
CSCE 351: Operating System Kernel Lab 5: “System Call” through OEMIoControl

UNL - Computer Science and Engineering Written by Lu Shen and W. Srisa-an 1

Name:____________________________________ SID: _______________________

CSCE 351: Operating System Kernels

Lab 5 – “System Call” through OEMIoControl

Basic Setup:

• Windows 2000/XP workstation with Windows CE .Net 4.2 installed.

Prerequisite:

• Know how to create a new platform (covered in Lab 1) and know how to revise the kernel

source code and rebuild the platform (covered in Lab 2)

Objectives:

The objectives of this lab are as follows:

• Familiarize students with calling system functions through OEMIoControl .

• Familiarize students with thread structure and kernel source code

Estimated Lab Time: 60 minutes

Introduction

The objective of this exercise is to familiarize students with the way of calling customized system

functions throughOEMIoControl. System call is the interface between OS and the user level

programs. Although Microsoft provides most of the kernel source code, they don’t provide enough

source code to creating a new system call. In this lab, we will study how to use OEMIoControl to

create a “system call”. We revise the source code of OEMIoControl implementation, where the

system level functions are called. This works not exactly the same way as a system call. But, we are

able to transfer user-level program to the system level. The method used in this lab may help you to

debug your code in your final project.

Activity 1 Check if the library file are corrupted

Because we revised the source code in previous labs, the library files in some of the machines may

be corrupted. Before we run this lab, we want to make sure the library files are fully functional. For

the machines that have corrupted library files, we need to restore the library files. For each machine,

we need to keep a backup for the library files.

1. Create a new platform with the following specification:

• Platform name: test_lastname_lab

• Use c:\csce351_lab for the path of your project.

• In step 3 of the “New Platform Wizard” choose “Internet Appliance”.

• In step 4 choose only Internet Explorer.

CSCE 351: Operating System Kernel Lab 5: “System Call” through OEMIoControl

UNL - Computer Science and Engineering Written by Lu Shen and W. Srisa-an 2

• In step 5 choose the default setting.

2. Change from Emulator:X86 Win32 (WCE Emulator) Release to Emulator:X86 Win32 (WCE

Emulator) Debug.

3. Build the platform

4. If the build succeeds, make a backup directory of the directory

C:\WINCE500\PUBLIC\COMMON\OAK\LIB\X86\DEBUG

in C:\WINCE500\PUBLIC\COMMON\OAK\LIB\X86\ and name the backup directory as

DEBUG.backup

5. If the build fails, do the following step to restore the library files

a. Remove the directory C:\WINCE500\PUBLIC\COMMON\OAK\LIB\X86\DEBUG

b. Download the file rcf.unl.edu/~lshen/DEBUG.zip to

C:\WINCE500\PUBLIC\COMMON\OAK\LIB\X86\

c. Extract the DEBUG.zip by clicking right button and select “extract here…”

d. make a backup directory of the directory

C:\WINCE500\PUBLIC\COMMON\OAK\LIB\X86\DEBUG in

C:\WINCE500\PUBLIC\COMMON\OAK\LIB\X86\ and name the backup directory as

DEBUG.backup

CSCE 351: Operating System Kernel Lab 5: “System Call” through OEMIoControl

UNL - Computer Science and Engineering Written by Lu Shen and W. Srisa-an 3

Activity 2

1. Make a backup file for C:\WINCE420\PRIVATE\WINCEOS\COREOS\NK\INC\kernel.h ; and

then add one field (FILETIME myCreate;) in the thread structure in

2. Make a backup file for

C:\WINCE420\PRIVATE\WINCEOS\COREOS\NK\KERNEL\schedule.c , and then insert a

new function in it:
BOOL
My_GetThreadTimes(
 HANDLE hThread,
 LPFILETIME lpCreationTime
)
{
 BOOL retval;
 PTHREAD pTh;

 if (!(pTh = HandleToThreadPerm(hThread)))
 {
 retval=FALSE;
 }
 else
 {
 __try {
 *lpCreationTime = pTh->myCreate;
 retval = TRUE;
 } __except (EXCEPTION_EXECUTE_HANDLER) {
 retval = FALSE;
 }
 }

 return retval;
}

3. In the same file of step 2, insert the following code to update my thread creation time

In DoCreateThread:

