
Automated Design of Complex Dynamic Systems

Michiel Hermans1*, Benjamin Schrauwen1, Peter Bienstman2, Joni Dambre1

1 ELIS department, Ghent University, Ghent, Belgium, 2 INTEC department, Ghent University, Ghent, Belgium

Abstract

Several fields of study are concerned with uniting the concept of computation with that of the design of physical systems.
For example, a recent trend in robotics is to design robots in such a way that they require a minimal control effort. Another
example is found in the domain of photonics, where recent efforts try to benefit directly from the complex nonlinear
dynamics to achieve more efficient signal processing. The underlying goal of these and similar research efforts is to
internalize a large part of the necessary computations within the physical system itself by exploiting its inherent non-linear
dynamics. This, however, often requires the optimization of large numbers of system parameters, related to both the
system’s structure as well as its material properties. In addition, many of these parameters are subject to fabrication
variability or to variations through time. In this paper we apply a machine learning algorithm to optimize physical dynamic
systems. We show that such algorithms, which are normally applied on abstract computational entities, can be extended to
the field of differential equations and used to optimize an associated set of parameters which determine their behavior. We
show that machine learning training methodologies are highly useful in designing robust systems, and we provide a set of
both simple and complex examples using models of physical dynamical systems. Interestingly, the derived optimization
method is intimately related to direct collocation a method known in the field of optimal control. Our work suggests that the
application domains of both machine learning and optimal control have a largely unexplored overlapping area which
envelopes a novel design methodology of smart and highly complex physical systems.
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Introduction

The digital computation paradigm has become so dominant,

that in the minds of many, the word digital is implicitly assumed

whenever computation is mentioned. This is mainly due to the fact

that digital computation is extremely robust against variability and

noise. This greatly facilitates the design process and is one of the

main reasons why we can keep on designing ever more complex

computers. However, the digital paradigm doesn’t map well to the

natural computation that occurs in many physical media and the

quenching of their often rich dynamical spectrum to two-valued

attractor dynamics comes at a huge efficiency cost. In contrast,

analogue computers carry the potential to directly exploit the way

the dynamics of physical systems respond to external stimuli,

continuously transforming their real-valued state. This requires the

selection of a physical system with natural dynamics that roughly

match the computational requirements of a given task. Some of

the pioneers of current computer science have investigated more

generally applicable analogue computing models. For instance, in

Von Neumann’s original discussion of cellular automata [1], five

types were proposed, most of which were analogue. Turing’s

description of the role of reaction-diffusion in morphogenesis [2] is

another example. This work was originally adopted mainly by the

biological community (to study morphogenesis), but it later

became the basis for, e.g., Adamatzki’s recent work on reaction-

diffusion computers [3].

In practice, even coming close to the exploitation of this

potential for complex behaviors that are not easily partitioned into

small building blocks requires an economically unacceptable

design effort. Besides the inherent complexity of tuning a complex

nonlinear dynamical system, designers need to ensure robustness

under uncertain conditions. Many design parameters are not very

well controlled during fabrication. Additionally, they may vary in

time in random or systematic ways (e.g., due to thermal effects).

Finally, the exact desired behavior of the system can usually not be

described analytically, because it needs to perform its task under

variable conditions and in the presence of what is usually termed

noise.

Yet, robust and highly complex analogue computing occurs

within all living systems, from single cells to complex organisms. As

the brain (human or animal) is exposed to stimuli from its senses,

muscles and pain receptors, it auto-rewires, using its adaptation

mechanisms, first in order to structure, correlate and organize the

vast amounts of incoming data and then to control its actions in

order to achieve increasingly complex goals. Less well known is the

fact that animal bodies are constructed in such a way that their

movements require as little energy as possible and can mostly be

controlled by relatively simple periodic central pattern generators

(CPGs - [4,5]). This is being exploited in a recent trend in robotics

called morphological computing [6–8], in which robot designers

focus on the design of robots rather than their control. The central

claim of this line of research is that a large part of the control

complexity can be internalized into the robot’s morphology by

clever design.

Many efforts to solve such problems have been made in the past.

One often used design strategy, inspired by the evolution that led
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to biological systems, is to use metaheuristic optimization. This

term refers to algorithms that treat the system as a black box, only

sample the solution space and use some heuristic search algorithm

to maximize an associated fitness function, e.g., evolutionary

techniques. One issue with this approach is that truly large-scale

systems with thousands of parameters offer a too large search

space, and the time needed for optimizing grows prohibitively

large.

In this paper we introduce a design methodology that allows for a

more efficient design of robust physical systems. Our approach is

applicable whenever an approximate parametric model of the

system’s dynamics exists and sufficient examples of the desired

dynamical behavior are available. Essentially, we revert to machine

learning algorithms, which have proven their merit in creating

remarkably powerful systems, and apply them to physical dynamic

systems, operating in continuous time. In particular we extend the

gradient descent training algorithms known as Real-Time Recurrent

Learning (RTRL), and Backpropagation through time (BPTT), respec-

tively. These are commonly used for training recurrent neural

networks (RNNs), which are discrete-time dynamical systems.

Historically, BPTT was introduced first [9–12], and it was

developed by eliminating the time-aspect of recurrent neural

networks and considering them a special form of multi-layered

perceptron. RTRL was introduced later [13] as an online

alternative to BPTT. BPTT has proven to be a highly successful

method for training recurrent networks, leading to remarkably

complex and powerful systems [14,15], often with several millions of

parameters. As we show, our extensions of BPTT and RTRL are

capable of taking into account and exploiting the long-term

dynamic effects of the systems under consideration.

