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Feature Adaptive Co-Segmentation by Complexity

Awareness
Fanman Meng, Hongliang Li, Senior Member, IEEE, King Ngi Ngan, Fellow, IEEE,

Liaoyuan Zeng, and Qingbo Wu

Abstract— In this paper, we propose a novel feature adaptive
co-segmentation method that can learn adaptive features of dif-
ferent image groups for accurate common objects segmentation.
We also propose image complexity awareness for adaptive feature
learning. In the proposed method, the original images are first
ranked according to the image complexities that are measured
by superpixel changing cue and object detection cue. Then, the
unsupervised segments of the simple images are used to learn
the adaptive features, which are achieved using an expectation-
minimization algorithm combining l1-regularized least squares
optimization with the consideration of the confidence of the

simple image segmentation accuracies and the fitness of the
learned model. The error rate of the final co-segmentation is
tested by the experiments on different image groups and verified
to be lower than the existing state-of-the-art co-segmentation
methods.

Index Terms— Cosegmentation, distance metric learning,
image complexity analysis.

I. INTRODUCTION

I
N COMPUTER vision area, image segmentation [1]–[8]

is a process of segmenting objects from images. The goal

of image segmentation is bottom up and unsupervised seg-

mentation of general images. As a key branch of image

segmentation, co-segmentation [9]–[24] is to segment common

objects from an image group. By assuming a group of images

contain common objects, co-segmentation only requires addi-

tional images containing the same or similar target objects for

accurate segmentation.

The co-segmentation methods are generally developed by

adding foreground similarity into single image segmentation
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TABLE I

THE FEATURES USED IN THE EXISTING CO-SEGMENTATION METHODS

models, such as Markov Random Filed (MRF) segmenta-

tion [9]–[12], [17], [22], heat diffusion segmentation [19],

clustering based segmentation [14], [20], and random walker

segmentation [21]. Using the additional foreground similarity

constraints guarantees the segmentation of the common objects

only, which results in more accurate segmentation than single

image segmentation.

The accuracy of co-segmentation is significantly dependent

on the efficiency of the foreground similarities measurement.

Many region features, such as color histogram [9]–[13],

SIFT [14], [20], contour descriptor [18] and local binary pat-

tern descriptor [22], have been used to evaluate the foreground

similarity. Furthermore, ℓ1-norm, ℓ2-norm, reward strategy

and χ2 distance, were usually used for the feature distance

calculation.

However, the existing co-segmentation methods cosegment

different image classes using a fixed foreground similarity

measurement without change. In general, the fixed features are

manually selected or learned from the training data set [18]

before co-segmentation. We display the fixed features used

in the existing co-segmentation methods in Table I. Using

fixed similarity measurement in co-segmentation may lead

to some problems in realistic applications. Firstly, since the

similar features of the common objects vary in different

image groups, the fixed feature can not accurately measure

the foreground similarities of different classes, which results

in the unsuccessful co-segmentation. Secondly, for the images

whose common object varies significantly, a combination of

the general features will be required to accurately measure the

foreground similarity. However, designing the combinational

feature model creates high complexity for the manual selection

manner. Thirdly, the training features from the fixed training

data may lead to low feature accuracy because the fixed

training data cannot accurately represent the similar features
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for a specific class. Hence, to obtain the features that are

adaptive to different image classes is necessary to improve

the accuracy of the co-segmentation.

To obtain the adaptive features, we note that the common

objects in a simple image can be easily extracted by the figure-

ground segmentation methods, such as object detection based

segmentation and saliency detection based segmentation. It is

seen that these simple image segments can be used to learn

the features adaptable to each image group and thus increase

the accuracy of the co-segmentation. Furthermore, when the

original images are collected from various sources, certain

images will contain simple background images. Thus, the

simple image segments can provide adaptive training data for

accurate feature learning.

In this paper, we propose a feature adaptive image

co-segmentation method to improve the accuracy of the

co-segmentation when the similar features are unknown (first

reported in [27]). The simple image segments are used to learn

the adaptive features. The proposed method consists of four

steps. In the first step, we evaluate the image complexities

by the superpixel changing cue and the object detection cue.

We then select simple images and segment the initial segments

by figure-ground segmentation method. In the third step, we

represent the features as a linear combination of the common

features, and we learn the linear combination parameters by

the EM based algorithm. In the last step, the common objects

are segmented according to the learned feature model. We test

the performance of the proposed co-segmentation method in

terms of error rate in different image groups. The results

demonstrate that the lower error rates can be obtained by the

proposed method.

The structure of this paper is organized as follows.

The related work is discussed in Section II. In Section III

and IV, we present the proposed co-segmentation method by

demonstrating the image complexity analysis, the adaptive

feature learning model and the final co-segmentation achieved

by using the learned features. Section V and VI show the

experiment of the proposed method and the discussion of the

results. Finally, in Section VII, the conclusion is given.

II. RELATED WORK

Co-segmentation is usually modeled as an optimization

process with the consideration of the foregrounds similarity

constraints added into the single image segmentation models.

The MRF based co-segmentation method was first presented

by C. Rother et al. [9], which segmented common objects

through adding foreground similarity constraint into traditional

MRF based segmentation methods. ℓ1-norm was used to repre-

sent the foreground similarity, and the co-segmentation energy

was minimized by trust region graph cuts (TRGC) method.

Based on Rother’s work, several MRF co-segmentation meth-

ods deal with the optimization problem using other constraints.

In the work of L. Mukherjee et al. [10], ℓ1-norm was replaced

by ℓ2-norm and the Pseudo-Boolean optimization was used

for the minimization. Instead of penalizing foreground dif-

ference, D. S. Hochbaum and V. Singh [11] rewarded

the foreground similarity, which can result in the tractable

energy function optimization by graph-cuts algorithm. In [12],

S. Vicente et al. modified Boykov-Jolly model as the fore-

ground similarity measurement, and employed Dual Decom-

position to minimize the energy function. Note that in these

co-segmentation methods, the common objects are assumed to

contain similar colors.

A. Joulin et al. [14] segmented common objects using

the clustering strategy, in which a classifier produced by

spectral clustering technique and positive definite kernel was

used as a co-segmentation. The most discriminative classi-

fier was then found as the final co-segmentation by solving

a continuous convex searching optimization problem. Both

color and SIFT features were used in this work. An inter-

active co-segmentation method was proposed in the work of

D. Batra et al. [15], which can segment common objects

through user interaction guided by an automatic recommenda-

tion system to correct the inconsistent segmentation. In [16],

by observing that the rank of the matrix corresponding to the

foreground regions still equals to one even if the common

objects contain the scale variants, L. Mukherjee et al. proposed

a scale invariant co-segmentation method which intended to

find a matrix comprised of common objects with rank of one.

