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ABSTRACT

The amount of data produced on the internet is growing rapidly.

Along with data explosion comes the trend towards more and more

diverse data, including rich media such as audio and video. Data

explosion and diversity leads to the emergence of data-centric work-

loads to manipulate, manage and analyze the vast amounts of data.

These data-centric workloads are likely to run in the background

and include application domains such as data mining, indexing,

compression, encryption, audio/video manipulation, data warehous-

ing, etc.

Given that datacenters are very much cost sensitive, reducing the

cost of a single component by a small fraction immediately trans-

lates into huge cost savings because of the large scale. Hence,

when designing a datacenter, it is important to understand data-

centric workloads and optimize the ensemble for these workloads

so that the best possible performance per dollar is achieved.

This paper studies how the emerging class of data-centric work-

loads affects design decisions in the datacenter. Through the ar-

chitectural simulation of minutes of run time on a validated full-

system x86 simulator, we derive the insight that for some data-

centric workloads, a high-end server optimizes performance per

total cost of ownership (TCO), whereas for other workloads, a low-

end server is the winner. This observation suggests heterogeneity

in the datacenter, in which a job is run on the most cost-efficient

server. Our experimental results report that a heterogeneous data-

center achieves an up to 88%, 24% and 17% improvement in cost-

efficiency over a homogeneous high-end, commodity and low-end

server datacenter, respectively.

Categories and Subject Descriptors

C.0 [Computer Systems Organization]: Modeling of computer

architecture; C.4 [Computer Systems Organization]: Performance

of Systems—Modeling Techniques
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1. INTRODUCTION

The internet-sector server market is growing at a fast pace, by

40 to 65% per year according to various market trend studies (in-

cluding by IDC). This fast increase is due to various novel internet

services that are being offered, along with ubiquitous internet ac-

cess possibilities through various devices including mobile devices

such as smartphones and netbooks. In particular, smartphones en-

able their users to be permanently in touch with email, the internet,

social networking sites such as Facebook and Twitter, e-commerce,

etc. There are around 400 million smartphones worldwide today,

and trend analysis estimates the number of smartphones to exceed

1.1 billion by 20131. Hence, the number of people using internet

services of various kinds is increasing rapidly and demonstrates

the large scale of the applications and systems behind these ser-

vices. For example, there are more than 500 million active Face-

book users of which 50% log in on a daily basis; 200 million Face-

book users use mobile devices and these users are twice as active

as non-mobile users — according to Facebook’s statistics as of

Jan 20112. As another example, there are 175M registered Twit-

ter users generating more than 95M Twitter messages a day, as of

Sept 20103.

Designing the servers to support these services is challenging,

for a number of reasons. Online services have hundreds of mil-

lions of users, which requires distributed applications to run on

tens to hundreds of thousands of servers [4], e.g., Facebook has

60,000 servers as of June 20104. The ensemble of servers is of-

ten referred to as a warehouse-scale computer [5] and scaling out

to this large a scale clearly is a key design challenge. Because of

its scale, warehouse-scale computers are very much cost driven —

optimizing the cost per server even by only a couple tens of dollars

results in millions of dollars of cost savings and thus an increase in

1http://www.i4u.com/29160/11-billion-smartphones-2013
2http://www.facebook.com/press/info.php?statistics
3http://twitter.com/about
4http://www.datacenterknowledge.com/archives/2010/06/28/facebook-
server-count-60000-or-more/



millions of dollars in revenue. There are various factors affecting

the cost of a datacenter, such as the hardware infrastructure (the

servers as well as the rack and switch infrastructure), power and

cooling infrastructure as well as operating expenditure, and real es-

tate. Hence, warehouse-sized computers are very cost-sensitive,

need to be optimized for the ensemble, and operators drive their

datacenter design decisions towards a sweet spot that optimizes per-

formance per dollar. For example, commercial offerings by compa-

nies such as SeaMicro5 as well as ongoing research and advanced

development projects such as the EuroCloud project6, target low-

end servers to optimize datacenter cost-efficiency.

The emergence of warehouse-scale computers also leads to a

dramatic shift in the workloads run on today’s datacenters. Whereas

traditional datacenter workloads include commercial workloads such

as database management systems (DBMS) and enterprise resource

planning (ERP), the datacenters in the cloud now run a new set

of emerging workloads for online web services, e.g., e-commerce,

webmail, video hosting, social networks. Users accessing these on-

line web services generate huge amounts of data, both text and rich

media (i.e., images, audio and video). The workloads running on a

warehouse-scale computer not only include the interactive interface

with the end user but also distributed data processing and storage

infrastructure. In addition, data analytics workloads need to run in

the datacenter ‘behind the scenes’ to manage, manipulate, and ex-

tract trends from the vast amounts of online data. For example, an

e-commerce application will feature a data mining workload run-

ning in the background to collect user profiles and make sugges-

tions to its end users for future purchases. Similarly, web search

engines feature indexing workloads running in the background to

build up indices. Whereas traditional datacenter workloads are well

studied historically, see for example [9, 13, 19], and online inter-

active workloads have emerged as a workload of interest in recent

research efforts [1, 12, 20], data-centric workloads have received

limited attention so far.