The resulting equations that describe how the gradients w.r.t.

the parameter values are computed are identical to equations that

are used within numerical optimal control, more specifically the

computation of the costates of the system, which stem from the

Pontyagrin maximum principle [16].

Optimal control primarily deals with a different problem: given

a certain dynamic system, how can we create an input (or control)

signal for this system in order to get it to operate in a certain way.

This problem has a wide variety of applications in chemical plants,

economy, robotics, spaceflight, etc. one example is the minimiza-

tion of fuel expenditure in a rocket leaving the earth’s atmosphere

[17]. Even though the mathematical formalism also allows for the

optimization of system parameters, not much work actually

considers optimal control as a useful tool for system design, and

much more commonly systems are designed first, and later optimal

control algorithms are applied to control them. Machine learning

starts from an information processing perspective. Here, the input

signals of the system need to be processed (filtered, classified,…).

Samples of desired input-output behavior are provided, and the

system parameters (usually static values) need to be optimized in order

to optimally approximate this desired behavior.

The design problems presented in this paper lie within the

overlapping area of machine learning and optimal control:

optimizing the design rather than control, but working with

physical dynamical systems. We provide a set of three examples

of which one leans to control theory (locomotion), one to optimal

design (magnetic beam focusing), and one to machine learning

(optimizing a photonic chip using examples of input/output

signals).

Results

In this section, we first provide the equations needed for

obtaining gradients in continuous time dynamical systems, and we

explain how they can be used in an online and offline optimization

fashion. Second, we illustrate the applicability of our approach by

optimizing three different dynamical systems.

Gradient Descent
Here we briefly present the main mathematical results of which

the proof can be found in derivation S1. We formally extend

BPTT to continuous time for a number of types of dynamical

systems. Continuous time variants of BPTT have been considered

before (e.g., [18]), but these derivations focus only on neural

network-like systems and start from an Euler approximation of

differential equations. We derive continuous time BPTT directly,

without the need for approximations, and in a generic form which

is applicable to a much wider variety of dynamical systems.

Instantaneous gradient. We consider continuous-time dy-

namical systems characterized by a state a(t) and a set of

parameters h, that is excited by an external input signal s(t). For

brevity, the following summary focuses on ordinary differential

equations (ODEs), i.e.:

f(a(t),
:
a(t),s(t),h)~0 ð1Þ

The derivations in the supplementary material are also given for

the cases of delayed differential equations and for (delay)

differential algebraic equations (one of our example systems, the

photonic network, is described by a delayed differential algebraic

equation).

Suppose that, at time t, we wish to minimize the cost function

C(a(t),t). The gradient of this cost function w.r.t. the parameters,

+h(t), provides the direction in which the system parameters need

to be changed to decrease the cost function at each point in time.

It is given by

+h(t)~
dC(a(t),t)

dh

~
dC(a(t),t)

da(t)

da(t)

dh

~eT(t)G(t):

Here, e(t) is the output error, i.e. the gradient of the cost

function w.r.t. the system state a(t)), and G(t) is the total derivative

of the state a(t) w.r.t. the parameters. For notational reasons we

also introduce K, J0, and J1, the partial derivatives of f w.r.t. h, a,
and _aa, respectively. If we take the derivative of equation 1 w.r.t.

the parameters, we can write:

K(t)zJ0(t)G(t)zJ1(t)
:
G(t)~0, ð2Þ

Which is a differential equation that defines the evolution of G(t),

provided that J1(t) is an invertible matrix. This is for instance the

case for explicit ODEs, where J1(t) is the identity matrix. As G(t)

evolves according to an ODE, it can be computed in parallel with

the system itself, and h can also be updated continuously. This is

known as online learning, as the system optimization happens while

the simulation runs.

Designing Complex Dynamic Systems
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One downside of the above approach is that the matrix G(t) can

be very large, as its number of elements equals the product of the

number of state variables and the number of parameters in the

system. Even for modestly sized dynamical systems, this number

can grow into the several thousands, leading to a high

computational cost.

Gradient time integral. One approach to drastically reduc-

ing the computational cost is called batch learning. Instead of

continuously updating the parameters, one now considers a finite

time interval of duration T and defines the total cost as the time

integral of C(a(t),t) over this interval. We obtain the following

expression for the gradient w.r.t. the parameters.

ch~

ðT

0

dt+h(t): ð3Þ

In this case, it is possible to avoid explicitly computing G(t) (see

derivation S1). Instead, we need to solve a second system of

differential equations that expresses the evolution of the error

backwards in time:

:
e(s)~e(s)ze

T(s)J{1
1 (s)J0(s), ð4Þ

in which s~T{t. The gradient can then be replaced by

lh~{

ðT

0

dt eT(t)J{1
1 (t)K(t): ð5Þ

This expression has two important advantages over the previous

one. First of all, e(t) has the same dimensionality as a(t), and hence

the cost of computing e(t) is roughly the same as that of solving the

system itself. The second advantage is that for many systems, the

evolution of individual state variables only depends on a small

fraction of the parameters h. This is particularly the case in systems

associated with sparse networks of interacting parts. As a result,

K(t) is often a very sparse matrix, and the multiplication in the

integral can be solved efficiently. One important downside of this

approach is the fact that it requires storing the time traces of the

system state over the full interval t[f0 � � �Tg. In general, it is

advisable to keep the batches short. However, in some cases long

batches are required, which may cause memory problems.