K. Chang et al. [17] designed a novel global energy term

to represent the foreground similarity and background con-

sistency. Combined with the foreground potentials measured

by co-saliency model, the final energy function is submod-

ular which can be minimized by the graph-cut algorithm.

S. Vicente et al. [18] presented an object co-segmentation

method to segment objects of interest. An off-line learning

method was used to select the discriminative features from

the common features through random forest regressor, which

leads to the segmentation of only the interesting common

objects. G. Kim et al. in [19] used anisotropic heat diffusion

segmentation method to segment common objects of multiple

classes from a large scale of images group. In Kim’s work,

the common objects were assumed to contain similar colors,

which will result in unsuccessful co-segmentation when the

common objects contain other similar features. Y. Chai et al.

in [25] proposed a Bi-level co-segmentation method (BiCoS)

for image classification. Chai’s method performs the Grabcuts

based segmentation with the initializations of the linear SVM

based class models and alternately updates the class models

and segmentation until convergence to achieve the image

segmentation and classification. Instead of sharing descriptor

at the level of individual pixels, Chai’s method shares a richer

descriptor at the level of superpixels stacked from multiple

general sub-descriptors which represent the superpixels’ color

distribution, SIFT distribution, size, location within the image,

and shape. The use of the richer descriptor can improve the

co-segmentation accuracy. However, the feature model in the

method in [25] reminds a combination of several existing

features and the features adaptive to each specific class group

is not discussed.

Recently, A. Joulin et al. [20] presented a multi-class

co-segmentation method which extends the discriminative

clustering based co-segmentation [14] to segment the com-

mon objects of multiple image classes. Joulin designed a

new energy function which consists of spectral-clustering
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term and discriminative term. The spectral-clustering term

can divide each image into visually and spatially consistent

labeled regions, and the discriminative term can maximize the

class separability in the image group. The energy function

can be finally optimized by using EM algorithm. In Joulin’s

work, the EM algorithm is to perform image segmentation,

where E-step estimates the label of each pixel, and the

M-step estimates the parameters of the discriminative clas-

sifier. Instead, in our method the EM algorithm is used for the

feature learning, where E-step estimates the confidence of the

initial segmentation, and the M-step estimates the parameters

of the feature model. It is seen that the fixed features are

used in the model in [14], while we use adaptive features for

more accurate co-segmentation. The co-segmentation method

proposed by M. Collins et al. [21] adds foreground consis-

tency into the random walker based segmentation method

which leads to a tractable energy minimization and speeds

up the co-segmentation algorithm compared with the MRF

based co-segmentation. J. Rubio et al. [22] segmented the

common objects by proposing a new graph matching based

foreground similarity measurement and alternatively updat-

ing the saliency detection and the segmentation, which can

enhance the co-segmentation accuracy. In [26], Meng et al.

used the graph theory to segment the common objects from

a large scale image group. A digraph was constructed based

on the local region similarity and the co-saliency values.

The co-segmentation was then formulated as a shortest path

problem, which can be solved by using dynamic program-

ming. In the methods discussed in this paragraph, the fixed

features are used to measure the foreground similarity for

successful co-segmentation, which will cause unsuccessful

co-segmentation when different common objects contain dif-

ferent types of similar features. Hence, in that situation,

features that can adapt to different image classes are needed

to improve the co-segmentation accuracy.

Another related work is the metric learning [28]–[32], which

aims to improve the performance of many applications by

learning more accurate distance metric. In general, an objective

function representing the consistency between the metric and

the training data is first defined. Then, the metric learning is

formulated as maximizing the fitness between the metric and

the data to obtain the best distance metric according to evaluat-

ing the distance parameters. In general, Mahalanobis distance

(d(x, y) = (xy)T A(xy)) with parameter A was usually used

as the basic distance. Other basic distance representation, such

as randomized binary trees, is also employed. The metric

learning has been widely used in many computer vision tasks,

such as image alignment [29], image classification [31], data

clustering, and face recognition. Nguyen et al. [29] introduced

metric learning in parameterized appearance model based

image alignment to overcome the local minima optimization

problem. The convex quadratic programming was used for

the metric learning. Eric Nowak et al. considered the domain

specific knowledge in the metric learning for accurate image

comparing [30]. This method rewarded the distinct knowledge

of the object in the metric learning in terms of a set of

randomized binary trees, which resulted in more accurate

object comparing. In the work of Nakul Verma et al. [31],

a hierarchy metric learning model rather than single metric

leaning was proposed for the image classification. A set of

Mahalanobis distance metrics related to the class taxonomy

were trained in a probabilistic nearest-neighbor classification

framework. By representing metric in a hierarchal way, accu-

rate distinct distance can be learned. Mensink et al. [32] used

metric learning to enhance the Large-scale image annotation.

The Mahalanobis distance based metric was learned for both

k-NN classification and nearest class mean classifier used in

the image annotation. To consider the real-time learning in the

large-scale datasets, a small fraction of the training data were

considered in each iteration by combing stochastic gradient

descend (SGD) algorithms and product quantization.

III. THE PROPOSED CO-SEGMENTATION METHOD

In the proposed method, we learn the adaptive features from

the initial segments of simple images. We first select simple

images from the image group by image complexity analysis.

Then, we use the figure-ground segmentation to extract the

initial segments from the simple images, and learn the adaptive

feature model based on these segments. The learned feature

model is finally used to achieve image co-segmentation.

The flowchart of the proposed co-segmentation method is

shown in Figure 1, which consists of four steps, i.e., image

complexity analysis, simple image segmentation, adaptive fea-

ture learning, and co-segmentation.

A. Image Complexity Analysis

In our method, the simple image selection is to simplify the

initial object extraction. We can observe that the objects can

be easily segmented from the images with simple background,

while it is usually difficult to extract the objects from the

complex backgrounds. Hence, we define a simple image as

the image with homogenous background. On the contrary,

an image with complicated background is treated as complex

image. In this paper, the image complexity is measured by

two cues, i.e., the over-segmentation based image complexity

analysis and the object detection based image complexity

analysis.

