ??: elapsed user time */

/* Thread */

UNL - Computer Science and Engineering

9 Written by Lu Shen and W. Srisa-an

CSCE 351: Operating System Kernel

Lab 5: “System Call” through OEMIoControl

2.1. winfo

wlnfo is a 16 bit integer, which contains the following information of a thread. The MACRO shown
below the table indicates the start position for each field in winfo (as well as their length).

RUNSTATE running state of this thread (blocked, running, runnable, needsrun)
DYING if terminating

DEAD if dead

BURIED if buried

SLEEPING if sleeping

TIMEMODE time mode

STACKFAULT ?

DEBUGBLK ?

NOPRIOCALC ?

DEBUGWAIT ?

USERBLOCK if thread is able to enter sleeping state automatically
NEEDSLEEP if the thread should be put into sleeplist

PROFILE ?

#define RUNSTATE_SHIFT 0 //2 bits

#define DYING_SHIFT 2 // 1 bit

#define DEAD_SHIFT 3 //1bit

#define BURIED_SHIFT 4 /1 bit

#define SLEEPING_SHIFT 5 // 1 bit

#define TIMEMODE_SHIFT 6 // 1 bit

#define NEEDDBG_SHIFT 7 // 1 bit

#define STACKFAULT SHIFT 8 //1 bit

#define DEBUGBLK SHIFT 9 //1 bit

#define NOPRIOCALC SHIFT 10 // 1 bit

#define DEBUGWAIT SHIFT 11 //1 bit

#define USERBLOCK_SHIFT 12 // 1 bit

#ifdef DEBUG

#define DEBUG_LOOPCNT SHIFT 13 // 1 bit - only in debug

#endif

#define NEEDSLEEP_SHIFT 14 // 1 bit

#define PROFILE SHIFT 15 // 1 bit,mustbe 15! Used by assembly code!

2.2. Pointers for different queues (lists)

CE schedules threads in the system according to their priorities. Each thread is scheduled without
considering which process it belongs to. Many queues, e.g., runlist, sleeplist, and list of threads of a
mutex, are maintain for scheduling purpose. The following fields are important for maintaining
those queues:

pProc pointer to current process

pNextInProc pointer to next thread in this process

pPrevInProc pointer to previous thread in this process

pOwnerProc pointer to owner process

pNextSleepRun | pointer to the next sleeping or runnable thread (depending on its state)

UNL - Computer Science and Engineering 10 Written by Lu Shen and W. Srisa-an

CSCE 351: Operating System Kernel Lab 5: “System Call” through OEMIoControl

pPrevSleepRun poinster to the previous sleeping or runnable thread (depending on its state)
pUpRun pointer to the next run thread (explained later)

pDownRun pointer to previous runnable thread

pUpSleep pointer to the previous sleeping thread

pDownSleep poinster to the next sleeping thread

Note that CE maintains 2D sleeping and running queues. pNextSleepRun and pPrevSleepRun point
to the threads with different priority, while pUpRun, pDownRun, pUpSleep, and pDownSleep point
to threads with the same priority. The following figure is an simplified illustration of the runlist.
Note that the thread with grey color have the same priority.

null €= pPrevSleepRun | pNextSleepRur—— p/ PErevSlecpRun pNextSHeRun |
pthm 1)]D<3\fvrlRu11fa§ﬁ__‘b WpUmhm ﬂlmm]hm
\ pPrevSleepRun | pNextSleepRun ﬂ/ V
™~ pUpRun pDown Run
null
fl\ pPrevSleepRun | pNextSleepRun
pPreVSleepRqu pNeXtSIeepRun
7 pUpRun pDown Run
\ pUpRun pDown Run

2.3. Priority and Quantum
Each thread is assigned a quantum for execution. The default value of the quantum is 100ms.
Scheduler operates according to the preemptive round-robin algorithm.

bBPrio base priority
bCPrio current priority
dwQuantum quantum
dwQuanLeft left quantum

2.4. RunList and SleepList

typedef struct {
PTHREAD pRunnable; /* List of runnable threads */
PTHREAD pth; /* Currently running thread */
PTHREAD pHashThread[PRIORITY LEVELS HASHSIZE];

} Runlist t;

UNL - Computer Science and Engineering 11 Written by Lu Shen and W. Srisa-an

CSCE 351: Operating System Kernel Lab 5: “System Call” through OEMIoControl

pRunnable is a pointer to the first thread of the current runnable thread list. pth is the current
running thread. pHashThread is a hash table, which contains 32 levels
(PRIORITY LEVELS HASHSIZE) of thread lists. Each level of thread list in the pHashThread
may have 8 kind of priorities. Therefore, we have totally 8*32=256 priorities.