The above equations for computing G(t) and e(t) are the

continuous-time equivalents of the machine learning techniques

known as Real-Time Recurrent Learning (RTRL), and Backpropagation

through time (BPTT), respectively. As stated in the introduction,

equations ?? and 5 and the associated differential equations for

G(t) and e(t) also appear in the theory of optimal control (for a

comprehensive overview, see, e.g., [19]), in particular in modern,

large scale applications which can only be solved numerically (e.g.,

as presented on the second SADCO industrial workshop 2012). In

order to obtain good control solutions, a common approach is to

write the input signal s(t) as a function of a finite set of parameters

(often by means of interpolation or splines), and to optimize this

discrete set of parameters in a way that is largely equivalent to the

previously presented method to compute the gradient w.r.t. the

system parameters. Here too, in order to find this gradient,

additional differential equations need to be solved (known as

costates), and they are essentially identical to those for e(t) and

G(t) defined above. This intimate connection between back-

propagation through time and optimal control has been described

before [20], but has received little attention in further research.

Numerical Simulations
We demonstrate our approach by embedding certain desired

behaviors into simplified models of three different physical

dynamical systems. Ordered according to increasing system

complexity, they are: two-dimensional mass-spring-damper

(MSD) networks, a beam of charged particles influenced by

magnetic fields, and a photonic network of optical amplifiers. All

details concerning the physical models and optimization methods

can be found in the materials and methods. The presented

optimization strategy can readily be used on more complicated

and realistic simulation models, such as those used in the emerging

field of simulation-based engineering [21].

Mass-spring-damper systems. We optimize MSD net-

works consisting of point masses connected with massless linear

springs and dampers. The state of this system consist of the

positions and velocities of the point masses. Possible optimisation

parameters in this system are the rest lengths of the springs, the

spring constants and the spring damping constants, as well as any

parameters of possible control signals driving the springs.

First, we embed a specific trajectory: when the network evolves

dynamically from a predefined initial condition, one of the nodes

has to trace a pentagram shape. In order to achieve this, no

external control signal is applied and we only optimize the rest

lengths and spring constants of the springs. The optimized MSD

network tracks the pentagram with nearly perfect accuracy,

demonstrating BPTT’s ability to find a solution for such tasks. The

simplicity of this task (no noise; a single, well defined objective

function) allows for a direct comparison with the so-called

Covariance Matrix Adaptation Evolution Strategy (CMA-ES) [22], one

of the most widely used evolutionary algorithms. The shape of the

setup and the resulting trajectory are shown in Fig. 1a and 1b,

respectively. Fig. 1c compares the convergence speeds of CMA-ES

and gradient descent for this task, and shows that gradient descent

converges substantially faster. This is to be expected, as CMA-ES

makes an estimate of the gradient from multiple samples, whereas

we compute it directly. This particular problem only has 160

parameters, which is still feasible for CMA-ES. As dimensionality

increases, evolutionary algorithms will face increasing difficulty, as

the cost of sampling the search space increases exponentially.

Second, we optimize an MSD model for locomotion, a problem

which has often been studied in the context of evolutionary

algorithms [6,23] and matches well with the concept of

morphological computation [6–8]. Our ‘robots’ are MSD-

networks of which the spring resting lengths are modulated

periodically. They exist in a 2D environment with gravity and a

ground contact model. Initially, the robot is a worm-shaped set of

springs of which each spring’s rest length is periodically modulated

with a random phase and amplitude. In this application, we

optimize both the robot’s shape (the spring rest lengths) and its

control (the phases and amplitudes of the modulation). As the

number of parameters for this problem is still manageable (162 in

total), we use the online learning approach, which allows us to

gradually optimize the robot while the simulation runs. The cost

function consists of two contributions. The first is simply the

squared difference between the average horizontal speed and a

target value. The second is the sum of squares of the rest lengths

and amplitudes in the cost function. This is added to avoid the

trivial solution of ever increasing the modulation amplitudes and

the rest lengths of the springs (which leads to larger contractions

and a greater speed). Note that this second cost term is equivalent

to the ubiquitous L2 regularization strategy in machine learning,

where it is used to avoid extreme parameter sensitivity, and hence

overfitting. We show a schematic depiction of the initial robot and

an example of a trained robot in Fig. 2.

Designing Complex Dynamic Systems
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Videos of an initial (unoptimized) MSD robot (movie S1) and of

some resulting optimized locomotions (movies S2–S4) are avail-

able in the supplementary material. The robots develop highly

dynamic gaits in which usually only the front and rear extremities

touch the ground. Even though the initial shape of the robot is

identical for all experiments, the initial parameters that determine

the control (in particular the phase of the periodic modulation), are

chosen randomly at the beginning of each simulation. These small

differences do lead to strongly differing final robot morphologies

and gates, indicating that this problem has a high number of local

optima.

Interestingly, when examining the parameter values for the

modulation amplitudes, it appears that, due to the imposed

restrictions on size and strength, the robots tend to end up with

only a few springs with a large modulation amplitude, providing

the bulk of the locomotive power, whereas the other springs

exhibit small to virtually zero amplitudes. This poses an interesting

possibility: when one would actually design and build a physical

robot, it would be desirable to have as little actuated parts as

possible. One could then use L1 regularization [24], which leads to

a sparse solution in which a large part of the amplitudes are zero

(which would greatly simplify the eventual robot construction).