1) Over-Segmentation Based Image Complexity Analysis:

It can be observed from the realistic images that the homoge-

nous background contained in a simple image will keep

a single local region in the edge based hierarchical over-

segmentation, while a complicated background containing

many different appearances will be separated into many local

regions. We can see that the number of local regions of a

simple image is small and stable in the hierarchical over-

segmentation results. But a complex image will be assigned a

large number of local regions. Motivated by such observation,

we use the local regions number in the edge based hierarchical

over-segmentation to measure the image complexity. In the

measurement, the original image Ii , i = 1, · · · , Ni is first

over-segmented into local regions by the edge based over-

segmentation method with different scales. Then, the sum of

local region numbers over all scales is counted as the score of

the measurement. For Ii , the score of the over-segmentation
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Fig. 1. The flowchart of the proposed method.

based image complexity analysis C1
i is calculated by

C1
i =

K
∑

k=1

ni
k (1)

where ni
k is the number of the local regions in the k-th scale

over-segmentation, K is the number of scales. It is seen that

simple image will have small C1
i . Otherwise, large values will

be assigned to the complex images. Based on C1
i , we sort the

image complexity in ascending order and obtain the sorted

order ρ1. Meanwhile, we record Ii by the position (ηi
1) of Ii

in ρ1 and obtain η1 = {η1
1, η

2
1, · · · , η

Ni

1 }.

We use the method in [33]1 to obtain the hierarchical

image over-segmentation. In the method [33], the oriented

watershed transform (OWT) is used to form the initial regions.

Then, the greedy graph-based region merging algorithm is

used to construct the hierarchy of the regions. The hierarchy

of the regions is finally treated as an Ultrametric Contour

Map (UCM). By setting different thresholds (the scale K ) on

the UCM, we can obtain a series of over segmentation results.

In this paper, we set K = 40, 50, 75, 100, 150 and 200 for

the hierarchical over-segmentation.

Fig. 2 shows the hierarchical over-segmentation results of

three images, where the simple image (the top image) and

the complex images (the middle and bottom images) are

displayed for comparison. The original images are shown in

the first column. The rest columns show the over-segmentation

results at different scales. The corresponding scales for the

columns are represented above each column. The number of

the local region for each over-segmentation result is shown

1http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/
resources.html

Fig. 2. The over segmentation results by the method in [33]. The first
column: Original images. The rest columns: the segmentation results under

different K . The C1 for three images are 50, 107 and 124 from first row to
last row, respectively.

below the over-segmentation result. It is seen that the sum

number of the local regions over all scales are 50, 107 and

124 from the top row to the bottom row, respectively. We can

see that the number of the simple image is obviously smaller

than the number of the complex image, which verifies the

validity of the over-segmentation based image complexity

analysis. The sorted images by C1 are shown in the top row of

Fig. 4, where the top 12 simple images of Bottles are shown.

We can see that simple images can be selected by the over-

segmentation based image complexity analysis.

2) Object Detection Based Image Complexity Analysis: It is

observed that the simple images usually contain single object,

while the complex images include many objects, especially the

objects in the backgrounds. By performing the object detection

method on the simple images, the detected windows will focus

on the object, and result in the compact detection. But for

complex images, the detections will locate on different objects,

and result in dispersive detection. To clearly illustrate this
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Fig. 3. The detection results of the simple images and the complex images
in [34]. (a)-(c): the detection results of simple images. (d)-(f): the detection
results of complex images.

observation, we show some detection results in Fig. 3, where

the results of the simple images and the complex images are

shown in Fig. 3 (a)-(c) and Fig. 3 (d)-(f), respectively. It can

be seen that compact windows are obtained from the simple

images, such as the apple logo with a simple blue background.

Meanwhile, the scatter windows are detected in the complex

images, such as ducks under the tree.

We use the scatter degree to evaluate the image complexi-

ties. We first perform a sliding window based object detection

method in each image Ii . The best Nw windows are selected

for the complexity measurement. Then, we represent each

window as a binary matrix Mi , i = 1, · · · , Nw , where the size

of the matrix is same to the size of the image, and the pixels

within the window have value one and zero for the pixels

outside the window. Next, we compute M by summing up

all binary matrixes, i.e., M =
∑Nw

k=1 Mk , 0 ≤ M( j, l) ≤ Nw .

The complexity of the image Ii is then measured by

C2
i =

∑

( j,l) π(M( j, l), Tw)
∑

( j,l) π(M( j, l), 1)
−

∑

( j,l) π(M( j, l), 1)
∑

( j,l) π(M( j, l), 0)
(2)

where

π(a, b) =

{

1 i f a ≥ b

0 else
(3)

It can be seen that there are two terms included in (2). The first

term is to evaluate the scatter of the detection by measuring

the ratio of the overlapped regions to the whole detected

region. It prefers a large value when most overlapped regions

focus on an object. In order to avoid the influence of the

unsuccessful detections in the complex images, where most

of the backgrounds are detected and included in the windows,

we introduce the second term by measuring the ratio of the

area of the detection region to the whole image region. It is

seen that the unsuccessful detections will have low scores by

the second term. We sort C2
i in descending order and obtain the

sorted order ρ2. We also record each image Ii by the position

of the image ηi
2 in ρ2 and obtain η2 = {η1

2, η
2
2, · · · , η

Ni

2 }.

The method in [34]2 is used as the object detection. We set

Nw = 10 and Tw = 8 for all image groups. In Fig. 3, we also

display C2
i for each image. The values C2

i are shown below

each image. It is seen that the simple images have larger C2

2http://groups.inf.ed.ac.uk/calvin/objectness/

than the values of the complex images, which demonstrates

that the object detection based image complexity analysis can

describe the complexities of these images. The sorted images

based on the object detection based analysis method are shown

in the middle row of Fig. 4, which shows the successful

selection of the simple images by the object detection based

image complexity analysis.

3) Combination of Image Analysis Methods: We combine

the above two cues to obtain more accurate image ranking.

We believe that the image Ii tends to be a simple image when

the values of ηi
1 and ηi

2 are both small. Thus, we first represent

each image Ii by

ηi = ηi
1 + ηi

2 (4)

where ηi is the sum of the rankings measured by the two

complexity analysis cues. Then, the final sorted order is

obtained by sorting ηi in ascending order. The final sorted

images of Bottles are shown in the bottom row of Fig. 4.

Compared with the results in the top row and the middle row,

we can see the more accurate sorting by the combined method.

B. Object Extraction from Simple Image

Based on the image complexity analysis, we select the

top m simple images, and segment the initial segments

Q = {Q1, Q2, · · · , Qm} from these simple images using

figure-ground segmentation method. In this paper, we use the

saliency extraction based object segmentation method [35]3 to

obtain the initial segments.

IV. FEATURE LEARNING

After initial segment generation, we next learn the adaptive

features of the class. Here, we consider two requirements in the

learning. Firstly, some unsuccessful segments may be obtained

in the above initial object extraction step, which can interfere

the feature learning and result in the inaccurate feature model.