CSCE 351: Operating System Kernel Lab 5: “System Call” through OEMIoControl

UNL - Computer Science and Engineering Written by Lu Shen and W. Srisa-an 4

In SC_CreateProc:

In ProcInit:

4. Make a backup file for C:\WINCE420\PRIVATE\WINCEOS\COREOS\NK\INC\schedule.h,

and then add a declaration in it:

CSCE 351: Operating System Kernel Lab 5: “System Call” through OEMIoControl

UNL - Computer Science and Engineering Written by Lu Shen and W. Srisa-an 5

5. Make a backup file for C:\WINCE420\PLATFORM\EMULATOR\KERNEL\HAL\ oemioctl.c,

and then insert a declaration in it:

6. In C:\WINCE420\PLATFORM\EMULATOR\KERNEL\HAL\ oemioctl.c, insert the following

code in function OEMIoControl:

CSCE 351: Operating System Kernel Lab 5: “System Call” through OEMIoControl

UNL - Computer Science and Engineering Written by Lu Shen and W. Srisa-an 6

6. Create a new platform with the following specification:

Platform name: lastname_lab5

Use c:\csce351_lab for the path of your project.

In step 3 of the “New Platform Wizard” choose “Internet Appliance”.

In step 4 choose only Internet Explorer.

In step 5 choose the default setting.

7. Add a new project

a. Select File | New Project or File…

b. Select a WinCE application project

c. Name is as lastname_project_lab5

d. Select an empty project

8. In CSE, copy the file /home/classes/cse351/lab5c to your home directory and move it to

c:\csce351_lab\ lab5.c

9. Add source file into the project

a. Select Project | Insert | Files…

b. Select the file c:\csce351_lab\ lastname_lab5\lab5.c from your local disk

10. Build the platform

CSCE 351: Operating System Kernel Lab 5: “System Call” through OEMIoControl

UNL - Computer Science and Engineering Written by Lu Shen and W. Srisa-an 7

11. Download the image

12. Setup the breakpoints in Function My_GetThreadTimes in

C:\WINCE420\PRIVATE\WINCEOS\COREOS\NK\KERNEL\schedule.c

13. Select Target | Run Program and select lastname_project_lab5.exe to run

14. Observe the output

Note that the thread creation time printed out may not be the same as local time

Why calling KernelIoControl in lastname_lab5 will make My_GetThreadTimes get called in

schedule.c

15. Restore the files that were changed in the lab with their backup files

 C:\WINCE420\PRIVATE\WINCEOS\COREOS\NK\KERNEL\schedule.c

 C:\WINCE420\PRIVATE\WINCEOS\COREOS\NK\INC\kernel.h

 C:\WINCE420\PRIVATE\WINCEOS\COREOS\NK\INC\schedule.h

 C:\WINCE420\PLATFORM\EMULATOR\KERNEL\HAL\ oemioctl.c

16. Make sure that you can build a new platform after restoring these files

CSCE 351: Operating System Kernel Lab 5: “System Call” through OEMIoControl

UNL - Computer Science and Engineering Written by Lu Shen and W. Srisa-an 8

Appendix

1. Process Structure

The following is the process structure defined in kernel.h

(%winceroot%\PRIVATE\WINCEOS\COREOS\NK\INC):