Magnetic focusing. The MSD networks from the previous

section are highly simplified, and cannot directly be constructed

physically without taking into account a range of more realistic

effects such as nonlinear springs, contacts and collisions. In the

next example we have trained a spatial configuration of magnets to

focus a beam of charged particles, which is a more practically

applicable physical design problem. This problem has a well-

known solution, consisting of two ideal quadrupole fields placed

Figure 1. Embedding a trajectory in an MSD-network. A: Depiction of the initial condition of the MSD-system. The grey circles have fixed
positions, the black circles are point masses that are non-fixed, and the red circle is the point mass of which we wish to control the trajectory. The
connecting lines represent massless linear spring-dampers. B: Illustration of the trajectory of the selected node after optimisation. The full blue line is
the actual trajectory, (including the trajectory after completing the pentagram) and the dashed line is the target. C: Comparison of the convergence
speed of gradient descent and CMA-ES for the same initial parameter set.
doi:10.1371/journal.pone.0086696.g001

Figure 2. MSD robots.We have represented the springs that constitute the MSD robots with lines, where we visualized their modulation amplitude
by making springs with large modulation amplitudes thicker and redder. The blue line represents the ground. A: Shape of the robot at the
initialization of training. All springs have an equally large modulation amplitude. B: Snapshot of an example robot after finishing training. Only 4 of its
springs still have a non-negligible modulation amplitude, and they provide virtually all locomotive power.
doi:10.1371/journal.pone.0086696.g002
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behind each other at a 90
0

angle [25]. Producing an ideal

quadrupole field, however, requires a precisely manufactured

geometry of magnetic cores. We use a discrete set of 200 point

dipole magnets (leading to 1,200 trainable parameters: all magnet

positions and orientations, having 3 coordinates each), which

cannot produce such a field exactly. As such, gradient descent

needs to find an approximate solution to the problem. In order to

use the presented framework, we simulate an incoming ‘beam’ of

particles (a discrete number of them), and use their positions and

velocities as the state of the dynamic system. The resulting magnet

configuration, beam, and distribution of particles crossing the focal

plane are shown in Fig. 3, as well as a set of cross-sections of the

beam within the lens, showing the lateral magnetic field lines

within. The configuration manages to focus the beam with slightly

better focus than the quadrupole set we compare against.

Interestingly, the shape of the beam and the cross-sections show

that the magnet configuration has found a solution that is

qualitatively similar to that of an ideal quadrupole lens, in which

the beam is first focused in one direction and then in the other.

Photonic networks. The third dynamical system we consider

is an integrated network of semiconductor optical amplifiers

(SOAs). Nonlinear photonic networks have been considered as

promising candidates for information processing [26–29]. Essen-

tially, the dynamics of networks of photonic components can show

parallels with those of recurrent neural networks, making them an

interesting platform for integrating high-bandwidth neural-net-

work-like systems in physical hardware. SOA networks like the

ones in [27,30] are an interesting example of our technique

because there exist non-negligible interconnection delays between

the different amplifiers. Due to the finite speed of light and the fact

that the internal dynamics of the SOAs are extremely fast, these

need to be taken into account explicitly, and influence the system

dynamics in a meaningful fashion. The model that describes this

SOA network is a delayed differential algebraic equation.

In this example, we show that our approach can handle

uncertainty due to manufacturing variations and noise, yielding

robust and manufacturable designs. We use gradient descent to

optimize the parameters of a 4|4 network of SOAs, intercon-

nected with optical waveguides, inspired by earlier work [30]. The

dynamical model we use for the individual SOAs has been shown

to be an excellent approximation of reality [31]. The optimisation

parameters for this system are the bias currents of the SOAs the

losses and phase changes of all input and inter-SOA connections,

as well as the delays of the inter-SOA connections. The desired

output is realised by linearly combining a fraction of the light

coming out of the SOAs and converting this to the electrical

domain using a photodetector. Hence, the losses and phase

changes in the readout connections are also optimised. On-chip

photonic interconnections are etched from a silicon substrate with

a finite resolution. This causes small variations on the exact length

of the connections, and hence the phase of the light arriving at

each SOA. In addition, each SOA produces a certain amount of

noise in the form of amplified stimulated emission. Again, we need

to include this noise in the optimization algorithm in order to

obtain a robust solution. Both phase variability and noise were

included in our optimizations.

We have optimized the network twice, once to behave like a

photonic D flip-flop and once to realise a 5-bit delayed one-hot

Figure 3. Illustration of the magnetic beam focuser. A: Particle distribution in a cross-section of the focal plane, shown for 50,000 particles,
both for a set of two ideal quadrupoles and our configuration (CT-RTRL results). The cost function, the root mean squared distance (RMSD) of the
particles w.r.t. the focal point as they pass through the focal plane, is shown underneath the panels. On the right we show the scale compared to the
original beam width (red circle). Note that the spread of the particles for the quadrupoles is largely due to a relatively large spread in particle
velocities. B: Illustration of the particle beam envelope (light green) and the spatial configuration of magnets (blue red cones), indicating position,
direction and magnitude. C: Cut-through illustrations of the particle beam envelope and the lateral magnetic field at different positions throughout
the beam focuser.
doi:10.1371/journal.pone.0086696.g003
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detector (a device which should produce an output spike when

exactly one of the past five bits of the input stream was equal to

one). In order to train the networks we use input/output example

time traces, and an associated cost. In order to obtain robust

designs, we took care to provide enough and sufficiently diverse

training examples. In particular, the D flip-flop was not trained

with a periodic clock to avoid solutions that internalize the clock

period in the internal delays and do not work properly for other

clock periods. The one-hot detector was trained to operate at a

single clock frequency, but it did not receive a clock input, which

means that it had to extract the clock phase itself. Due to the fact

that we optimize this system by randomly sampling input/output

examples, we essentially train this system using stochastic gradient

descent, which is currently one of the most popular training

methods in machine learning problems that involve large amounts

of data [32]. A schematic depiction of the SOA network and

example time traces for the trained networks are shown in Fig. 4,

showing that despite substantial levels of noise and the included

manufacturing variations, gradient descent is capable of training

the networks to nearly perfect accuracy for both tasks (see

supplementary methods for more detailed performance measures).