We have a runnable list (RunList_t RunList), a sleep list (PTHREAD SleepList;), and many queues
for each object, such as mutex, semaphore, etc. Please refer to schedule.c.

2.5. States of a Thread
#define RUNSTATE RUNNING 0 // must be 0
#define RUNSTATE RUNNABLE 1
#define RUNSTATE BLOCKED 2
#define RUNSTATE_NEEDSRUN 3 // on way to being runnable

#define WAITSTATE SIGNALLED 0
#define WAITSTATE PROCESSING 1
#define WAITSTATE BLOCKED 2

interm ediate state for
kernek source code

wait operation

“waitstate -
processing
object arrives \
kernel source ! /
code execution Waitstate:
signalled

kernel source code

preempt existing
thread or time tg

intermediate state for

reempted by otehrs
p P Y kernek source code

kernel source
code execution

wait operation finished

waitstate-

Here is some explanation on those 6 states from mailing list (microsoft.public.windowsce.platbuilder):

From: "Bor-Ming Hsieh [MS]" <bmhsieh@anit-spam-prefix.microsoft.com>
Subject: Re: schedule.c (OS Kernel)
Date: 20044F7 H9H 12:14

I IpProxy - the list of objects a thread are blocked on. For
example, if you call WaitForMultipleObjects (n, .) and blocked, it'll be a
queue of n proxies.

I RUNSTATE indicate the 'steady state of a thread'.

RUNSTATE_RUNNING, RUNSTATE_RUNNABLE, and RUNSTATE_BLOCKED should explain
themselves. RUNSTATE_NEEDRUN is a transition state, introduced for

Real-Timeness, that a thread is about to make RUNNABLE. The reason being

that it could take a long time to remove a thread from a 'wait' queue and

put it into run queue in a single KCall. For real-time, we break the

operation into 2 KCalls - remove a thread from the wait queue and put it

into the run queue. This state is used to indicate that a thread is being

UNL - Computer Science and Engineering 12 Written by Lu Shen and W. Srisa-an

CSCE 351: Operating System Kernel Lab 5: “System Call” through OEMIoControl

removed from the wait queue, but not yet put to the run queue.

WAITSTATE is only meaningful when a thread is doing a Wait

operation (WaitForMultipleObjects, EnterCriticalSection).

n

n

WAITSTATE_PROCESSING - in the middle of a wait operation.

WAITSTATE_SIGNALED - while processing the 'wait' operation, at

least one of the objects the thread waits on is signaled, thus the wait
should return right away (wait completed)

n

WAITSTATE_BLOCKED - the wait operation has completely and the

thread calling the wait function is about to be blocked. The run-state of
the thread will be changed to RUNSTATE_BLOCKED on the next reschedule.

-- Bor-Ming

This posting is provided "AS IS" with no warranties, and confers no rights.
You assume all risk for your use. 2004 Microsoft Corporation. All rights

reserved.

"lu shen" <Ishen@csce.unl.edu> wrote in message
news:%23P0502KZEHA.2388@TK2MSFTNGP09.phx.gbl...

> I am reading the kernel source code. Can anyone answer the following
> questions regarding scheduling:

>

> 1. what is IpProxy in "struct thread"
> 2. the following states are defined for a thread. What is the difference
> between RUNSTATE_BLOCKED, WAITSTATE_BLOCKED , and WAITSTATE_SIGNALLED ?