struct Process {
 BYTE procnum; /* 00: ID of this process [ie: it's slot number] */
 BYTE DbgActive; /* 01: ID of process currently DebugActiveProcess'ing
this process */
 BYTE bChainDebug; /* 02: Did the creator want to debug child processes? */
 BYTE bTrustLevel; /* 03: level of trust of this exe */
#define OFFSET_TRUSTLVL 3 // offset of the bTrustLevel member in Process structure
 LPPROXY pProxList; /* 04: list of proxies to threads blocked on this process
*/
 HANDLE hProc; /* 08: handle for this process, needed only for
SC_GetProcFromPtr */
 DWORD dwVMBase; /* 0C: base of process's memory section, or 0 if not in
use */
 PTHREAD pTh; /* 10: first thread in this process */
 ACCESSKEY aky; /* 14: default address space key for process's threads */
 LPVOID BasePtr; /* 18: Base pointer of exe load */
 HANDLE hDbgrThrd; /* 1C: handle of thread debugging this process, if any */
 LPWSTR lpszProcName; /* 20: name of process */
 DWORD tlsLowUsed; /* 24: TLS in use bitmask (first 32 slots) */
 DWORD tlsHighUsed; /* 28: TLS in use bitmask (second 32 slots) */
 PEXCEPTION_ROUTINE pfnEH; /* 2C: process exception handler */
 LPDBGPARAM ZonePtr; /* 30: Debug zone pointer */
 PTHREAD pMainTh; /* 34 primary thread in this process*/
 PMODULE pmodResource; /* 38: module that contains the resources */
 LPName pStdNames[3]; /* 3C: Pointer to names for stdio */
 LPCWSTR pcmdline; /* 48: Pointer to command line */
 DWORD dwDyingThreads; /* 4C: number of pending dying threads */
 openexe_t oe; /* 50: Pointer to executable file handle */
 e32_lite e32; /* ??: structure containing exe header */
 o32_lite *o32_ptr; /* ??: o32 array pointer for exe */
 LPVOID pExtPdata; /* ??: extend pdata */
 BYTE bPrio; /* ??: highest priority of all threads of the process */
 BYTE fNoDebug; /* ??: this process cannot be debugged */
 WORD wPad; /* padding */
 PGPOOL_Q pgqueue; /* ??: list of the page owned by the process */
#if HARDWARE_PT_PER_PROC
 ulong pPTBL[HARDWARE_PT_PER_PROC]; /* hardware page tables */
#endif

}; /* Process */

This table gives some further explanation on some important fields in the process structure.
procnum the slot number of this process as its ID. there are only 32 slots in CE

pProxList a list of objects that the threads of this process are waiting for

pTh a process main own multiple of threads. pTh is the first one

lpszProcName name of the process

CSCE 351: Operating System Kernel Lab 5: “System Call” through OEMIoControl

UNL - Computer Science and Engineering Written by Lu Shen and W. Srisa-an 9

2. Thread Structure

In Windows CE .NET, each process may contain many threads (up to virtual memory limitation).

Scheduling operates on threads based on their priorities. The following is the thread structure

defined in kernel.h (%winceroot%\PRIVATE\WINCEOS\COREOS\NK\INC):