We need to avoid these interferences in the learning. Secondly,

the learned feature model must fit the initial segment data very

well.

A. Feature Model

In our method, the similarity between two initial segments

Qi and Q j is measured by a linear feature model, i.e., a linear

combination of the general region features. Assuming there

are n general features, such as the features of color, shape and

texture, we evaluate the similarity si j between two segments

Qi and Q j by

si j = ω1(1 − x
i j
1 ) + ω2(1 − x

i j
2 ) + · · · + ωn(1 − x

i j
n ) (5)

where x
i j

k = d( f i
k , f

j

k ) is the distance between the k-th

features ( f i
k and f

j
k ) of the segments Qi and Q j , f i

k denotes

the k-th general feature of Qi , ω1, · · · , ωn are the weighting

coefficients of the features. In our method, we use five features

such as color histogram, inner shape descriptor [36], SIFT

descriptor [37], [38], self-similarity descriptor [39] and pHOG

descriptor [40] as the general features. Chi-square distance is

3http://cg.cs.tsinghua.edu.cn/people/∼cmm/Saliency/Index.html
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Fig. 4. The ranking of images using the proposed method. The top row: the ranking by the over-segmentation based image complexity analysis. The middle
row: the ranking by the object detection based image complexity analysis. The bottom row: the final ranking by the proposed method.

used as the feature similarity evaluation. From (5), we can see

that x
i j

k is calculated only by the k-th features, i.e., f i
k and f

j

k .

The measurement of the feature distance is only performed by

the same feature types. Hence, the model is available although

the dimensions of different type of features are not equal to

each other.

Setting parameters θ = (ω1, ω2, · · · , ωn)T and

X i = E −

⎛

⎜

⎜

⎜

⎜

⎝

x i1
1 x i1

2 · · · x i1
n

x i2
1 x i2

2 · · · x im
n

...
...

...
...

x im
1 x im

2 · · · x im
n

⎞

⎟

⎟

⎟

⎟

⎠

(6)

i = 1, · · ·, m, we obtain

S(X1, · · · , Xm, θ)

= (s11, · · · , s1m, s21, · · · , s2m , · · · sm1, · · · , smm)T

=

⎛

⎜

⎜

⎜

⎝

X1

X2

...

Xm

⎞

⎟

⎟

⎟

⎠

θ = Xθ (7)

where E is a matrix with all elements 1.

Assuming initial segments are accurately segmented from

the simple images, the distance between any pair of the

initial segments approximately equals to 0. Hence, the target

matrix S′ of S is a m2 × 1 vector with all elements one.

However, the feature self-similarities cannot provide useful

discriminative information to distinguish the useful features

from the other features. Furthermore, the feature learning

is based on the feature similarities. The self-similarities of

unsuccessful segmentation will interfere the feature learning

and result in inaccurate feature model. Hence, we do not

consider the self-similarities, and set the values corresponding

to the self-similarities to 0 in X and S′ such as the i -th row

in X i and the ((i − 1)m + i)-th element in S′, i = 1, · · ·, m.

Then, the parameters θ of the feature model that best fits X

can be calculated by

arg min
θ

‖S−S′‖2
2+α·‖θ‖1 = arg min

θ
‖Xθ−S′‖2

2+α·‖θ‖1 (8)

where α is the scale factor. However, there may have unsuc-

cessful initial segments. Next, we learn the feature parameters

by considering these bad segments.

B. Parameters Learning

Our goal is to find the parameter θ of the feature model

that best fits the training data X and also discover the

confidences of the initial segments to discard the bad seg-

ments. We achieve our goal in the probability framework.

We set X i as the observed data corresponding to the initial

segment Qi . The unknown segmentation confidences for the

initial segments are denoted by the unobserved latent variables

Z = {z1, z2, · · · , zm} where zi is the segmentation confidence

of the segment Qi . The complete data set is denoted by {X, Z}.

The goal is to find the maximum posteriori estimation of θ and

Z given X , which can be represented by

θ̂M AP = arg max
θ∈


p(θ |X) = arg max
θ∈


p(X |θ) · p(θ)

= arg max
θ∈


m
∏

i=1

∫

p(X i , zi |θ)dzi · p(θ) (9)

We solve the problem in (9) by the EM algorithm which

seeks to find the MAP iteratively applying the following

two steps: E-step and M-step. In E-step, we generate the

expectation Q(θ, θold) of the complete-data evaluated using

the observed data X and the current parameter θold , which is

represented as

Q(θ, θold)

=

m
∑

i=1

∫

p(zi |X i , θ
old) ln p(X i , zi |θ)dzi + ln p(θ) (10)

In M-step, the parameter θnew is updated by maximizing

the expectation Q(θ, θold), which can be represented by

θnew = arg max
θ

Q(θ, θold) (11)

The E-step and M-step are iterated alternately until the conver-

gence of θ and Z . In what follows, we detail the calculation

of p(θ), p(zi |X i , θ
old ), p(X i , zi |θ), respectively.

1) The Distribution of p(θ): From (8), we can see that

the model is designed to be a sparse representation since

‖θ‖1 is minimized. A value of θ with small ‖θ‖1 refers to

large probability. Otherwise, a small probability will be given.

Hence, we set p(θ) as

p(θ) =
1

Nθ
exp−α‖θ‖1 (12)

where Nθ is the normalized constant.
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2) The Posterior Distribution of p(zi |X i , θ
old ): Given the

observed data X i of the segment Qi and feature model para-

meters θold , the similarities between Qi and other segments

τi = (τi (1), · · · , τi (m))T can be obtained by

τi = X iθ
old (13)

Since the initial segments are obtained from the simple

images, most of the initial segments can be considered as

successful segments. It is seen that a successful segmentation

will be similar to most of the segments and have large

sum of the similarities, i.e., a large value of ‖X iθ
old‖1.

Otherwise, unsuccessful segmentation refers to a small value

of ‖X iθ
old‖1. We can see that p(zi |X i , θ

old) is related to

‖X iθ
old‖1, and we set p(zi |X i , θ

old ) as

p(zi |X i , θ
old) = N (

‖X iθ
old‖1

N1
, 1) (14)

where N1 are the normalized constants. We set

N1 = maxi ‖X iθ
old‖1, i = 1, · · · , m.

3) The Posterior Distribution of p(X i , zi |θ): In our model,

we assume that θ independents to Z . Given a feature model

parameter θ , we can measure p(X i , zi |θ) = p(zi )p(X i |θ, zi )

by two terms, i.e., p(zi ) and p(X i |θ, zi ).

a) p(X i |zi , θ): In our model, we measure p(X i |zi , θ) by

the fitness between the observed data corresponding to X i and

zi and the target matrix related to zi and θ . A large p(X i |zi , θ)

prefers a good fitness. Otherwise, a small p(X i |zi , θ) will be

assigned.