1.1 Data-centric workloads

In this paper we focus on the data-centric workloads that are

likely to run as background processes in datacenters in the cloud,

i.e., workloads such as data mining, indexing, compression, en-

cryption, rich media applications and data warehousing. And we

study how these data-centric workloads affect some of the design

decisions in the datacenter. Through full-system simulations us-

ing a validated x86 simulator while simulating minutes of run time,

we explore which server type optimizes the performance per dol-

lar target metric. We conclude that there is no clear winner: for

some workloads, a high-end server yields the best performance per

cost ratio, whereas for others, a middle-of-the-road server is a win-

ner, and for yet other workloads, a low-end server yields the best

performance-cost efficiency.

This result suggests the case for heterogeneous datacenters in

which a workload is run on its most performance-cost efficient

server. For our set of workloads and experimental setup (which

assumes equal weight for all workloads), a homogeneous low-end

server datacenter improves performance-cost efficiency by 14% com-

pared to a homogeneous high-end server datacenter; we report an

5http://www.seamicro.com/
6http://www.eurocloudserver.com/

18% better performance-cost efficiency for a heterogeneous data-

center relative to a homogeneous datacenter with high-end servers

only. We also observe that a heterogeneous datacenter with a col-

lection of high-end servers and low-end servers achieves most of

the benefits that can be achieved through heterogeneity; adding

middle-of-the-road servers does not contribute much.

Obviously, the improvement achieved through heterogeneity very

much depends on the workloads that co-execute in the datacenter.

Considering a wide range of workload mixes, we report performance-

cost efficiency improvements for a heterogeneous datacenter up to

88%, 24% and 17% compared to homogeneous high-end, commod-

ity and low-end server datacenters, respectively. Because estimat-

ing a datacenter’s total cost of ownership is non-trivial, we also re-

port results quantifying the performance-cost efficiency as a func-

tion of the cost ratio between the various server types, and by doing

so, we determine the sweet spot for heterogeneous datacenters. Fi-

nally, we present a comprehensive analysis on where the benefit

comes from. In the cases where the high-end server achieves a

better performance-cost efficiency, the higher cost is offset by the

higher throughput achieved through higher clock frequency, lower

execution cycle counts and larger core counts. For the benchmarks

for which the low-end processor is more performance-cost benefi-

cial, the higher throughput achieved on the server is not offset by

its higher cost.

We believe this is an interesting result given the current debate

in the community on high-end versus commodity (middle-of-the-

road) versus low-end servers for the datacenter [14, 17]. In particu-

lar, Lim et al. [12] conclude that lower-end consumer platforms and

low-cost, low-power components from the high-volume embed-

ded/mobile space may lead to a 2× improvement in performance

per dollar. Reddi et al. [20] similarly conclude that a low-end

Atom processor is more favorable than a high-end Intel Xeon for an

industry-strength online web search engine, although these proces-

sor would benefit from better performance to achieve better quality-

of-service and service-level agreements. In spite of these recent

studies pointing towards low-end embedded servers for performance-

cost efficient datacenters, there is no consensus as to whether con-

temporary datacenters should consider high-end versus low-end ver-

sus middle-of-the-road server nodes [14, 17]. Some argue for low-

end ‘wimpy’ servers (see T. Mudge’s statement in [14]) whereas

others argue for high-end servers, and yet others argue for middle-

of-the-road ‘brawny’ servers (see U. Hölzle’s statement in [14]).

This paper concludes there is no single answer. For some work-

loads, high-end servers are most performance-cost efficient, whereas

for other workloads, low-end embedded processors are most effi-

cient.

1.2 Paper contributions and outline

This paper makes the following contributions.

• We collect a set of data-centric workloads and we study how

these workloads affect design decisions in the datacenter. Re-

cent work in architectural studies for the datacenter consid-

ered online interactive workloads for the most part, and did

not consider data-centric workloads. Running data-centric

workloads requires minutes of run time on large data sets.

We employ full-system simulation for doing so using a vali-

dated architectural simulator.



• We obtain the result that high-end and middle-of-the-road

servers can be more cost-efficient than low-end servers for

running data-centric workloads. This is in contrast to re-

cent work, see for example [1, 12, 20], which argues for

lower-end servers to optimize cost-efficiency and/or energy-

efficiency in the datacenter. The reason for this outcome

is that data-centric workloads are computation-intensive and

frequency-sensitive, hence, high-end and middle-of-the-road

servers yield a substantially better performance per cost ra-

tio.

• We demonstrate that for some sets of data-centric workloads,

a heterogeneous datacenter in which each workload runs on

its most cost-efficient server, can yield significant cost sav-

ings.

• We provide detailed sensitivity analyses to gain insight in the

benefits of heterogeneity and how it varies with workload

mixes, server infrastructure cost and energy cost. In par-

ticular, we demonstrate that heterogeneity is beneficial for

a range of cost ratios between a high-end versus a low-end

server. Further, we demonstrate that the benefit from hetero-

geneity is higher at lower energy costs.

The remainder of this paper is organized as follows. We first

describe the data-centric workloads that we consider in this study

(Section 2). We subsequently detail on the datacenter modeling as-

pects and our experimental setup (Section 3). We then describe our

results (Section 4) and provide sensitivity analyses (Section 5). Fi-

nally, we discuss related work (Section 6) and conclude (Section 7).