struct Thread {
 WORD wInfo; /* 00: various info about thread, see above */
 BYTE bSuspendCnt;/* 02: thread suspend count */
 BYTE bWaitState; /* 03: state of waiting loop */
 LPPROXY pProxList; /* 04: list of proxies to threads blocked on this thread */
 PTHREAD pNextInProc;/* 08: next thread in this process */
 PPROCESS pProc; /* 0C: pointer to current process */
 PPROCESS pOwnerProc; /* 10: pointer to owner process */
 ACCESSKEY aky; /* 14: keys used by thread to access memory & handles */
 PCALLSTACK pcstkTop; /* 18: current api call info */
 DWORD dwOrigBase; /* 1C: Original stack base */
 DWORD dwOrigStkSize; /* 20: Size of the original thread stack */
 LPDWORD tlsPtr; /* 24: tls pointer */
 DWORD dwWakeupTime; /* 28: sleep count, also pending sleepcnt on waitmult */
 LPDWORD tlsSecure; /* 2c: TLS for secure stack */
 LPDWORD tlsNonSecure; /* 30: TLS for non-secure stack */
 LPPROXY lpProxy; /* 34: first proxy this thread is blocked on */
 DWORD dwLastError;/* 38: last error */
 HANDLE hTh; /* 3C: Handle to this thread, needed by NextThread */
 BYTE bBPrio; /* 40: base priority */
 BYTE bCPrio; /* 41: curr priority */
 WORD wCount; /* 42: nonce for blocking lists */
 PTHREAD pPrevInProc;/* 44: previous thread in this process */
 LPTHRDDBG pThrdDbg; /* 48: pointer to thread debug structure, if any */
 LPBYTE pSwapStack; /* 4c */
 FILETIME ftCreate; /* 50: time thread is created */
 CLEANEVENT *lpce; /* 58: cleanevent for unqueueing blocking lists */
 DWORD dwStartAddr; /* 5c: thread PC at creation, used to get thread name */
 CPUCONTEXT ctx; /* 60: thread's cpu context information */
 PTHREAD pNextSleepRun; /* ??: next sleeping thread, if sleeping, else next on
runq if runnable */
 PTHREAD pPrevSleepRun; /* ??: back pointer if sleeping or runnable */
 PTHREAD pUpRun; /* ??: up run pointer (circulaar) */
 PTHREAD pDownRun; /* ??: down run pointer (circular) */
 PTHREAD pUpSleep; /* ??: up sleep pointer (null terminated) */
 PTHREAD pDownSleep; /* ??: down sleep pointer (null terminated) */
 LPCRIT pOwnedList; /* ??: list of crits and mutexes for priority inversion */
 LPCRIT pOwnedHash[PRIORITY_LEVELS_HASHSIZE];
 DWORD dwQuantum; /* ??: thread quantum */
 DWORD dwQuantLeft;/* ??: quantum left */
 LPPROXY lpCritProxy;/* ??: proxy from last critical section block, in case stolen
back */
 LPPROXY lpPendProxy;/* ??: pending proxies for queueing */
 DWORD dwPendReturn;/* ??: return value from pended wait */
 DWORD dwPendTime; /* ??: timeout value of wait operation */
 PTHREAD pCrabPth;
 WORD wCrabCount;
 WORD wCrabDir;
 DWORD dwPendWakeup;/* ??: pending timeout */
 WORD wCount2; /* ??: nonce for SleepList */
 BYTE bPendSusp; /* ??: pending suspend count */
 BYTE bDbgCnt; /* ??: recurse level in debug message */
 HANDLE hLastCrit; /* ??: Last crit taken, cleared by nextthread */
 //DWORD dwCrabTime;
 CALLSTACK IntrStk;
 DWORD dwKernTime; /* ??: elapsed kernel time */
 DWORD dwUserTime; /* ??: elapsed user time */
}; /* Thread */

CSCE 351: Operating System Kernel Lab 5: “System Call” through OEMIoControl

UNL - Computer Science and Engineering Written by Lu Shen and W. Srisa-an 10

2.1. wInfo

wInfo is a 16 bit integer, which contains the following information of a thread. The MACRO shown

below the table indicates the start position for each field in wInfo (as well as their length).

RUNSTATE running state of this thread (blocked, running, runnable, needsrun)

DYING if terminating

DEAD if dead

BURIED if buried

SLEEPING if sleeping

TIMEMODE time mode

STACKFAULT ?

DEBUGBLK ?

NOPRIOCALC ?

DEBUGWAIT ?

USERBLOCK if thread is able to enter sleeping state automatically

NEEDSLEEP if the thread should be put into sleeplist

PROFILE ?

