CHEMISTRY 111 LECTURE EXAM I Material REVIEW

Part 1 NOMEMCLATURE
I. COMPOUNDS- Two or more elements chemically combined in definite proportions. COMPOUNDS

IONIC COMPOUNDS
Metal - Nonmetal

MOLECULAR COMPOUNDS
Nonmetal-Nonmetal

II Naming Ionic Compounds

BACKGROUND :
A. Metallic Cations - (+ charge)

1. Fixed Charged cations
2. Variable charged cations
B. Nonmetal Anions (-) charge
C. Polyatomic Ions

Naming compounds

Key: Compounds are neutral $\rightarrow \rightarrow$ no net charge

III Naming Molecular compounds

Nonmetal - Nonmetal

Variable combinations
Ex.

```
1. Know prefixes: Di, tri, tetra...etc
2. Naming formula:
    Prefix element #1 + prefix stem of element #2 + ide
Ex.
```


IV ACIDS AND BASES

```
Formula starts with a "H" + (aq)
[H2O is excluded]
    Ex. HCl (aq) "Dissolved in water" The HCl must be in H2O to have the properties of an
        acid.
```



```
    \(\frac{\text { A. Binary Acids }}{\text { Naming: Hydro }}+\) stem of e
```

 \(\frac{\text { A. Binary Acids }}{\text { Naming: Hydro }}+\) stem of e
 Naming: Hydro + stem of element + ic Acid
 Naming: Hydro + stem of element + ic Acid
 Ex.
 Exception: H}\mp@subsup{\textrm{H}}{2}{}\textrm{S}
    ```
B. OXYACIDS/TERNARY ACIDS (contains "O")

Naming Formula:


EXCEPTION:

\section*{PRACTICE:}

Name or give the chemical formula for the following:.
oxalic acid magnesium hydrogen carbonate
mercurous nitride
\(\qquad\)
silver nitrate
plumbic acetate
calcium peroxide

potassium phosphide
\(\qquad\)
nickelous permangante

\(\mathrm{CS}_{2}\)
\(\mathrm{Ni}\left(\mathrm{NO}_{2}\right) 2\)
\(\qquad\)
\(\mathrm{Ba}_{3} \mathrm{~N}_{2}\)
\(\qquad\)
\(\mathrm{Ca}(\mathrm{OH}) 2\)
\(\qquad\)
ammonium carbonate
aurous iodide
iodine tribromide
hydrobromic acid
sulfurous acid
cobaltous sulfide
\(\mathrm{CO}_{2} \mathrm{O}_{3}\)
\(\mathrm{Bi}\left(\mathrm{NO}_{3}\right)_{3}\)
\(\mathrm{HClO}_{3}(\mathrm{aq})\)
\(\mathrm{N}_{2} \mathrm{O}_{5}\)

Page 3
\begin{tabular}{|c|c|}
\hline \(\mathrm{Sr}\left(\mathrm{HSO}_{3}\right) 2\) & \(\mathrm{Hg}\left(\mathrm{HCO}_{3}\right) 2\) \\
\hline \(\mathrm{H}_{2} \mathrm{CO}_{3}(\mathrm{aq})\) & \(\mathrm{PbO}_{2}\) \\
\hline \(\mathrm{SO}_{3}\) & \\
\hline HF & \(\mathrm{HBrO}_{2}(\mathrm{aq})\) \\
\hline \(\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\) (aq) & \(\mathrm{Au}_{3} \mathrm{PO}_{4}\) \\
\hline \(\mathrm{N}_{2} \mathrm{O}_{3}\) & \(\mathrm{Cu}(\mathrm{ClO}) 2\) \\
\hline \(\mathrm{HCN}(\mathrm{aq})\) & Al (OH) 3 \\
\hline
\end{tabular}

Part 2 CHEMICAL FORMULA CATCULATIONS

\section*{I. THE MOLE}
\[
\begin{aligned}
& \mathbb{1} \text { mole }=6.02 \times 10^{23} \text { Particles } \\
& \text { Avogadro's number } \xrightarrow{\rightarrow} \text { memorize!! }
\end{aligned}
\]

\section*{Conversions}
II. MOLAR MASS (molecular wt.)
\(\overline{1}\) mole \(=\) AMU weight numerically in grams
```

26
Fe
55.85

```
\begin{tabular}{ll} 
Atomic wt. & \(\frac{\text { Molar mass }}{55.85 \mathrm{~g}}\) \\
\begin{tabular}{ll}
55.85 AMU
\end{tabular} & \(=1 \mathrm{~mole}\) of Fe atoms \\
\(\{1\) atom \(\}\) & \\
& \(=6.02 \times 10^{23 \mathrm{Fe} \text { atoms }}\)
\end{tabular}

\section*{IV. MOLES AND CHEMICAL FORMULAS}
\[
\begin{array}{ll} 
& \mathrm{N}_{2} \mathrm{O}_{5} \\
2 \text { atoms } \mathrm{N} & 2 \text { mole } \mathrm{N} \\
5 \text { atoms o } \\
\hline=1 \text { molecule } \mathrm{N}_{2} \mathrm{O}_{5} & \frac{5 \text { moles o }}{=1 \text { mole of } \mathrm{N}_{2} \mathrm{O}_{5}}
\end{array}
\]
Ratios:

Problem:
How many moles of N in 13.5 moles of \(\mathrm{N}_{2} \mathrm{O}_{5}\) ?