2. DATA-CENTRIC WORKLOADS

2.1 Data explosion and diversity in the cloud

A prominent trend that we observe in the cloud is data explo-

sion. The amount of online data has grown by a factor of 56× over

7 years, from 5 exabytes of online data in 2002 to 281 exabytes in

2009 — a substantially larger increase compared to Moore’s law

(16× over 7 years) [18]. The reason comes from the emergence of

interactive internet services (e.g., e-commerce, web mail) and Web

2.0 applications such as social networking (e.g., Facebook, Twit-

ter), blogs, wikis, etc., as well as ubiquitous access to online data

through various mobile devices such as netbooks and smartphones.

Along with data explosion comes the trend of increasingly di-

verse data, including structured data, unstructured data and semi-

structured data. In addition, the data stored in Web 2.0 applications

is increasingly rich media, including images, audio and video.

Data explosion and diversity preludes a novel area of data-centric

workloads in the cloud to manipulate the data, manage this huge

data volume, extract useful information from it, derive insight from

it, and eventually act on it. Hence, it is important to study these

workloads and understand how this emerging class of workloads

may change how datacenters are optimized for performance-cost

efficiency.

2.2 A data-centric benchmark suite

Motivated by this observation, we collected a number of bench-

marks to represent the emerging application domain of data-centric

workloads. We identify a number of categories such as data mining,

indexing, security, rich media, compression, and data warehousing.

Each of these categories prelude important emerging applications

in data-centric workloads. We select benchmarks for each of these

categories, see also Table 1.

Data mining.
Analyzing the data is absolutely crucial to gain insight from it

and eventually act on it. This requires data mining, statistical anal-

ysis and machine learning to extract and understand the underlying

phenomena. We include three data mining benchmarks, namely

kmeans, eclat and hmmer. The kmeans benchmark is a cluster-

ing workload that discovers groups of similar objects in a database

to characterize the underlying data distribution. Clustering algo-

rithms are often used in customer segmentation, pattern recogni-

tion, spatial data analysis, etc. Our dataset includes 100K data

points in an 18-dimensional space and groups these points in 50

clusters. The eclat benchmark is a typical Association Rule Min-

ing (ARM) workload to find interesting relationships in large data

sets (466MB in our case). The benchmark tries to find all subsets of

items that occur frequently in a database. The hmmer benchmark

involves the pfam collection of multiple sequence alignments and

hidden Markov models (HMM) covering many common protein

domains and families. It is used for running the hmmpfam exe-

cutable, part of the HMMER package. Its input is a sequence of

9,000 residues that is being compared against 2,000 HMMs.

Indexing.
Analyzing the data often requires indexing the data to enable

efficient searching. We include the Apache lucene text search en-

gine. In our case, lucene builds an index for 50K Wikipedia pages

(647MB in total). The lucene benchmark is a Java workload and

runs on the Open JDK JVM v6.

Data compression.
Storing huge volumes of data requires compression and decom-

pression in order to be able to store the data on disk in an efficient

way. Our benchmark suite includes the tarz application which con-

sists of the standard GNU Tar utility to create an archive from, in

our case, a set of PDF and text files. The archive is compressed

using gzip (GNU zip). Gzip reduces the size of the archive us-

ing Lempel-Ziv (LZ77) encoding. The uncompressed input equals

1.2GB in size and is compressed to 273MB.

Data security.
Data stored in the cloud may be proprietary or personal, and third

parties should not access this data. Data encryption is thus required

to secure the data. We consider gpg (GNU Privacy Guard) as part

of our benchmark suite. We sign and encrypt the same 1.2GB

archive as for the compression benchmark.

Rich media applications.
As mentioned before, the data stored online is becoming more

and more rich media, including audio (e.g., iTunes, MySpace), im-

ages (e.g., flickr), video (e.g., YouTube), as well as virtual reality

(e.g., online games). We include three benchmarks to cover rich

media applications, namely blender, bodytrack and x264. The



category benchmark source description run time

data compression tarz GNU Create an archive and compress the files 1m10s

data mining

kmeans MineBench Mean-based data clustering 1m50s

eclat MineBench Association rule mining to find interesting relationships in large data sets 1m56s

hmmer BioPerf Compares sequence alignments against hidden Markov models 3m30s

data indexing lucene Apache Apache text search indexer library written in Java 1m59s

data security gpg GNU Sign and encrypt files 1m30s

rich media

blender Blender Foundation 3D graphics rendering for creating 3D games, animated film or visual effects 2m15s

bodytrack PARSEC Body tracking using multiple cameras 1m38s

x264 PARSEC Encoding video streams in H.264 format 1m15s

business SPECjbb2005 SPEC Middle-tier of server-side Java performance 2m09s

Table 1: Our set of data-centric benchmarks: their category, source, description and run time on a dual-socket dual-core AMD

Opteron 2212 machine.

blender benchmark is a 3D graphics rendering application for cre-

ating 3D games, animated film and visual effects. We render 40

frames from a 3D scene including objects, and shadow, lightning

and mirroring effects. The bodytrack benchmark is a computer vi-

sion application that tracks a human body with multiple cameras

through an image sequence. As input data we consider 200 frames

from 4 cameras with 4,000 particles in 5 annealing layers (input

data set of 477MB). The x264 benchmark is an application for en-

coding videostreams in H.264 format. Its input is a 1.5GB video

file.