Given zi , we train our model by only considering the good

segment Qi with large zi . Two data adjustments are used to

select the good segment. The first is to adjust the data X i

according to Z . The j -th data row of X i with large z j need

to be selected. Otherwise, the data row should be abandoned.

We achieve the adjustment by multiplying the values of k-th

row of X i by zi , i.e.,

Xnew
i = �zi X i (15)

and

�zi =

⎛

⎜

⎜

⎜

⎝

min(z1, zi ) 0 · · · 0

0 min(z2, zi ) · · · 0
...

...
...

...

0 0 · · · min(zm , zi )

⎞

⎟

⎟

⎟

⎠

(16)

where Xnew
i is the adjusted observed data for Qi . The value

min(zk, zi ) represents the confidence of a pair of segments

(Qk , Qi ). Here, these zk, k �= i are considered as fixed values

for X i . It is seen that the confidence of a pair of segments Qk

and Qi is represented by the smaller confidence of zk and zi ,

since we believe that the value referring to any bad segment

should be abandoned. Hence, by multiplying min(zk, zi ), the

data in X i corresponding to the successful segment pairs will

be retained, while the date of the unsuccessful segmentation

pairs tends to be zeros and to be abandoned.

We next adjust the target S′
i with respect to Z . The original

target vector is m × 1 vector S′
i = (1, 1, · · · , 0, · · · , 1)T with

only one zero element S′
i (i) = 0. Similar to observed data X i ,

the target value corresponding to a pair of good segments need

to be retained and approximately equal to 1. For unsuccessful

segment pairs, the corresponding target value should be close

to 0. In our method, we adjust S′ by

S′′
i = �zi S′

i (17)

where S′′
i is the adjusted target vector. We can see that the

observed data of the successful segment pairs has the value

S′′
i (k) that is close to one. For the unsuccessful segment, S′′

i (k)

tends to be zero.

Based on Xnew
i and S′′, the fitness between X i , θ and latent

variable zi is evaluated by

ℓi (Xnew
i , θ, zi ) = ‖Xnew

i θ−S′′
i ‖2

2 = ‖�zi X iθ−�zi S′
i‖

2
2 (18)

where ℓi (Xnew
i , θ, zi ) (use ℓi for short) is the loss func-

tion measuring the difference between the similarity matrix

�zi X iθ and the target similarity matrix S′′
i . A good fitness

prefers small ℓi . Based on ℓi (Xnew
i , θ, zi ), we formulate

p(X i |θ, zi ) as

p(X i |θ, zi ) =
1

Nx

exp(−ℓi (Xnew
i , θ, zi )) (19)

and Nx is the normalized constant.

b) The distribution of p(zi ): Since the initial segments

are obtained from the simple images, we believe that most of

the initial segments are successfully segmented. Hence, zi ≈ 1

for most of segments. In our method, we set p(zi ) as

p(zi ) =
1

Nz

exp(−β|1 − zi |) (20)

with the normalized constant Nz .

c) The distribution of p(X i , zi |θ): Based on the distri-

bution of p(X i |θ, zi ) and p(zi ) above, p(X i , zi |θ) can be

represented by

p(X i , zi |θ) =
1

Nx Nz

exp(−ℓ(Xnew
i , θ, zi ) − β|1 − zi |) (21)

4) The Minimization of the Expectation Q: By (14) and

(21), Q in(10) can be represented as

Q(θ, θold)

=

m
∑

i=1

∫

p(zi |X i , θ
old) ln p(X i , zi |θ)dzi + ln p(θ)

=

m
∑

i=1

[− ln(Nx Nz) −

∫

p(zi |X i , θ
old )ℓi dzi (22)

−

∫

p(zi |X i , θ
old)β(|1 − zi |)dzi ] − γ ‖θ‖1

where γ = α
Nθ

. The derivation of (22) can be found in the

appendix. It is seen from (22) that only
∫

p(zi |X i , θ
old )ℓi dzi

and γ ‖θ‖1 are related to θ . Hence, maximizing Q in

M-step (11) with respect to θ changes to solve the following



4816 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 22, NO. 12, DECEMBER 2013

minimization problem, i.e.,

θnew

= arg max
θ

m
∑

i=1

∫

−p(zi |X i , θ
old )ℓi dzi − γ ‖θ‖1

= arg max
θ

m
∑

i=1

∫

−p(zi |X i , θ
old )‖�zi X iθ − �zi S′

i‖
2
2dzi

−γ ‖θ‖1

= arg max
θ

m
∑

i=1

∫

−p(zi |X i , θ
old )‖�zi (X iθ − S′

i )‖
2
2dzi

−γ ‖θ‖1

= arg max
θ

m
∑

i=1

∫

−p(zi |X i , θ
old )(X iθ − S′

i )
T �T

zi
�zi

(X iθ − S′
i )dzi − γ ‖θ‖1

= arg max
θ

m
∑

i=1

−(X iθ − S′
i )

T

∫

p(zi |X i , θ
old )�T

zi
�zi dzi

(X iθ − S′
i ) − γ ‖θ‖1

= arg max
θ

m
∑

i=1

−(X iθ − S′
i )

T �T
ui

�ui (X iθ − S′
i ) − γ ‖θ‖1

= arg max
θ

−

m
∑

i=1

‖�ui X iθ − �ui S′
i )‖

2
2 − γ ‖θ‖1

= arg min
θ

‖Xnewθ − S′′)‖2
2 + γ ‖θ‖1 (23)

where �T
ui

�ui =
∫

p(zi |X i , θ
old)�T

zi
�zi dzi , Xnew =

((Xnew
u1 )T , · · · , (Xnew

um )T )T , and S′′ = ((S′′
u1)

T , · · · , (S′′
um)T )T

are the adjusted data of X and S′ based on �ui . It is seen that

the problem in (23) is a l1-Regularized Least Squares problem.

We use the method in [41]4 for the minimization.

5) Implementation: The E-step and M-step are iteratively

executed until the convergence. We can see from (23) that �zi

consists of m different matrixes over all zi . Hence, �ui can be

calculated by the sum of these piecewise matrixes combined

with cumulative distribution function of Gaussian distrib-

ution (by
∫

p(zi |X i , θ
old )dzi ). For simplicity, we directly

use �zi , zi = ‖X i θ
old ‖1

N1
to approximate �ui , i.e., Xnew =

((Xnew
1 )T , · · · , (Xnew

m )T )T , and S′′ = ((S′′
1 )T , · · · , (S′′

m)T )T

to reduce the computational cost. We set the iteration number

(the stop number is 50) as the EM stop condition. We set

m = 10 for the simple image selection. In (23), γ = 0.01.