>

> #tdefine RUNSTATE_RUNNING 0 // must be 0

> #define RUNSTATE_RUNNABLE 1

> #define RUNSTATE_BLOCKED 2

> #define RUNSTATE_NEEDSRUN 3 // on way to being runnable

>

> #define WAITSTATE_SIGNALLED 0
> #define WAITSTATE_PROCESSING 1
> #define WAITSTATE_BLOCKED 2

>
>

2.6. Key functions, nextthread, kcnextthread, makerun, reschedule...
In %winceroot%\PRIVATE\WINCEOS\COREOS\NK\Kernel\schedule.c

makerun insert a thread into the appropriate position in the RunList
nextthread Dequeue the blocked states from
kcnextthread | Check if the current running thread runs out of quantum and schedules for a

new thread to run according to the scheduling algorithm

UNL - Computer Science and Engineering 13 Written by Lu Shen and W. Srisa-an

CSCE 351: Operating System Kernel Lab 5: “System Call” through OEMIoControl

In %winceroot%\PRIVATE\WINCEOS\COREOS\NK\Kernel\X86\fault.c, Naked Reschedule is
called (after each slice interrupt?). It first check if there is runnable threads. if not go to power idle
state. Otherwise, it will call nextthread, kcnextthread to reschedule a runnable thread and then
executes the thread (possibly needs context switching).

[mm e e -
!/
// Do a reschedule.
!/
// (edi) = ptr to current thread or 0 to force a context reload
!/
[mm e e -
Naked
Reschedule()
{
//DEBUGMSG (1, (L"*** reschedule ***\r\n"));
__asm {
test [KData].bPowerOff, OFFh // Was a PowerOff requested?
jz short rsdlo0
mov [KData].bPowerOff, 0
call DoPowerOff // Yes - do it
rsdl0:
sti
cmp word ptr ([KData].bResched), 1
jne short rsdll
mov word ptr ([KData].bResched), 0
call NextThread
rsdll:
cmp dword ptr ([KData].dwKCRes), 1
jne short rsdl2
mov dword ptr ([KData].dwKCRes), 0
call KCNextThread
cmp dword ptr ([KData].dwKCRes), 1
je short rsdlo0
rsdl2:
mov eax, [RunList.pth]
test eax, eax
jz short rsd50 // nothing to run
cmp eax, edi
jne short rsd20
jmp RunThread // redispatch the same thread

// Switch to a new thread's process context.

// Switching to a new thread. Update current process and address space
// information. Edit the ring0 stack pointer in the TSS to point to the
// new thread's register save area.

//

!/ (eax) = ptr to thread structure

rsd20: mov edi, eax // Save thread pointer
mov esi, (THREAD)[eax].hTh // (esi) = thread handle
push edi
call SetCPUASID // Sets hCurProc for us!
pop ecx // Clean up stack
mov hCurThd, esi // set the current thread handle
mov PtrCurThd, edi // and the current thread pointer
mov ecx, [edi].tlsPtr // (ecx) = thread local storage ptr
mov [KData].lpvTls, ecx // set TLS pointer

UNL - Computer Science and Engineering 14 Written by Lu Shen and W. Srisa-an

CSCE 351: Operating System Kernel Lab 5: “System Call” through OEMIoControl

cmp edi, g _CurFPUOwner
jne SetTSBit
clts
Jjmp MuckWithFSBase
SetTSBit:
mov eax, CRO
test eax, TS_MASK
jnz MuckWithFSBase
or eax, TS_MASK
mov CRO, eax
MuckWithFSBase:
mov edx, offset g aGlobalDescriptorTable+KGDT PCR
sub ecx, FS_LIMIT+1 // (ecx) = ptr to NK PCR base
mov word ptr [edx+2], cx // set low word of FS base
shr ecx, 16
mov byte ptr [edx+4], cl // set third byte of FS base
mov byte ptr [edx+7], ch // set high byte of FS base
push fs
pop fs
lea ecx, [edi].ctx.TcxSs+4 // (ecx) = ptr to end of context save area
mov [MainTSS].Esp0, ecx
jmp RunThread // Run thread pointed to by edi

// No threads ready to run. Call OEMIdle to shutdown the cpu.

rsd50: cli

cmp word ptr ([KData].bResched), 1
je short DoReschedule
call OEMIdle
mov byte ptr ([KData].bResched), 1
Jjmp Reschedule
DoReschedule:
sti
Jjmp Reschedule

UNL - Computer Science and Engineering 15 Written by Lu Shen and W. Srisa-an