Classical business logic.
Next to these emerging workloads, classical business logic will

remain to be an important workload. We include PseudoSPECjbb2005,

a modified version of SPECjbb2005 that executes a fixed amount of

work rather than for a fixed amount of time. SPECjbb models the

middle tier (the business logic) of a three-tier business system con-

taining a number of warehouses that serve a number of districts.

There are a set of operations that customers can initiate, such as

placing orders or requesting the status of an existing order. Pseu-

doSPECjbb, in our setup, processes 4M operations in total.

Both multi-threaded as single-threaded workloads.
As mentioned in Table 1, we gathered these benchmarks from

various sources. Some benchmarks come from existing benchmark

suites (PARSEC [7], MineBench [15], BioPerf [3]), while others

were derived from real-life applications (Apache lucene, blender,

GNU gpg, GNU tarz). Half the benchmarks are multi-threaded

workloads (blender, bodytrack, kmeans, specjbb, x264); the

others are single-threaded (hmmer, eclat, gpg, lucene, tarz). The

inputs for these workloads were chosen such that the run time on

a dual-processor dual-core AMD Opteron 2212 machine is on or-

der of minutes, see also Table 1. We simulate these workloads to

completion.

Workload data set sizes.
All the workloads run on data sets with hundreds of MBs or on

the order of GBs of data. Although the data sets may be even big-

ger in real setups, we believe this is a reasonable assumption for

our purpose, because these data sets do not fit in the processor’s

caches anyway. Hence, simulating even larger data sets is unlikely

to change the overall conclusions. We simulate these workloads

for minutes of real time, see also Table 1, or hundreds of billions of

instructions, which is unusual for architecture simulation studies.

3. DATACENTER MODELING

Datacenter design is very much cost driven, and design decisions

are driven by two key metrics, namely performance and cost [5].

Cost is not limited to hardware cost, but also includes power and

cooling as well as datacenter infrastructure cost. A recently pro-

posed metric for internet-sector environments is performance di-

vided by total cost of ownership (TCO) and quantifies the perfor-

mance achieved per dollar [12]. We now describe how we quan-

tify cost and performance in the following two subsections, respec-

tively.

3.1 TCO modeling

We build on the work by Lim et al. [12] to quantify datacenter

cost. A three-year depreciation cycle is assumed and cost models

are provided for hardware cost, as well as power and cooling costs.

Hardware cost includes the individual components (CPU, memory,

disk, board, power and cooling supplies, etc.) per server. Power

and cooling cost includes the power consumption of the various

server and rack components. The cooling cost includes infrastruc-

ture cost for power delivery, infrastructure cost for cooling, and the

electricity cost for cooling.

We consider three server types: a high-end server, a low-end

embedded processor and a middle-of-the-road (commodity) server.

Table 2 describes their configurations and their cost models. The

high-end server that we simulate is modeled after the Intel Xeon

X5570; we assume an eight-core machine7 running at 3GHz with

a fairly aggressive out-of-order processor core along with an ag-

gressive memory hierarchy. The low-end processor is a dual-core

embedded processor running at 1.2GHz with a modest core and

memory hierarchy, and is modeled after the Intel Atom Z515 pro-

cessor. The commodity system is somewhat in the middle of the

road between the high-end and low-end systems. We assume 4

cores at 2GHz and we model it after the Intel Core 2 Quad. The cost

for each of the components is derived from a variety of sources8.

7The Intel Xeon X5570 implements 4 cores and 2 hardware threads
per core.
8http://ark.intel.com/Product.aspx?id=40740;
http://www.newegg.com/Product/Product.aspx?Item=N82E16813131358;
http://ark.intel.com/Product.aspx?id=40816&processor=Q8200S&spec-
codes=SLG9T



Processor configuration

high-end middle low-end

frequency 3GHz 2GHz 1.2GHz

#cores 8 4 2

OOO core 4-wide 3-wide 2-wide

ROB size (#insns) 160 90 40

mem latency (cycles) 120 80 40

private L1 caches 64KB 32KB 32KB

L1 prefetching yes yes no

private L2 caches 256KB NA NA

shared LLC cache 8MB 2MB 1MB

LLC prefetching yes no no

branch predictor 4KB, 14b hist 2KB, 10b hist 1KB, 8b hist

Cost model

high-end middle low-end

CPU 1,386 213 45

board and mngmnt 330 145 50

memory 265 113 98

total hardware cost 1,981 471 193

CPU power (TDP) 95 65 1.4

server & rack power 300 100 22

cooling 300 100 22

total power (Watt) 600 200 44

power cost 3-year 2,680 894 197

total cost 3-year 4,662 1,365 390

Table 2: Processor configurations and their cost models (in

Euro).