Note that these parameters are fixed among different image

datasets. The algorithm of the proposed learning method is

shown in Algorithm 1.

C. Co-Segmentation

Based on the learned feature model, we use our previous

work in [26] to achieve the co-segmentation task. In the

method, the original images are segmented into over-lapping

local regions using object detection method, saliency detection

method and hierarchy over-segmentation method. Then, the

similarities between the local regions are represented by a

4http://www.stanford.edu/∼boyd/l1_ls/

Algorithm 1 The Algorithm for EM Based Feature Learning

Method

directed graph structure. The co-segmentation is formulated as

a shortest path searching problem and is solved by dynamic

programming.

Several improvements are used to achieve adaptive fea-

ture learning based co-segmentation. Firstly, in edge weight

calculation, we calculate the region term by the learned

feature model rather than the original features. Secondly, the

initial segments referring to large confidences are used as the

co-segmentation results. The co-segmentation result is then

treated as the only local region of the related image in the

process of the digraph construction.

V. EXPERIMENTAL RESULTS

In this section, we verify the proposed co-segmentation

method on many images groups. The subjective and objective

assessments of the segmentation results are given.

A. Co-Segmentation Results

1) Test Images Dataset: In the experiments, we collect

image groups from well-known image databases such as

MSRC database [42],5 ETHZ shape database [43],6 and

ICoseg database [15]7. We select 16 classes among the total

20 classes in MSRC dataset and the classes that have more

than 20 images in ICoseg dataset for the verification. The total

five classes in ETHZ shape database are all used. To com-

pletely verify our method, we use all images in each class.

We use the ground truth given by [15] and [42] for the ICoseg

5http://research.microsoft.com/en-us/um/people/antcrim/data_objrec/
msrc_objcategimagedatabase_v2.zip

6http://www.vision.ee.ethz.ch/∼calvin/ethz_shape_classes_v12.tgz
7http://chenlab.ece.cornell.edu/projects/touch-coseg/CMU_Cornell_iCoseg

_dataset.zip
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Fig. 5. The segmentation results of the proposed method. From top to bottom: the rows 1, 3, 5, 7 and 9 show the original images. The rows 2, 4, 6, 8 and
10 display the segmentation results.

and the MSRC database, respectively. For ETHZ shape dataset,

we obtain the ground truth by the contour based ground truth

in [43].

2) The Co-Segmentation Results: The co-segmentation

results of ten classes are shown in Fig. 5. For each image

class, six original images and the co-segmentation results are

presented. From Fig. 5, we can see that the original images

have many variations, such as color, shape and texture. It is

also seen that the proposed co-segmentation method success-

fully segments the common objects from these images. For

example, the ‘cats’ in Cats vary significantly. The proposed

co-segmentation method successfully segments these ‘cats’,

which benefits from the adaptive feature learning.

We also show the results of the feature learning method.

The confidences of the initial segments are shown in Fig. 6(a),

where the results of six classes are shown. For each class, the

original images are shown in the first row. These images are

selected by the proposed image complexity analysis method.

We can see that simple images can be selected by the proposed

method. The initial segments obtained by the unsupervised

segmentation method are shown in the second row. It is seen

that most of the objects can be successfully segmented from

the simple images. Meanwhile, there are a few unsuccessful

segments, such as the second image in Cheetah and the fifth

image in Mugs. The learned confidence of each initial segment

is shown below the image. It can be seen that the learned

confidences fit the human judgments. For example, in Mugs,

the fifth initial segment is the unsuccessful segmentation.

The learned confidence is small (0.0869). Meanwhile, for the

first segment which is a successful segmentation, the learned

confidence is close to one (0.9634).

Furthermore, the learned feature model corresponding to the

classes in Fig. 6(a) are shown in Fig. 6(b). Each feature model

is represented by a color-bar, where each color describes a gen-

eral feature. These colors represent the features of color, shape,

SIFT, Self-similarity and pHog from left to right, respectively.

The amplitude of each color represents the learned weight

coefficient of the corresponding feature. We can see that the

learned feature model can represent the similarities between

the objects. For example, the class Mugs contains similar

shape. The weight coefficient of the shape feature is large in

the learned model, which indicates that the shape feature plays

an important role in the foreground similarity measurement.

For the class Bear, the weight coefficient of color is large,

which fulfills the fact that the ‘bears’ contain similar colors.

B. Objective Evaluation

We evaluate the proposed co-segmentation method by the

error rate which is defined as the ratio of the number of

wrongly segmented pixels to the total number of pixels.

A small error rate refers to a successful segmentation.

The mean error rate over all images is used to evaluate

the performance of a class. The error rates of the proposed

co-segmentation method are shown in Table II. We can see

that the proposed co-segmentation method achieves low error

rates in most of the classes. It is also seen that there are

unsuccessful segments, such as Panda and Stonehenge. The

unsuccessful segments are caused by the fact that there are no

simple images in these classes. The complex images lead to

unsuccessful initial segments and further result in inaccurate

learning of the feature model.
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Fig. 6. (a): The confidences of initial segments. For each block, the first row shows the simple images obtained by complexity analysis. The second row shows
the initial segments obtained by method in [35]. The confidences obtained by the proposed learning method are shown under the images. (b): The learned
feature models corresponding to the classes in (a). The color in the model represents the features. They are color, shape, SIFT, Self-similarity and pHog from
left to right respectively.

In Table II, we also compare our method with the

existing co-segmentation methods such as the methods in

[14], [19] and [26]. Joulin et al. in [14] proposed a

co-segmentation model using the discriminative clustering

method and the spectral clustering method. In the experiment,

the source code given by the authors8 is used. To improve the

co-segmentation results, we adjust the parameter µ for each

class. Color feature (for ICoseg dataset and ETHZ dataset)

and SIFT feature (for MSRC dataset) suggested by the author

are employed. The superpixels are generated by the over-

segmentation method in [33] (by setting k = 100). The results

referring to the method in [14] are shown in the second

row of Table II. It is seen that the common objects are

successfully segmented from several classes, such as Liberty

and Airshows2. Meanwhile, there are unsuccessful segments,

such as Cheetah and Pandas. The unsuccessful segments are

caused by the fact that the classes contain different similar

features.

Kim et al. in [19] propose multiple class co-segmentation

method, which is achieved by the linear anisotropic diffusion

based segmentation method. Color feature is used. In the

8www.di.ens.fr/∼joulin

experiment, the code released by the author is used9. The intra-

image Gaussian weights and the number of segments (K )

are adjusted for accurate co-segmentation. The results by

the method in [19] are shown in the third row of Table II.