V MOLES AND CHEMICAL CALCULATIONS:
1. How many grams of Zn will combine with 34.00 g of nitrogen?
2. How many atoms of \(O\) are needed to produce 32 kg of phosphoric acid?

\section*{VI Empirical and Molecular Formulas:}
A. Empirical formula shows the smallest ratio of atoms in a compound. Examples:
B. Calculation of Empirical and Molecular Formula

The percentage composition of a compound is 63.133\% C, 8.831\% H, and \(28.04 \%\). The Molar mass \(=171.21 \mathrm{~g} / \mathrm{mol}\)
What is its empirical formula? What is its molecular formula?
STEP 1. Calculate the Empirical Formula

STEP. 2 Calculate the Empirical Formula weight.

STEP. 3 Determine the number of E.F. units in the molecular formula \{ Divide the molar mass by the E.F. wt.\}
```

Part 3 CHEMICAI REACTIONS

```
A chemical reaction occurs when there is a change in chemical composition.
I. Evidence of a reaction- one of the following would be observed:
    a. A precipitate is formed or dissolved
    b. A change of color
    c. Effervescence occurs (gas formation)
    d. Energy in the form of heat, light, or electricity is released
II Types of Chemical Reactions--> Know and complete
    A. Combination Reactions - One product is formed:
            1. Metal + Nonmetal combines to form \(\rightarrow\) an Ionic compound
            2. Metal Oxide \(+\mathrm{H}_{2} \mathrm{O} \xrightarrow{\text { combines to form }} \rightarrow\) a Base
            3. Nonmetal Oxide \(+\mathrm{H}_{2} \mathrm{O} \xrightarrow{\text { combines to form }}\) an Acid
    B. Decomposition-A single reactant will form two or more products
    1. Carbonates \(\left(\mathrm{CO}_{3}{ }^{2-}\right)\) decomposes \(\rightarrow\) to oxides and \(\mathrm{CO}_{2}(\mathrm{~g})\)
    2. Sulfites \(\left(\mathrm{SO}_{3}{ }^{-}\right) \xrightarrow{\text { decomposes }}\) to oxides and sulfur dioxide gas
    3. Metal oxides decomposes to metal + Oxygen gas
    4. Ionic Compounds \(\xrightarrow{\text { decomposes }}\) to Metal + Nonmetal

    6. Nitrates \(\xrightarrow{\text { decomposes }}\) to Nitrites + Oxygen gas
    7. Peroxides \(\xrightarrow{\text { decomposes }}\) to Oxides + Oxygen gas
    8. Chlorates \(\xrightarrow{\text { decomposes }}\) to chlorides + Oxygen gas
```

C. Combustion Reactions involves organic compounds:

```
    General Form: \(\left(\mathrm{C}_{\mathrm{x}}^{\mathrm{H}} \mathrm{y}_{\mathrm{z}}\right)+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g})\)
    D. Single displacement Reactions/ Replacement Rxns.
    A more active element displaces a less active element
    TYPES:
        Type 1: Metal \(+\mathrm{H}_{2} \mathrm{O} \rightarrow\) Base \(+\mathrm{H}_{2}(\mathrm{~g})\)
        Type 2: Metal + Acid \(\rightarrow\) Salt \(+\mathrm{H}_{2}(\mathrm{~g})\)
        Type 3: Metal \({ }_{1}+\) Salt \(_{1} \rightarrow\) Metal \(_{2}+\) Salt \(_{2}\)
        Type 4. Nonmetal \({ }_{1}+\) Salt \(_{1} \rightarrow\) Nonmetal \(_{2}+\) Salt \(_{2}\)