We use these default costs for reporting a reasonable design point

given today’s technology. Note that we do account for the server

NIC cost as part of the ‘board and management’ cost. We do not ac-

count for the network itself; we basically assume that network cost

is constant across different datacenter configurations. We believe

this is a reasonable first-order approximation, given that network-

ing accounts for 8% of the total datacenter cost only [8]. Further,

because cost depends on many sources and varies over time, we

vary the relative cost ratios across platforms in order to understand

cost sensitivity in Section 5. In other words, if server cost and/or

network cost were to differ across datacenter configurations, this

can be accounted for through these cost ratios.

We consider a default energy cost of 17 Eurocent per kWh, un-

less mentioned otherwise. This is a typical private tariff rate; in-

dustry tariff rate may be as low as 10 Eurocent per kWh and below,

hence, we explore a range of electricity costs in the evaluation sec-

tion of this paper.

3.2 Performance modeling

We use HP Labs’ COTSon simulation infrastructure [2] which

uses AMD’s SimNow [6] as its functional simulator to feed a trace

of instructions into a timing model. COTSon can simulate full-

system workloads, including the operating system, middleware (e.g.,

Java virtual machine) and the application stack. In this study, we

use the COTSon-based simulator by Ryckbosch et al. [21], which

has been validated against real hardware and which runs at a sim-

ulation speed of 37 MIPS with sampling enabled. This high simu-

lation speed enables us to run the data-centric workloads on suffi-

ciently large datasets for minutes of real time. The sampling strat-

egy assumed is periodic sampling: we consider 100K instruction

sampling units every 100M instructions and 1M instructions prior

to each sampling unit for warming the caches and predictors.

We quantify performance as throughput or the number of jobs

that can be completed per unit of time. Because the workloads that

we consider are supposed to run as background processes in the

cloud — these workloads are non-interactive with the end users

— we believe throughput is the right performance metric. For

each platform we compute the best possible throughput that can be

achieved. For the single-threaded benchmarks this means we run

multiple copies of the same benchmark concurrently on the mul-

ticore processor and we vary the number of copies (e.g., for the

high-end server, from one copy up to eight copies), and we then re-

port the best possible throughput that was achieved. For the multi-

threaded benchmarks, we vary both the number of copies and the

number of threads (e.g., on an 8-core system we consider 1 copy

with 8 threads, 2 copies with 4 threads, etc.), and we report the best

possible throughput.

4. OPTIMIZING THE DATACENTER

4.1 Which server type is optimal?

Figure 1 quantifies performance per TCO efficiency for the high-

end, middle-of-the-road and low-end servers, normalized to the

high-end server. Performance per TCO efficiency is defined as

TCO divided by performance, or the reciprocal of performance per

TCO. Hence, performance per TCO efficiency is a lower-is-better

metric. The interesting observation from Figure 1 is that there is

no single winner: there is no single server that yields the best per-

formance per TCO across all the workloads. For most workloads,

the low-end server results in the lowest performance per TCO ef-

ficiency, however, for a couple workloads, the high-end server is

the most performance per TCO efficient system, see for exam-

ple kmeans and x264. It is also interesting to note that for a

couple workloads, namely gpg, hmmer and tarz, the middle-of-

the-road server yields the best performance per TCO efficiency,

albeit the difference with the low-end server is very small. The

result that high-end and middle-of-the-road servers are more cost-

efficient than low-end servers for some data-centric workloads is

surprising and is in contrast to common wisdom and recently re-

ported studies [1, 12, 20] which argued for lower-end servers to

optimize cost-efficiency in the datacenter. The reason is that these

workloads are computation-intensive which makes the high-end

and commodity servers yield a better performance per cost ratio, as

we explain next. It must be noted that these conclusions hold true

for our workloads, but more study is needed before we can general-

ize these results to a much broader range of data-centric workloads,

and internet-sector workloads in general.

4.2 Where does the benefit come from?

In order to get some insight as to why a particular server type is a

winner for a particular workload, we break up the performance per

TCO metric into its contributing components, using the following

formula:

performance per TCO =

no. parallel jobs ·
freq

#cycles

TCO
. (1)

The denominator quantifies cost for which we assume a 3-year de-
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Figure 2: Performance per TCO stacks for quantifying the different factors; high-end versus low-end processors.

preciation cost cycle. The nominator quantifies throughput as the

number of parallel jobs multiplied by the performance per job, or

the reciprocal of the job’s execution time; we measure throughput

as the number of jobs that can be completed over a three-year time

period. Figure 2 quantifies the contributing components when com-

paring the high-end versus the low-end server. The vertical axis is

on a logarithmic scale. The contributing components are additive

on a logarithmic scale, or multiplicative on a nominal scale. A neg-

ative component means that the component is a contributor in favor

of the low-end server. In particular, TCO is always in favor of the

low-end server because the TCO for the low-end server is about

12 times as low as for the high-end server. A positive component

implies that the component is a contributor in favor of the high-end

server. For example, frequency is a significant positive contributor

for the high-end server: 3GHz versus 1.2 GHz, a 2.5× improve-

ment. Also, the number of parallel jobs is a significant contribu-

tor for the high-end server for most workloads. This means that

the high-end server benefits from its ability to run multiple jobs in

parallel, and hence achieve a higher throughput than the low-end

server. Note that for some benchmarks, e.g., lucene and specjbb,

this component is only half as large as for the other benchmarks.