#define RUNSTATE_SHIFT 0 // 2 bits
#define DYING_SHIFT 2 // 1 bit
#define DEAD_SHIFT 3 // 1 bit
#define BURIED_SHIFT 4 // 1 bit
#define SLEEPING_SHIFT 5 // 1 bit
#define TIMEMODE_SHIFT 6 // 1 bit
#define NEEDDBG_SHIFT 7 // 1 bit
#define STACKFAULT_SHIFT 8 // 1 bit
#define DEBUGBLK_SHIFT 9 // 1 bit
#define NOPRIOCALC_SHIFT 10 // 1 bit
#define DEBUGWAIT_SHIFT 11 // 1 bit
#define USERBLOCK_SHIFT 12 // 1 bit
#ifdef DEBUG
#define DEBUG_LOOPCNT_SHIFT 13 // 1 bit - only in debug
#endif
#define NEEDSLEEP_SHIFT 14 // 1 bit
#define PROFILE_SHIFT 15 // 1 bit, must be 15! Used by assembly code!

2.2. Pointers for different queues (lists)

CE schedules threads in the system according to their priorities. Each thread is scheduled without

considering which process it belongs to. Many queues, e.g., runlist, sleeplist, and list of threads of a

mutex, are maintain for scheduling purpose. The following fields are important for maintaining

those queues:

pProc pointer to current process

pNextInProc pointer to next thread in this process

pPrevInProc pointer to previous thread in this process

pOwnerProc pointer to owner process

pNextSleepRun pointer to the next sleeping or runnable thread (depending on its state)

CSCE 351: Operating System Kernel Lab 5: “System Call” through OEMIoControl

UNL - Computer Science and Engineering Written by Lu Shen and W. Srisa-an 11

pPrevSleepRun poinster to the previous sleeping or runnable thread (depending on its state)

pUpRun pointer to the next run thread (explained later)

pDownRun pointer to previous runnable thread

pUpSleep pointer to the previous sleeping thread

pDownSleep poinster to the next sleeping thread

Note that CE maintains 2D sleeping and running queues. pNextSleepRun and pPrevSleepRun point

to the threads with different priority, while pUpRun, pDownRun, pUpSleep, and pDownSleep point

to threads with the same priority. The following figure is an simplified illustration of the runlist.

Note that the thread with grey color have the same priority.

pUpRun pDown Run

pPrevSleepRun pNextSleepRun

pUpRun pDown Run

pPrevSleepRun pNextSleepRun

pUpRun pDown Run

pPrevSleepRun pNextSleepRun

pUpRun pDown Run

pPrevSleepRun pNextSleepRun

pUpRun pDown Run

pPrevSleepRun pNextSleepRun

null

null

2.3. Priority and Quantum

Each thread is assigned a quantum for execution. The default value of the quantum is 100ms.

Scheduler operates according to the preemptive round-robin algorithm.

bBPrio base priority

bCPrio current priority

dwQuantum quantum

dwQuanLeft left quantum

2.4. RunList and SleepList

typedef struct {
 PTHREAD pRunnable; /* List of runnable threads */
 PTHREAD pth; /* Currently running thread */
 PTHREAD pHashThread[PRIORITY_LEVELS_HASHSIZE];
} RunList_t;

CSCE 351: Operating System Kernel Lab 5: “System Call” through OEMIoControl

UNL - Computer Science and Engineering Written by Lu Shen and W. Srisa-an 12

pRunnable is a pointer to the first thread of the current runnable thread list. pth is the current

running thread. pHashThread is a hash table, which contains 32 levels

(PRIORITY_LEVELS_HASHSIZE) of thread lists. Each level of thread list in the pHashThread

may have 8 kind of priorities. Therefore, we have totally 8*32=256 priorities.

We have a runnable list (RunList_t RunList), a sleep list (PTHREAD SleepList;), and many queues

for each object, such as mutex, semaphore, etc. Please refer to schedule.c.