We can see that Kim’s method can successfully segment

common objects in several classes, such as Liverpool and

Goose. Meanwhile, unsuccessful segments are also achieved,

such as Dogs and Chairs. The unsuccessful segmentations are

caused by the fact that many classes contain other similar

features rather than color.

Meng et al. in [26] achieves common objects segmenta-

tion by graph theory. The co-segmentation is formulated as

the shortest path searching, and the shortest path is found

by dynamic programming. In the experiment, we adjust the

scaling parameter α for each classes to achieve accurate

co-segmentation. We use color feature for ICoseg dataset and

MSRC dataset and shape feature for ETHZ dataset. The results

by the method in [26] are shown in the fourth row of Table II.

We can see that the method in [26] can successfully extract

common objects from several images, such as Soccer and

Kite1. Meanwhile, there are unsuccessful segments, such as

9http://www.cs.cmu.edu/∼gunhee
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TABLE II

RESULTS COMPARISON BETWEEN THE PROPOSED CO-SEGMENTATION METHOD AND THE EXISTING METHODS IN TERMS OF ERROR RATE.

CLASSES IN ICoseg, MSRC AND ETHZ DATASETS ARE USED

Cats and Cheetah. These unsuccessful segments are mainly

caused by the fact that the given features cannot fully represent

the similarities between the common objects.

The comparison results show that the proposed

co-segmentation method achieves the lowest error rates

for most of the image pairs. For ICoseg dataset, the mean

error rates over all classes are 0.2484, 0.2065, 0.1397 and

0.1245 for the methods in [14], [19], [26] and the proposed

method, respectively. We can see that the proposed method

achieves the smallest error rate. It is also seen that the other

comparison methods achieve good performance in the ICoseg

dataset, since the common objects contain similar colors in

the ICoseg dataset. For MSRC dataset, the mean error rates

over all classes are 0.3560, 0.3145, 0.2720 and 0.2200 for

the methods in [14], [19], [26] and the proposed method,

respectively. It is seen that the error rates are obviously

decreased by the proposed method which is caused by the

adaptive learning of the feature model. For ETHZ dataset,

the mean error rates are 0.2093, 0.4470, 0.1216 and 0.1263

for the method in [14], [19], [26] and the proposed method,

respectively. We can see that the method in [26] achieves

the smallest error rate in this dataset. The reason is that

the shape feature can accurately represent common objects

similarity for the classes. By using the shape feature, the

method in [26] can achieve accurate co-segmentation. Note

that the differences between the method in [26] and the

proposed method are small (the difference is 0.0047). Hence,

the performance of the proposed method is comparable to

the method in [26] in ETHZ dataset. The error rates over all

classes are 0.2920, 0.2902, 0.1976 and 0.1684 for the methods

in [14], [19], [26] and the proposed method, respectively. It is

seen that the proposed method achieves the smallest error

rate, which demonstrates the effectiveness of the proposed

method.

To further verify our proposed method, we display the

results of the initial segment method [35] in Table II.

The method in [35] is to first detect the saliency regions

by global contrast and then perform grab-cuts to obtain the

salient regions. It focuses on the salient regions in each single

image instead of the common objects in multiple images.

From Table II, we can see that the method in [35] can obtain

successful object segmentation in some classes, such as Air1

and Planes. The reason is that the salient objects in these

classes are also the common objects. When the images contain

other multiple salient regions, these salient regions may be also

obtained by the method in [35], such as “Logos” and “Dogs”,

which results in unsuccessful segmentation. It is also seen from

Table II that the mean error rate (0.1684) of the proposed

method is smaller than the one (0.1918) in the method [35].

We also show the results of the proposed method by

selecting different number of simple images m on the three

datasets. We show the results in Fig. 7, where the results of the
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Fig. 7. The results of the proposed with different m. The three datasets
(ICoseg, MSRC and ETHZ) and seven m values (m = 4, 8, 12, 16, 20,
24 and 28) are shown.

three datasets (ICoseg, MSRC and ETHZ) and seven m values

(m = 4, 8, 12, 16, 20, 24 and 28) are displayed. We can see that

small error rates can be obtained when m ∈ [10, 22] for the

ICoseg and MSRC datasets. Meanwhile, the small and large

m can result in the increase of the error rates. The reason is

that a small m may not provide enough initial segments for the

accurate feature learning, while a large m can introduce more

segment noises to interfere the feature learning. Note that the

error rates of ETHZ dataset decrease along the considered m.

The reason is that the number of the images in the ETHZ

classes is large (about average 50 image per class), which

leads to a larger m to obtain the small error rates. In our

experiments, we set m = 10 by considering the small error

rate and the low computational cost of the learning.

VI. DISCUSSION

We first discuss the motivation of using simple images to

learn the feature model. It is known that the success of a learn-

ing scheme is directly associated with an appropriate input data

selection [44]. Inaccurate learning will be obtained when the

training samples contain many wrong samples. The proposed

method adaptively learns the useful features for accurate

co-segmentation. In the feature learning, the accurate learning

depends on the accuracy of the initial segments. Successful

segments can provide useful information to accurately learn

the feature model. On the contrary, unsuccessful segments

will interfere the feature learning and lead to inaccurate

feature model. Hence, it is required to accurately extract the

initial objects as much as possible. As we known, extracting

the objects from the simple image is much easier than the

complex image, which guarantees the requirement of our

feature learning. This property motivates us to use the image

analysis to select the simple images to achieve the initial

segmentation. For the complex images, we believe that the

feature learning will be difficult from the complex images

because many unsuccessful segments will be generated and

used in the feature learning. These incorrect training samples

will result in inaccurate learning of the feature model and lead

to unsuccessful co-segmentation.

We next discuss the generalization of the proposed model.

In order to guarantee the fairness of the comparison, all

parameters and the general features used in the feature learning

are fixed for different datasets in our experiments. Meanwhile,

the original feature pool contains much type of features, such

as the color, texture and shape. These features are usually

shared by most of the common objects in the realistic images.