This is due to the fact that 4 copies is the optimum for these bench-

marks on the high-end servers versus 2 copies on the embedded

server, whereas for the other benchmarks 8 copies is the optimum

on the high-end server. Finally, the third positive contributor is the

number of execution cycles; this means that the execution time in

number of cycles is smaller on the high-end server compared to

the low-end server. For most benchmarks, the number of execution

cycles is roughly the same for the high-end and low-end servers,

which implies that on the low-end server, the reduction in mem-

ory access time (in cycles) is compensated for by the increase in

the number of cycles to do useful work (smaller processor width

on the low-end server) and the increase in the number of branch

mispredictions and cache misses (due to a smaller branch predictor

and smaller caches on the low-end server). The number of exe-

cution cycles is a positive contributor for the high-end server for

three benchmarks though, namely kmeans, specjbb and x264.

In other words, the high-end server benefits significantly from the

larger caches and branch predictor as well as the larger width com-

pared to the low-end server for these workloads.

4.3 Does multi-threading help?

As mentioned before, half the workloads are multi-threaded and

we optimize the datacenter for optimum throughput at the lowest

possible cost. An interesting question is whether multi-threading

helps if one aims for maximizing throughput. In other words, for a

given workload for which there exists both a sequential and a paral-

lel version, should we run multiple copies of the sequential version

simultaneously, or are we better off running a single copy of the

multi-threaded version? This is a non-trivial question for which an

answer cannot be provided without detailed experimentation. On

the one hand, parallel execution of sequential versions does not in-

cur the overhead that is likely to be observed for the parallel version

because of inter-thread communication and synchronization. On

the other hand, multiple copies of sequential versions may incur

conflict behavior in shared resources, e.g., the various sequential

copies may incur conflict misses in the shared cache.

Table 3 summarizes the optimum workload configuration on each

of the servers in terms of the number of instances of each work-

load and the number of threads per workload. For all of the multi-

threaded workloads, except for specjbb, running multiple copies

of the single-threaded workload version optimizes throughput. It is

remarkable to see that multi-threading does not help in maximizing

throughput for the data-centric workloads. Running multiple se-



high-end middle low-end

blender c8t1 c4t1

c2t1

bodytrack c8t1 c4t1

eclat c8t1 c4t1

gpg c8t1 c4t1

hmmer c8t1 c4t1

kmeans c8t1 c4t1

lucene c4t1 c4t1

specjbb c4t2 c2t2

tarz c8t1 c4t1

x264 c8t1 c4t1

Table 3: Workload configurations that maximize throughput

on the high-end, commodity and low-end servers; ‘cxty’ means

‘x’ copies of the same workload with ‘y’ threads.
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Figure 3: Normalized cost for iso-throughput homogeneous

datacenters with high-end, middle-of-the-road and low-end

servers only, versus a heterogeneous datacenter.

quential versions yields higher throughput compared to running a

single parallel version; co-running sequential versions do not incur

significant conflict behavior in shared resources.

4.4 The case for a heterogeneous datacenter

The results shown above suggest that a heterogeneous datacen-

ter in which a job is executed on the most cost-efficient server,

may be beneficial. In order to quantify the potential of a heteroge-

neous datacenter for data-centric workloads, we consider four iso-

throughput datacenter configurations. We consider three homoge-

neous datacenters (with high-end servers only, middle-of-the-road

servers only, and low-end servers only) as well as a heterogeneous

datacenter. We assume the same workloads as before and we as-

sume that all of these workloads are equally important — they all

get the same weight. All of the datacenter configurations achieve

the same throughput (for all of the workloads), hence, a datacenter

with low-end servers needs to deploy more servers to achieve the

same throughput as the homogeneous high-end server datacenter.

The heterogeneous datacenter is configured such that it minimizes

cost while achieving the same throughput as the homogeneous dat-

acenters.

Figure 3 quantifies datacenter cost normalized to the homoge-

neous high-end server datacenter. A homogeneous datacenter with

commodity servers reduces cost by almost 12% and low-end servers

reduce datacenter cost by 14%. A heterogeneous datacenter re-

duces cost by 18%. Clearly, optimizing the datacenter’s architec-
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Figure 4: Cost reduction for a heterogeneous datacenter rela-

tive to homogeneous datacenter configurations across all possi-

ble two-benchmark workloads.

ture has a significant impact on cost. Even homogeneous datacen-

ters with commodity and low-end servers can reduce cost signif-

icantly. Heterogeneity reduces cost even further, although not by

a large margin. However, this is very much tied to the workloads

considered in this study. As shown in Figure 1, only two out of

the ten workloads are run most efficiently on the high-end server.

Hence, depending on the workloads, cost reduction may be larger

or smaller.

In order to get a better view on the potential of heterogeneity

as a function of its workload, we now consider a large variety of

different workload mixes. The previous experiment assumed that

all the workloads are equally important, simply because we do not

have a way for determining the relative importance of these work-

loads in real datacenters. We now consider a more diverse range

of workload types: we consider all possible two-benchmark work-

load mixes and determine the potential benefit from heterogeneity;

this is to study how sensitive a heterogeneous datacenter is with

respect to its workload. In other words, for each possible two-

benchmark workload mix, we determine the cost reduction through

heterogeneity relative to homogeneous datacenters, see Figure 4.