2.5. States of a Thread
#define RUNSTATE_RUNNING 0 // must be 0
#define RUNSTATE_RUNNABLE 1
#define RUNSTATE_BLOCKED 2
#define RUNSTATE_NEEDSRUN 3 // on way to being runnable

#define WAITSTATE_SIGNALLED 0
#define WAITSTATE_PROCESSING 1
#define WAITSTATE_BLOCKED 2

runnstate -

running

runnstate-

runnable

runnstate -

blocked

runnstate -

needsrun

waitstate-

signalled

waitstate-

processing

waitstate-

blocked

preempt existing

thread or time to run

preempt expired or

preempted by otehrs

interm ediate state for

kernek source code

object arrives

wait operation

intermediate state for

kernek source code

object arrives

wait operation finished

kernel source code

kernel source

code execution

kernel source

code execution

Here is some explanation on those 6 states from mailing list (microsoft.public.windowsce.platbuilder):

From: "Bor-Ming Hsieh [MS]" <bmhsieh@anit-spam-prefix.microsoft.com>

Subject: Re: schedule.c (OS Kernel)

Date: 2004年7月9日 12:14

l lpProxy - the list of objects a thread are blocked on. For

example, if you call WaitForMultipleObjects (n, .) and blocked, it'll be a

queue of n proxies.

l RUNSTATE indicate the 'steady state of a thread'.

RUNSTATE_RUNNING, RUNSTATE_RUNNABLE, and RUNSTATE_BLOCKED should explain

themselves. RUNSTATE_NEEDRUN is a transition state, introduced for

Real-Timeness, that a thread is about to make RUNNABLE. The reason being

that it could take a long time to remove a thread from a 'wait' queue and

put it into run queue in a single KCall. For real-time, we break the

operation into 2 KCalls - remove a thread from the wait queue and put it

into the run queue. This state is used to indicate that a thread is being

CSCE 351: Operating System Kernel Lab 5: “System Call” through OEMIoControl

UNL - Computer Science and Engineering Written by Lu Shen and W. Srisa-an 13

removed from the wait queue, but not yet put to the run queue.

l WAITSTATE is only meaningful when a thread is doing a Wait

operation (WaitForMultipleObjects, EnterCriticalSection).

n WAITSTATE_PROCESSING - in the middle of a wait operation.

n WAITSTATE_SIGNALED - while processing the 'wait' operation, at

least one of the objects the thread waits on is signaled, thus the wait

should return right away (wait completed)

n WAITSTATE_BLOCKED - the wait operation has completely and the

thread calling the wait function is about to be blocked. The run-state of

the thread will be changed to RUNSTATE_BLOCKED on the next reschedule.

-- Bor-Ming

--

This posting is provided "AS IS" with no warranties, and confers no rights.

You assume all risk for your use. ?2004 Microsoft Corporation. All rights

reserved.

"lu shen" <lshen@csce.unl.edu> wrote in message

news:%23P05O2KZEHA.2388@TK2MSFTNGP09.phx.gbl...

> I am reading the kernel source code. Can anyone answer the following

> questions regarding scheduling:

>

> 1. what is lpProxy in "struct thread"

> 2. the following states are defined for a thread. What is the difference

> between RUNSTATE_BLOCKED, WAITSTATE_BLOCKED , and WAITSTATE_SIGNALLED ?

>

> #define RUNSTATE_RUNNING 0 // must be 0

> #define RUNSTATE_RUNNABLE 1

> #define RUNSTATE_BLOCKED 2

> #define RUNSTATE_NEEDSRUN 3 // on way to being runnable

>

> #define WAITSTATE_SIGNALLED 0

> #define WAITSTATE_PROCESSING 1

> #define WAITSTATE_BLOCKED 2

>

>

2.6. Key functions, nextthread, kcnextthread, makerun, reschedule…

In %winceroot%\PRIVATE\WINCEOS\COREOS\NK\Kernel\schedule.c

makerun insert a thread into the appropriate position in the RunList

nextthread Dequeue the blocked states from

kcnextthread Check if the current running thread runs out of quantum and schedules for a