Note that a photonic flip-flop can in fact be constructed with

significantly fewer components [33,34]. We use the example here

to show that the presented method is capable to create a working

solution automatically from nothing more than input/output

examples and an associated cost function, and indeed that the

SOA network is generic enough to embed several different

behaviors within its parameters.

Discussion

In this work, we have shown that it is possible to optimize

surprisingly complex dynamics within a range of physical systems,

by extending backpropagation through time to continuous time.

Our examples illustrate that energy-efficient, robust and manu-

facturable solutions can be achieved by applying some of the

knowledge that has been built up in the machine learning

community.

First we have considered mechanical MSD systems. Using an

online variant of the BPTT algorithm, we were able to

automatically find energy efficient solutions for locomotion in

simulated MSD robots. Despite the fact that the obtained gaits are

fast, natural and efficient, the control of the optimized robots is

extremely simple (periodically modulated rest lengths of the

involved springs), and the full motion emerges synergistically

between the control parameters and the robot’s shape. This shows

that our extension of BPTT can be very useful in the field of

morphological computation and embodiment [7].

Second, we have configured a set of dipole magnets in order to

focus a beam of charged particles, obtaining a solution that is in

many ways equivalent to a known solution to this problem: a

double quadrupole field. This example shows that BPTT can be

useful in finding non-trivial solutions for problems that occur in

designing electromagnetic devices, and perhaps even plasma

physics.

Finally we have applied BPTT to a realistic example from the

domain of photonics. We have optimized the internal parameters

of a network of integrated SOAs and waveguides in order to make

it perform two digital operations on input streams. In this case, the

model for the system dynamics was more complex than in the

previous systems, as it required delayed differential algebraic

equations. In addition, to obtain robust and manufacturable

solutions, we included realistic levels of parametric variations and

system noise directly into the training process. Yet, despite the

increased complexity of these examples, our approach has

succeeded in automatically finding highly performant and robust

solutions for both tasks.

In all these instances it is clear that BPTT is able to truly exploit

the dynamic part of the system, and automatically link events that

are separated in time. For instance in the case of the magnetic

beam focuser: information of the objective function is only

available when particles reach the focal plain, yet at that point

in time, their interaction with the magnets has already happened.

Due to the way BPTT takes into account the state history, it still

provides a solution to the given problem. Similar in the case of the

photonic flip flop: the on/off state is remembered indefinitely long,

and that means that internally, the network has produced two

stable point attractors between which it can toggle only when a

Figure 4. Results for optimised SOA networks. A: Schematic representation of the SOA-network. The black lines are photonic waveguides. The
circles are the SOAs, with the arrows indicating in which direction the light passes through. Each SOA receives an external input signal, and at its
output, a channel goes to the output (represented by the dotted lines). These channels are optimally combined optically and the output signal is the
optical power of this combination. B: Illustration of the photonic D flip-flop. The top two time traces show the two input channels, the clock (set)
signal and the data signal. The red time trace is the desired output power of the SOA network, and the blue one is a superposition of the measured
output power for 10 different instances, each with different noise and internal phase variations. C: Illustration of the photonic 5-bit one-hot detector.
The black time trace is the input signal, a random bit stream, and the red time trace is the desired output power of the SOA network. The blue one is
a superposition of the measured output power for 10 different instances, each with different noise and internal phase variations.
doi:10.1371/journal.pone.0086696.g004
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clock pulse arrives. This indicates that BPTT can manipulate the

dynamics of the system in a profound way.

The applicability of gradient descent to real-world dynamical

systems greatly depends on the accuracy of existing models and on

the understanding of associated stochastic phenomena such as

noise and process variation. In the fields of electronics and

photonics, highly accurate models exist, but variability can be

considerable. Other domains, such as, e.g., robotics, are known to

suffer from a lack of accurate models. Applying BPTT for such

problems poses a challenge. Conceivably, in some cases even an

approximate model could provide a useful gradient and help to

identify approximate parameter values which can subsequently be

fine-tuned using more accurate simulations. When an analytical

model is not available, an approximate model can be built from

measurements or simulations, e.g. using self-modeling approaches

[35]. Further research will need to be conducted to find if such a

strategy is feasible or not.

The ability to embed specified dynamic behaviors into a generic

physical platform opens a broad range of possible applications. For

example, it may provide a large jump in research concerned with

bringing computation outside the silicon domain. Designing

physical devices that robustly and efficiently perform non-digital

computations now become feasible. The proposed methodology

can also be used by engineers to design machines and robots that

exploit their inherent non-linear behavior in ways that were

previously too difficult to explore. It could even be extended to

embed non-trivial dynamical behaviors into passive or active

continuous media which are characterized by partial differential

equations, since the mathematics for controlling such systems

already exists [36]. This could lead to e.g., systems that facilitate

the task of sensors, chemical controllers based on reaction-

diffusion systems [37]. Our technique could also help to gain more

insight into the cost functions that were optimized by nature in

complex biological systems by emulating them.

One important contribution of this work is that it fades the

boundaries between several disciplines and provides part of a

roadmap towards integrating optimal design, machine learning,

and optimal control into one discipline. Researchers working on

designing complex physical systems would not easily consider

machine learning as a potential optimization strategy. On the

other hand, the machine learning community generally considers

the computer the only platform on which to implement their

models. Paul Werbos, who is often considered as the originator of

the backpropagation algorithm [12,38] through his framework of

ordered derivatives, has already pleaded for a better cooperation

between scientists and engineers in these fields and others (most

noticeably automated differentiation) [39]. The main difficulty in the

application of our technique lies in the derivation of the matrices

K, J0, and J1, which can be tedious and needs to be done for each

new system. The potential of such an interdisciplinary collabora-

tion lies in the creation of machine-learning based automated

design tools for generic dynamical systems, in which only the

system equations and the examples need to be provided by the

user. We hope that this paper can pave the way for the realization

of this vision by combining the necessary mathematical and

machine learning background and by providing convincing design

examples.