On average, a heterogeneous datacenter improves cost by 25%, 8%

and 4%, and up to 88%, 24% and 17% relative to a homogeneous

high-end, commodity and low-end server datacenter, respectively.

(We consider the two-benchmark workload mixes for the remainder

of the paper.)

We now zoom in on the architecture of a heterogeneous data-

center. We therefore consider the workload mixes for which we

observe a throughput benefit of at least 30% for heterogeneity com-

pared to a homogeneous datacenter consisting of high-end servers

only. Figure 5 plots the fraction of low-end and commodity servers

in a heterogeneous datacenter; one minus these two fractions is the

fraction of high-end servers. The size of the disks relate to the

number of cases (workload mixes) for which we observe a partic-

ular configuration. We observe that the optimum heterogeneous

datacenter typically consists of a relatively large fraction low-end

servers and smaller fractions of commodity and high-end servers.
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Figure 5: Configuration of the optimum heterogeneous data-

center: the fraction of low-end and commodity servers; the

fraction of high-end servers equals one minus the fraction of

low-end and commodity servers.
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Figure 6: Cost reduction through heterogeneity as a function of

the cost ratio between the high-end vs low-end servers.

5. SENSITIVITY ANALYSES

The results presented so far assumed the default parameters re-

lating to datacenter cost mentioned in Section 3. Meaningful cost

parameters are not easy to obtain because they are subject to a par-

ticular context, e.g., energy cost relates to where the datacenter is

located, hardware purchase cost depends on the number of hard-

ware items purchased, etc. In order to deal with the cost uncertain-

ties, we therefore perform a sensitivity analysis with respect to the

two main cost factors, hardware purchase cost and energy cost.

5.1 Varying the cost ratio

So far, we considered fixed costs for the various server types,

as shown in Table 2. However, cost may vary depending on the

number of servers that are bought — we assumed a fixed price per

server. In addition, prices fluctuate over time. Hence, making a

quantitative statement about which system is most performance-

cost efficient at a given point in time, is subject to the cost ratios

and thus it is not very informative. Instead, we also report the cost

reduction through heterogeneity as a function of the cost ratio be-

tween the high-end and the low-end server, see Figure 6. The cost

reduction reported here is the cost reduction over the best possible

homogeneous datacenter. In case a high-end server is less than 5

times more expensive than a low-end server, then a high-end server

is the clear winner, and there is no need for heterogeneity: a ho-

mogeneous high-end server datacenter optimizes the performance

per dollar metric. In case a high-end server is more than 15 times

more expensive that a low-end server, then a homogeneous data-
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Figure 7: Cost reduction for a heterogeneous datacenter rela-

tive to the best possible homogeneous datacenter as a function

of energy cost.

center with low-end servers is the optimal datacenter configuration.

For cost ratios between 5× and 15×, performance per cost is op-

timized through heterogeneity. A 10× cost ratio yields the best

possible benefit through heterogeneity, with an average reduction

in cost of 8% and up to 31% for some workload mixes. As a point

of reference, the cost ratio between the high-end and low-end server

assumed in the rest of the paper equals 12, see Table 2.

5.2 Varying energy cost

Along the same line, energy cost is variable as well: it varies

from one location to another, and it varies over time. Figure 7 quan-

tifies the cost reduction of a heterogeneous datacenter relative to the

best possible homogeneous datacenter as a function of energy cost.

We report the average and maximum cost reduction through hetero-

geneity, and we consider two heterogeneous datacenter setups: one

setup includes high-end, commodity and low-end servers, while the

other includes high-end and low-end servers only (no commodity

servers). The reason for considering both configurations is that the

performance-cost efficiency is comparable for the commodity and

low-end servers, as seen in Figure 1, which implies that heteroge-

neous datacenters with high-end and low-end servers only would

achieve most of the benefits from heterogeneity — including com-

modity servers does not add much benefit. This is indeed the case

for the 17 Eurocent per kWh assumed so far.

The interesting observation from Figure 7 is that there is a cost

benefit from heterogeneity across a broad range of energy prices.

Second, when considering high-end and low-end servers only (i.e.,

‘excluding commodity’ servers in Figure 7) for both the homoge-

neous and heterogeneous design points, the benefit from hetero-

geneity tends to be higher at lower energy costs. At lower en-

ergy costs, the performance argument outweighs the cost argument,

shifting the optimum towards high-end servers for a larger fraction

of the workloads. At higher energy costs, the performance per cost

metric drives the optimum design point towards low-end servers

for most of the workloads, hence, the benefit from heterogeneity

is decreasing. Finally, commodity servers fit a sweet spot at lower

energy costs (see the ‘including commodity’ curves in Figure 7).

Commodity servers have interesting performance-cost properties at

low electricity costs — they yield good throughput at relatively low

cost. Nevertheless, heterogeneity is still beneficial and can reduce

the datacenter’s TCO by up to 15%.