new thread to run according to the scheduling algorithm

CSCE 351: Operating System Kernel Lab 5: “System Call” through OEMIoControl

UNL - Computer Science and Engineering Written by Lu Shen and W. Srisa-an 14

In %winceroot%\PRIVATE\WINCEOS\COREOS\NK\Kernel\X86\fault.c, Naked Reschedule is

called (after each slice interrupt?). It first check if there is runnable threads. if not go to power idle

state. Otherwise, it will call nextthread, kcnextthread to reschedule a runnable thread and then

executes the thread (possibly needs context switching).

//--
//
// Do a reschedule.
//
// (edi) = ptr to current thread or 0 to force a context reload
//
//--
Naked
Reschedule()
{
 //DEBUGMSG(1,(L"*** reschedule ***\r\n"));
 __asm {
 test [KData].bPowerOff, 0FFh // Was a PowerOff requested?
 jz short rsd10
 mov [KData].bPowerOff, 0
 call DoPowerOff // Yes - do it
rsd10:
 sti
 cmp word ptr ([KData].bResched), 1
 jne short rsd11
 mov word ptr ([KData].bResched), 0
 call NextThread
rsd11:
 cmp dword ptr ([KData].dwKCRes), 1
 jne short rsd12
 mov dword ptr ([KData].dwKCRes), 0
 call KCNextThread

 cmp dword ptr ([KData].dwKCRes), 1
 je short rsd10

rsd12:
 mov eax, [RunList.pth]
 test eax, eax
 jz short rsd50 // nothing to run
 cmp eax, edi
 jne short rsd20
 jmp RunThread // redispatch the same thread

// Switch to a new thread's process context.
// Switching to a new thread. Update current process and address space
// information. Edit the ring0 stack pointer in the TSS to point to the
// new thread's register save area.
//
// (eax) = ptr to thread structure

rsd20: mov edi, eax // Save thread pointer
 mov esi, (THREAD)[eax].hTh // (esi) = thread handle
 push edi
 call SetCPUASID // Sets hCurProc for us!
 pop ecx // Clean up stack

 mov hCurThd, esi // set the current thread handle
 mov PtrCurThd, edi // and the current thread pointer
 mov ecx, [edi].tlsPtr // (ecx) = thread local storage ptr
 mov [KData].lpvTls, ecx // set TLS pointer

CSCE 351: Operating System Kernel Lab 5: “System Call” through OEMIoControl

UNL - Computer Science and Engineering Written by Lu Shen and W. Srisa-an 15

 cmp edi, g_CurFPUOwner
 jne SetTSBit
 clts
 jmp MuckWithFSBase

SetTSBit:
 mov eax, CR0
 test eax, TS_MASK
 jnz MuckWithFSBase
 or eax, TS_MASK
 mov CR0, eax

MuckWithFSBase:
 mov edx, offset g_aGlobalDescriptorTable+KGDT_PCR
 sub ecx, FS_LIMIT+1 // (ecx) = ptr to NK_PCR base
 mov word ptr [edx+2], cx // set low word of FS base
 shr ecx, 16
 mov byte ptr [edx+4], cl // set third byte of FS base
 mov byte ptr [edx+7], ch // set high byte of FS base

 push fs
 pop fs

 lea ecx, [edi].ctx.TcxSs+4 // (ecx) = ptr to end of context save area
 mov [MainTSS].Esp0, ecx
 jmp RunThread // Run thread pointed to by edi

// No threads ready to run. Call OEMIdle to shutdown the cpu.

rsd50: cli

 cmp word ptr ([KData].bResched), 1
 je short DoReschedule
 call OEMIdle
 mov byte ptr ([KData].bResched), 1
 jmp Reschedule
DoReschedule:
 sti
 jmp Reschedule
 }
}