Materials and Methods

Notes on Gradient Descent
Dynamic systems can exhibit bifurcations, which are associated

with very rapid changes in dynamics as a function of the

parameters [40]. This translates to extremely steep parts in the

cost function and as a result, very large gradients. Simply updating

the system using this gradient will lead to a very large and

unpredictable change of the parameters, and may in fact break

down the training process altogether. In order to deal with this, we

normalize the gradient before using it for parameter updates,

essentially only the direction of the gradient and not its magnitude.

We use two strategies: online (CT-RTRL) and batched training

(CT-BPTT). In the online case, parameter updates happen

continuously. In other words, h will depend on time, and evolves

according to:

_hh(t)~{g
+
h
T(t)

jj+h(t)jj
,

Here we need to make sure that the time scale at which h changes

is much slower than the timescales of the DS, otherwise the

training process will interfere with the actual dynamics of the

system. In the batched training, parameters are updated offline in

between discrete simulation instances of a fixed length. The update

equation can be written as:

h/h{g
ch
T

jjchjj

In all our experiments we use dimensionless units for simplicity.

In the final example of photonic networks, however, we will use

values that reflect realistic physical values of SOA parameters.

Often, the numerical scaling of different kinds of parameters (e.g.,

spring constants vs. their rest lengths) may differ orders of

magnitude. If this is the case, we will normalise their respective

gradients separately and set separate learning rates.

In order to ensure convergence we let the learning rate decay

over the course of the experiments (in either a linear or an

exponential fashion).

Notes on Implementation
All experiments shown in this paper were performed on a single

laptop computer with 8 GB RAM and a 2.3 GHz Intel Core i7

processor. We used Matlab for our experiments and made the

code for generating the results available on http://users.elis.ugent.

be/,mhermans/code.zip.

Experimental Details
Embedding a trajectory in an MSD-system. The state of

the system is made up of the mobile node positions and velocities.

The force exerted on the i -th node, exhibited by a spring

connecting the i-th and j-th node is equal to

Fij~kij(rj{ri) 1{
D0

ij

D(ri,rj)

 !

zbij(vj{vi):

Here, ri and vi represent the position and velocity of the i-th

node respectively. The parameter kij is the spring constant for this

particular spring, bij is its damping constant, and D0
ij its rest length.

D(ri,rj) is the euclidean distance between the i-th and j-th node.

At t~0, the springs are allowed to relax, and the centre mass

will follow a certain trajectory that is determined by the system

parameters. We have optimized the rest lengths and spring

constants (where we made sure these could not grow smaller than

zero by truncating their values).

Designing Complex Dynamic Systems

PLOS ONE | www.plosone.org 7 January 2014 | Volume 9 | Issue 1 | e86696



The target trajectory has the shape of a pentagram. To avoid

instantaneous changes in velocity on the corners of the star we

made sure that the velocity of the desired trajectory goes to zero at

the turning points. In practice: if one straight segment of the

pentagram is traced over a time interval t1,t2½ �, then its speed

evolves as v(t)~v0 sin p
t{t1

t2{t1

� �

: Once we have constructed the

target position as a function of time, we derive the accompanying

velocity by taking its derivative, and use this velocity as an

additional target for the central node state.

N Cost function The cost function is the sum of the mean

square errors of the position and velocity of the target node.

N CMA-ES details The comparison with CMA-ES was made

using a standardized implementation, available at https://

www.lri.fr/,hansen/cmaes_inmatlab.html. The only param-

eters which need to be set by the user are the population size

and the initial standard deviations of the parameters. Since we

know that the relative scaling of spring constants vs. rest

lengths is about a factor 25, we also set the initial values for

parameter standard deviations accordingly (25 times greater

for the spring constants than the rest lengths). We found that a

tradeoff between good performance and speed of convergence

was found with a quite small populations (20 individuals, small

compared to the dimensionality of the problem), and small

initial standard deviations (0.04 for the rest lengths and 1 for

the spring constants). Using these parameters, we ran 5

experiments and chose the best end result to compare with

gradient descent. Note that gradient descent has no stochastic

element in this case, such that we only needed to run one

experiment to obtain the result.

N Gradient descent details We used CT-BPTT with batches

of length T~5, the time needed to complete the target

trajectory. We optimized the learning meta-parameters; the

initial learning rate and the rate at which it decreases after

each training iteration. We normalized the full parameter

gradient (not separately for the two parameter sets), and chose

an initial learning rate of 5 for the spring constants and 0.05

for the rest lengths. Each training iteration both learning

speeds were multiplied with a factor 0.999.

N Implementation details We used leapfrog integration for

the forward simulation and Euler integration for the error

backpropagation. The step size was chosen at dt~0:01.

N Initial parameters Initial spring constants were set to 25.

Damping constants were all equal to 0.1, and the rest lengths

were chosen as the distances between the nodes when the

system is in its initial condition, but with the target mass in the

centre.