Hence, the feature learning method can be generalized to

other datasets. We verify the generalization of the proposed

method on other different image datasets, such as Caltech-

UCSD Birds 200-2011 dataset, Stanford Dogs, and Oxford

Flowers 102. The segmentation results and the error rates

are shown in Fig. 8 and Table III, respectively. It is seen

that the proposed method can be successfully generalized to

these image classes. Furthermore, we verify the generalization

of the learned feature model in Caltech 101 datasets. In the

experiments, we use the feature model learned from MSRC or

ETHZ to implement the co-segmentation on the same class in

the Caltech 101 dataset. The segmentation results and error

rates are shown in Fig. 9 and Table III, respectively. The

results of Mugs and Aeroplanes are displayed. We can see

that the learned feature model also achieves successfully co-

segmentation on a new dataset. The reason is that the images

of a class tend to contain the same similar features in different

datasets. The feature model learned from a image group can

also be used to achieve co-segmentation in the other image

groups. The results of the methods in [14], [19] and [26]

are also proposed in Table III for comparison. It is seen that

the proposed method can also achieve the lowest error rates

on most of the classes shown in Table III, which demon-

strates that the proposed method can be generalized to other

datasets.

In our method, we use the method in [34] to detect the

windows, where the initial windows are generated by sliding

windows at many scales. Different sizes of windows are

generated and are uniformly distributed over the entire image.

In the detection, each initial window is first scored based

on four cues, such as saliency, color contrast, edge density

and superpixels straddling. The best top Nw windows are

then selected for the image complexity analysis based on the

scores. After windows selection, the overlap regions among the

selected windows are extracted using threshold Tw. We can see

that the choices of Nw and Tw mainly depend on the scores

of the windows instead of the window size.

In our method, we impose the sparsity constrain on the θ

as shown in (8). The existing sparsity constrains usually used

in the sparse representation, such as ℓ1-norm [45], ℓ2-norm

and elastic net formulation [46] can be used as the constrain.

In our model, ℓ1-norm is selected based on its natural to

obtain both the shrinkage and the variable selection in the

regression [46]. Also, the ℓ1-norm has been successfully used

in many computer vision tasks compared with l2-norm, such

as face recognition [47]. Moreover, compared with elastic net

formulation, ℓ1-norm can sufficiently represent the sparsity

here, since we intend to select one or small number of features

to represent the foreground similarities.

It is seen from (5) that we use a linear model to learn the

adaptive feature. The reason is that linear model is simple

and can lead to the easy parameters estimation of the model.

The other and also the most important reason is that the

linear model is able to capture the foreground similarity

consistency. As our method is based on the assumption of
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Fig. 8. The results of the proposed method on the other datasets. (a): Caltech-UCSD Birds 200-2011 dataset. (b): Stanford Dogs dataset. (c): Oxford Flowers
102 dataset.

Fig. 9. The segmentation results by generalizing the learned model to the other image datasets. The classes Aeroplanes and Mugs in Caltech 101 dataset are
used. The feature models learned in MSRC datasets (Aeroplanes) and ETHZ shape datasets (Mugs) are used for the co-segmentation in the Caltech classes.

TABLE III

THE ERROR RATE ON THE OTHER DATASETS WITH THE SAME PARAMETERS, SUCH AS CALTECH-UCSD BIRDS 200-2011 DATASET (Black AND

Laysan), STANFORD DOGS (Maltese AND coonhound), OXFORD FLOWERS 102 (Petunia AND Barbeton) AND CALTECH 101 (Mugs AND Aeroplanes).

THE RESULTS OF THE METHODS IN [14], [19] AND [26] ARE ALSO PROPOSED FOR COMPARISON

the sparsity of the features, it is seen that selecting single

feature or linearly combing a few of features as used in

our linear model is enough to represent the sparsity of the

features. Note that non-linear feature selection methods, such

as kernel based support vector regression [48] and kernel

based logistic LASSO regression [49], can also be used in

our feature learning. Since the linear model is a specific case

of the no-linear model, the no-linear model may result in

better co-segmentation results. Meanwhile, it also leads to

more complex analytical and computational properties than

the linear model [50]. Hence, linear model is selected in

our method.

In our method, the successful feature learning depends

on the accuracy of the initial segmentation, as discussion

in Section VI. Successful initial segmentation will result in

accurate feature learning, while incorrect feature model can be

learned from the wrong initial segments. To achieve accurate

feature learning, we combine the image complexity evaluation

and the saliency based foreground extraction ( [35]). It is noted

that although it is still difficult to extract the saliency regions

from complex scenes, the object foregrounds can fortunately

be well extracted from the simple backgrounds by the saliency

detection method (such as [35]), which can help the initial

segmentation of the common objects.

In the feature learning, we introduce the segmentation

confidence to select the success of a segment for the feature

learning. The segments with large confidences are used to

learn the feature model. Furthermore, we directly use these

segments as the co-segmentation results of the corresponding

image for simplicity. Hence, some of these results in Fig. 6 are

shown as the final results in Fig. 5. Note that these segments

will not be cosegmented in the following co-segmentation.

For the selected images with small confidences in Fig. 6, they

are the bad initial segments and are not used in the feature

learning. Hence, we return these images to the rest image

group and perform the co-segmentation to obtain the accurate

object extraction.

The proposed method and the method in [26] all require

the similar features to generate the edge weights in the graph

construction. The indeed different is that we automatically
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learn the similar features, while the method in [26] manually

selects the feature for each class [26]. Compared with manual

selecting manner in [26], our model can easily handle more

features (5 features) and learn the best feature combinations

(by linear model), which results in the improvement of the

co-segmentation as shown in Table II. But the improvement is

not significant, since the manual selection can also select the

similar feature of each class. However, compares with [26],

our method is more reasonable due to the automatic feature

learning by the computer and the wide applications in realistic

computer vision tasks.

VII. CONCLUSION

In this paper, we proposed a new feature adaptive co-

segmentation model to segment common objects from multiple

images. We proposed a new image complexity analysis method

to rank the images and extract the objects from the simple

images by using unsupervised segmentation method. An accu-

rate feature model is learned from the objects by using an EM

algorithm combining l1-regularized least squares optimization.

The feature model is combined with the initial segmentation to

extract the common objects. The experiments demonstrate that

the error rate of the proposed method is lower than the existing

methods when the feature is unknown. In the future, we will

extend the proposed feature learning method for images with

high complexity and nonlinear model.

APPENDIX A

THE DERIVATIONS OF THE EQUATION (22)

Q =

m
∑

i=1

∫

p(zi |X i , θ
old ) ln p(X i , zi |θ)dzi + ln p(θ)

=

m
∑

i=1

[

∫

p(zi |X i , θ
old )(− ln(Nx Nz) − ℓi − β|1 − zi |)dzi ]

−
α

Nθ
‖θ‖1

=

m
∑

i=1

[− ln(Nx Nz) −

∫

p(zi |X i , θ
old )ℓi dzi

−

∫

p(zi |X i , θ
old)β(|1 − zi |)dzi ] −

α

Nθ
‖θ‖1 (24)
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