5.3 Discussion

The results discussed so far made the case for heterogeneous dat-

acenters. Significant cost reductions can be obtained compared to

homogeneous datacenters while achieving the same overall system

throughput. The results also revealed that the extent to which cost

is reduced is subject to various factors including the workloads,

server cost ratio for different server types, energy cost, etc. Hence,

in some cases, depending on the constraints, the benefit from het-

erogeneity may be limited. However, in a number of cases (for

specific sets of workloads, server cost ratios and energy cost), het-

erogeneity may yield substantial cost benefits, which may translate

into millions of dollars of cost savings.

6. RELATED WORK

Prior work in architectural studies for warehouse-sized comput-

ers considered online interactive workloads for the most part. In

particular, Lim et al. [12] consider four internet-sector benchmarks,

namely websearch (search a very large dataset within sub-seconds),

webmail (interactive sessions of reading, composing and sending

emails), YouTube (media servers servicing requests for video files),

and mapreduce (series of map and reduce functions performed on

key/value pairs in a distributed file system). These benchmarks

are network-intensive (webmail), I/O-bound (YouTube) or exhibit

mixed CPU and I/O activity (websearch and mapreduce). The data-

centric benchmarks considered in this paper are data-intensive and

are primarily compute- as well as memory-intensive, and barely

involve network and I/O activity. It is to be expected that cloud dat-

acenters will feature both types of workloads, interactive internet-

sector workloads as well as data-intensive background workloads.

Lim et al. reach the conclusion that lower-end consumer platforms

are more performance-cost efficient — leading to a 2× improve-

ment relative to high-end servers. Low-end embedded servers have

the potential to offer even more cost savings at the same perfor-

mance, but the choice of embedded platform is important. We con-

clude that heterogeneity with both high-end and low-end servers

can yield substantial cost savings.

Andersen et al. [1] propose the Fast Array of Wimpy Nodes

(FAWN) datacenter architecture with low-power embedded servers

coupled with flash memory for random read I/O-intensive work-

loads. Vasudevan et al. [22] evaluate under what workloads the

FAWN architecture performs well while considering a broad set of

microbenchmarks ranging from I/O-bound workloads to CPU- and

memory-intensive benchmarks. They conclude that low-end nodes

are more energy-efficient than high-end CPUs, except for problems

that cannot be parallelized or whose working set cannot be split to

fit in the cache or memory available to the smaller nodes — wimpy

cores are too low-end for these workloads. Whereas the FAWN

project focuses on energy-efficiency, we focus on cost-efficiency,

i.e., performance per TCO. While focusing on data-centric work-

loads, we reach the conclusion that both high-end and low-end

CPUs can be cost-efficient, depending on the workload.

Reddi et al. [20] evaluate the Microsoft Bing web search engine

on Intel Xeon and Atom processors. They conclude that this web

search engine is more computationally demanding than traditional

enterprise workloads such as file servers, mail servers, web servers,

etc. Hence, they conclude that embedded mobile-space processors

are beneficial in terms of their power efficiency, however, these

processors would benefit from better performance to achieve bet-

ter service-level agreements and quality-of-service.

Keys et al. [10] consider a broad set of workloads as well as

different processor types, ranging from embedded, mobile, desk-

top to server, and they aim for determining energy-efficient build-

ing blocks for the datacenter. They conclude that high-end mobile

processors have the right mix of power and performance. We, in

contrast, aim for identifying the most cost-efficient processor type

taking into account total cost of ownership (TCO), not energy-

efficiency only. We conclude that a mix of high-end servers and

low-end servers optimizes performance per TCO.

Nathuji et al. [16] study job scheduling mechanisms for optimiz-

ing power efficiency in heterogeneous datacenters. The heteroge-

neous datacenters considered by Nathuji et al. stem from upgrade

cycles, in contrast to the heterogeneity ‘by design’ in this paper.

Also, Nathuji et al. consider high-end servers only and they do

not include commodity and low-end servers as part of their design

space.

Kumar et al. [11] propose heterogeneity to optimize power effi-

ciency in multicore processors. Whereas Kumar et al. focus on a

single chip and power efficiency, our work considers a datacenter,

considers total cost (including hardware, power and cooling cost)

and data-centric workloads.

7. CONCLUSION

Data explosion and diversity in the internet drives the emergence

of a new set of data-centric workloads to manage, manipulate, mine,

index, compress, encrypt, etc. huge amounts of data. In addition,

the data is increasingly rich media, and includes images, audio and

video, in addition to text. Given that the datacenters hosting the on-

line data and running these data-centric workloads are very much

cost driven, it is important to understand how this emerging class of

applications affects some of the design decisions in the datacenter.

Through the architectural simulation of minutes of run time of a

set of data-centric workloads on a validated full-system x86 simula-

tor, we derived the insight that high-end servers are more performance-

cost efficient compared to commodity and low-end embedded servers

for some workloads; for others, the low-end server or the commod-

ity server is more performance-cost efficient. This suggests hetero-

geneous datacenters as the optimum datacenter configuration. We

conclude that the benefit from heterogeneity is very much workload

and server-cost and electricity-cost dependent, and, for a specific

setup, we report improvements up to 88%, 24% and 17% over a

homogeneous high-end, commodity and low-end server datacenter,

respectively. We also identify the sweet spot for heterogeneity as

a function of high-end versus low-end server cost, and we provide

the insight that the benefit from heterogeneity increases at lower

energy costs.
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