MSD robots. For the locomotion experiment, each spring’s

instantaneous rest length is given by

D0
ij(t)~DR

ij exp (Aij sin (vtzwij)),

in which Aij and wij are amplitude and phase respectively, and DR
ij

is the rest length without modulation. The exponential function

assures that the modulation signal cannot become negative, yet

reach high peak values if desired. We use a highly simplified model

for the ground, with an upward force Fg~ exp ({10y), such that

it is nearly zero above ground (yw0), but increases very rapidly

below ground. Ground friction only acts in the x-direction, and is

modeled as Ff~{1000y2vx, if yv0, and Ff~0 if yw0 As such,

the harder a node is pressed down, the stronger lateral friction will

be.

N Cost function The cost function is the mean square error

between the target velocity and the mean robot velocity in the

x-direction. Additionally, we add the sum of squares of the

amplitudes and the rest lengths, scaled with 0.2 and 0.001,

respectively. The target speed increases slowly over time as

vtarget(t)~1zt=250, such that the robot slowly speeds up

during training.

N Training method We used online training, where the initial

learning rates for amplitudes, phases, and rest lengths are 0.05,

0.2, and 0.2, respectively, and the corresponding gradients are

normalized separately. Due to the constantly changing target

velocity, learning rates are kept constant over time.

N Implementation details We used leapfrog integration for

the forward simulation and Euler integration for updating

G(t). The step size was chosen at dt~0:005.

N Initial parameters Spring constants were all equal to 100.

Damping constants were all equal to 1, and the rest lengths

were chosen as the distances between the nodes when the

system is in its initial shape. Amplitudes were initialised at 0.2,

and all phases were picked randomly between 0 and 2p:

Magnetic lens. In order to simulate the beam, we used a set

of 200 discrete, non-interacting particles passing through the lens.

All particles are initialized on a uniformly sampled position in a

circle with radius one, (the source), and their initial velocity is

always aligned with the beam, and has mean value 4 and standard

deviation 0.1. If a particle crosses the focal plane, or its distance to

the beam axis is greater than 2, it is reinitialized at the beam

source (and its corresponding G(t) is reset to zero). This way, the

beam remains constantly present during the training phase.

The beam is lying along the x-axis, the source is at x~{30,
and the focal point at x~0. All magnets positions are bound such

that their distance to the beam axis (x-axis) is no smaller than 2,

and their x-coordinates lie between {10 and {20. Their

magnetic moment m has a magnitude capped at 10, but in

practice none even come close to this bound.

Each particle has unit charge and mass, and feels the magnetic

Lorentz force: F~B|v. The magnetic field at each location is the

sum of the fields of each magnetic dipole. A single magnetic dipole

with magnetic moment m, located at the origin, has a magnetic

field given by

B(r)~
3r(m:r)

r5
{

m

r3
,

where we omitted the scaling factor m0=4p:
We used 200 dipole magnets, leading to a total of 1200

parameters (3 coordinates for magnet moment and 3 for position).

N Cost function The cost function is equal to the mean square

error between the particles velocity and that pointed towards

the focal point. The magnitude of the target velocity is that

equal to the initial particle’s velocity (static magnetic fields

cannot change the velocity of a charged particle, only its

direction.) The resulting output error ee(t) is next scaled for

each particle with a factor exp (x), such that only particles

close to the focal point actively contribute to the overall cost.

N Quadrupole lens In order to make the comparison we

implemented a simulation in which two ideal quadrupole fields

were placed at x[f{20,{18g and at x[f{12,{10g: In

these regions the magnetic field components are given by
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Bx~0, By~Kiz, Bz~Kiy, in which i~1,2 for the two fields.

Everywhere else the magnetic field was equal to zero.

Parameters K1 and K2 were optimised using the mean square

distance to the focal point when the particles cross the focal

plane. We used a brute force search for optimisation.

N Training method Training is performed online. We used a

learning rate that linearly decays over the course of the

experiment, which runs for a time T~20000, with an initial

value g~0:005.

N Implementation details We used leapfrog integration for

the forward simulation and Euler integration for updating

G(t). The step size was chosen at dt~0:01.

N Initial parameters All initial dipole x-coordinates were

uniformly sampled between the bounds described above. Their

distances to the beam axis were chosen between 2 and 4, and

their angle w.r.t. the y-axis randomly sampled between 0 and

2p. Magnetic moment coordinates were chosen from

N (0,0:3):

Photonic SOA networks. Each SOA has an internal state

h(t) which describes the SOA gain. It evolves according to

_hh(t)~
1

tc
h0{h(t)z

jjain(t)jj
2

Psat

(1{ exp (h(t)))

 !

:

Here, tc is the free carrier lifetime, h0 is the rest value for h(t),

which is determined by an external bias current, ain(t) is the

complex field at the SOA input side and Psat is the saturation

power of the SOA. We chose tc~0:4, Psat~0:1. The field that

exits the SOA is described by

a(t)~Lain(t) exp
h(t)

2
(1{ a)

� �

,

where L is a factor corresponding to internal losses (which we

chose fixed at 0.5), is the imaginary unit and a a constant

depending on the SOA which we chose at a~5. For further details

and the derivation of these formulas we refer to [41].

The incoming field for a given SOA within the network is given

by

ain(t)~
X

i

wiai(t{di),

where wi is the complex weight associated with a single connection

(described in more detail further in this section), ai are the complex

fields of all other SOAs and input channels that connect to this

SOA, and di are the associated connection delays. We optimised

the following parameters: the complex weights wi of each SOA,

the delays di , and the bias current h0 for each SOA, leading to a

total of 152 parameters for the one-hot detector, and 184 for the

flip-flop (counting the real and imaginary parts of the complex

weights as separate parameters).

The delayed 5-bit one-hot task input consisted of a random

bitstream with period 0:4. The flip-flop input existed of one

random bitstream (the data), with period 0:5, and a clock input,

where at each time a new data bit enters the network, there’s a one

in ten chance of a clock pulse. The clock pulse has length 0:25.
Each interconnection will introduce a fixed phase shift and a

decrease in amplitude, which can be combined to a single complex

weight with which the complex amplitude is multiplied. Addition-

ally, each interconnection will have a certain delay value. If we

assume that at the output side of each SOA half the power goes to

the output connection, and the remaining fraction is split in two as

it connects to at most two other SOAs in our particular network

architecture, we can state that only at most a quarter of the output

power from one SOA reaches another SOA, which means that the

moduli of the complex weights are truncated at 0.5. The values of

the delays were bounded between 0:1 and 0:5 for the one-hot task,

and between 0:025 and 0:1 for the flip flop task. Note that in

principle the delay and the phase shift of a connection are

codetermined by the physical length of the connection. In practice,

however, the wavelength is much shorter than an interconnection,

such that even a tiny shift in length will cause a very large phase

shift. Therefore we consider these two parameters as independent.

The precision at which the phase shift of an interconnection is

manufactured is determined by the precision at which connection

lengths can be made, and hence also dependent on the wavelength

of the light. In order to model these variations, each training

iteration we perturb the phases of all interconnections by adding

them with a random phase, sampled from N (0,p=75) (based on

manufacturing precision with standard deviation of 10 nm and an

optical wavelength of 1550 nm), and use the according weights to

compute the gradients on. This assures that the found solution is

not extremely sensitive to small variations in phase.

Finally, we superpose noise on each SOA’s output field,

modeled as a mixture of frequencies near that of the signal

frequency based on [42]. The noise has the following time

dependence:

n(t)~n0
X

80

i~1

exp ( Dvitzwi½ �),

where n0~0:01, and Dvi, and wi are values which are sampled

randomly at each training iteration between from f{500,500g
and f0,2pg, respectively. This noise takes on the form of a quickly

fluctuating signal with a low amplitude (its power being roughly

50–100 times lower than the average output power of the SOAs

after training). Each SOA node receives both network feedback

and an external input signal, which consists of a weighted sum of

input data channels and a constant bias signal. The corresponding

connections we have modeled to have zero delay. The output light

signal is constructed by combining the output light of each SOA.

Here again, each of these output connections has an associated

complex weight, and we again assumed they have no delay.

N Cost function In the considered tasks we are only concerned

with output power, not phase. Therefore the cost function was

the mean square error between the desired and actual output

power (which for both tasks vary between zero and one).

N Training method Training is performed in batches of

T~50 and T~100 for the one-hot and flip-flop task,

respectively. Each training example was made from a

randomly sampled bitstream, such that optimization of the

network is performed with stochastic gradient descent. The

learning rate was started at 0.1 and reduced with a factor

0.9999 per training iteration. As soon as performance became

adequate (by visually inspecting the results), we set this factor

to 0.999 for quicker convergence. The trained parameters

include all weights, the rest gain h0 of all SOAs, and all delays.

The weights and rest carrier densities gradients were

normalized separately.

Training delays posed a practical difficulty, as in our

simulation delays are still represented by a discrete number of
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time steps. Therefore, we only considered the sign of the

respective gradients and either increased or decreased them

with one time step each update. We are not certain whether

training the delays poses a significant help in this case,

especially since the delay gradient depends on the time

derivatives of the SOA outputs, which have been polluted with

amplified spontaneous emission noise.

N Implementation details We used Euler integration with

time step dt~0:005. Delays were implemented by picking

corresponding SOA output values from recorded time traces at

a discrete number of time steps in the past.

N Initial parameters All weights of all connections were

initialized with phases sampled uniformly from 0 to 2p. Initial
moduli of internal connections were sampled uniformly

between 0 and 0:2, those of input data between 0 and 0.25

for the flip flop task and between 0 and 0.5 for the one-hot

task. Input bias weights were initialized between 0 and 0:05,
and initial output weights all had modulo zero. Delays were

uniformly sampled between their minimal and maximal value.

The rest gains were initially all chosen at 3.

N Validation To measure how well the trained networks

performed, we measured ROC curves in two ways: by taking

the average output power over the duration of an entire bit, or

by sampling output power at the last time step of a bit. For

each task we measured this for 10 sequences of 50000 time

steps, each with different input sequences, phase variations and

noise. We omitted the first 10 bits as the networks may still be

in a transient state from initial conditions. The ROC curves

themselves were nearly perfectly square, so we do not show

them. Instead we measured the area-under-curve (AUC)

(equivalent to bit error rate), which was exactly equal to one

for the photonic flip flop, for both methods of measurement

(perfect performance for the given number of test instances).

The one-hot detector had an AUC equal to exactly one when

taking the average output power over each bit, and 0.9999

when using the last sample of each bit.

Supporting Information

Movie S1 Animation of the MSD robot before optimi-

sation commences. The blue horizontal line represents the

ground, black lines are massless springs and the coloured dots are

point masses (coloured for distinction).

(MOV)

Movie S2 Animation of an example outcome of an MSD

robot after optimisation. The blue horizontal line represents

the ground, black lines are massless springs and the coloured dots

are point masses (coloured for distinction).

(MOV)

Movie S3 Animation of an example outcome of an MSD

robot after optimisation. The blue horizontal line represents

the ground, black lines are massless springs and the coloured dots

are point masses (coloured for distinction).

(MOV)

Movie S4 Animation of an example outcome of an MSD

robot after optimisation. The blue horizontal line represents

the ground, black lines are massless springs and the coloured dots

are point masses (coloured for distinction).

(MOV)

Derivation S1 Mathematical derivation of the BPTT algorithm

for continuous-time systems.

(PDF)
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