SOLUBILITY RULES FOR IONIC COMPOUNDS
\begin{tabular}{|c|c|c|}
\hline \(\frac{\text { Ion contained in }}{\text { the Compound }}\) & Solubility & Exceptions \\
\hline Group IA & Soluble & \\
\hline \(\mathrm{NH}_{4}{ }^{+}\) & Soluble & \\
\hline \(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}{ }^{-}\) & Soluble & \\
\hline \(\mathrm{NO}_{3}{ }^{-}\) & Soluble & \\
\hline \(\mathrm{Cl}^{-}, \mathrm{Br}^{-}\), and \(\mathrm{I}^{-}\) & Soluble & \(\mathrm{Ag}^{+}, \mathrm{Pb}^{2+}, \mathrm{Hg}_{2}{ }^{2+}\) \\
\hline \(\mathrm{SO}_{4}{ }^{2-}\) & Soluble & \(\mathrm{Ca}^{2+}, \mathrm{Sr}^{2+}, \mathrm{Ba}^{2+}, \mathrm{Pb}^{2+}\) \\
\hline \(\mathrm{CO}_{3}{ }^{2-}, \mathrm{PO}_{4}{ }^{3-}, \mathrm{CrO}_{4}{ }^{2-}\) & insoluble & group IA and \(\mathrm{NH}_{4}^{+}\) \\
\hline \(\mathrm{S}^{2-}\) & insoluble & group IA, IIA, and \(\mathrm{NH}_{4}^{+}\) \\
\hline \(\mathrm{OH}^{-}\) & insoluble & group IA, \(\mathrm{Ca}^{2+}\),
\[
\mathrm{Ba}^{2+}, \mathrm{Sr}^{2+}
\] \\
\hline
\end{tabular}
\begin{tabular}{||ll||}
\hline \multicolumn{1}{|c|}{ STRONG } & BASES \\
\hline LiOH & CsOH \\
KOH & \(\mathrm{Sr}(\mathrm{OH})_{2}\) \\
RbOH & \(\mathrm{Ba}(\mathrm{OH})_{2}\) \\
NaOH & \(\mathrm{Ca}(\mathrm{OH})_{2}\) \\
\hline
\end{tabular}
\begin{tabular}{||cc||}
\hline \multicolumn{2}{|c|}{ STRONG ACIDS } \\
\hline \(\mathrm{HNO}_{3}\) & HCl \\
\(\mathrm{HClO}_{4}\) & HBr \\
\(\mathrm{H}_{2} \mathrm{SO}_{4}\) & HI \\
\hline
\end{tabular}
E. Double Exchange (Ion Exchange) Reactions
1. In a double displacement (ion exchange) reaction, the positive end and negative end of compounds "change partners" to form new products:
a. Precipitate
*Note: A ppt must form for the rxn to occur. ( if it doesn't... Then NR!)
b. Less Ionized Substance. (Molecule formation)
(1) Gas
(2) Neutralization
(3) A weak acid or base is formed
```

Part 4 STOICHIOMFTRY: CHEMICAI REACTION CAICUATIONS:

```
    The numerical relationship among the reactants and products in a balanced equation
    (Chemical reaction)
    The Balanced equation
    A balanced equation shows a chemical reaction in shorthand:
    For example: Two magnesium atoms (a solid) when ignited, reacts with oxygen atoms to
    form solid magnesium oxide
The meaning of a balanced Chemical Equation: A bookkeeping system
The balanced equation - mole to mole ratios
These mole to mole ratios are exact numbers.

\section*{II. The Stoichiometric Pathway:}

III. Stoiciometric Calculations
1. The reaction: Chromium metal is reacted with copper (II) chloride Key: You must have a balanced equation!!

How many grams of chromic chloride reacts with 6.0 mole Cr?
2. How many grams of oxygen gas are required for the complete combustion of 694 g of methane \(\mathrm{CH}_{4}(\mathrm{~g})\) in a sample of natural gas?

\section*{IV. LIMITING REACTANTS}

When most reactions are performed, some of the reactants is usually present in excess of the amount needed. If the reaction goes to completion, then some of this excess
reactant will be left-over. The limiting reactant is the reactant used-up completely and it "limits" the reaction.
For example:

PROBLEMS:
1. Zinc nitrate is reacted with sodium hydroxide.
a. How many grams of Zinc hydroxiode is produced when 13.0 grams of zinc nitrate and 17.0 grams sodium hydroxide are mixed? How much excess reactant is left?

METHOD: Find the L.R. \(\rightarrow\) Calculate the moles of product that each reactant may produce.

BALANCED EQUATION:
(1) Find the L.R.
(3.) Determine the MASS of product made from the L.R.
(4.) Calculate the grams of excess reactant

\section*{VI. PERCENT YIELD}

The amount of product that has been previously calculated from chemical equations show the maximum
yield (100\%). However, many reactions fail to give a \(100 \%\) yield of product.
The theoretical yield is the calculated amount of product.
The Actual yield is the amount of product actually obtained
\[
\text { Percent Yield }=\frac{\text { Actual Yield }}{\text { Theoretical Yield }} \quad \text { X } 100
\]

PROBLEM:
5.000 g of \(\mathrm{Ag}_{2} \mathrm{~S}\) was produced from 5.000 g of Ag and an excess of sulfur according to the reaction:
\(2 \mathrm{Ag}+\mathrm{S} \rightarrow \mathrm{Ag}_{2} \mathrm{~S}\)
What is the percent yield?

WORKSHEET- STOICHIOMETRY AND CHEMICAL FORMULA CALCUATIONS
SET A: (Time required, 1 hour)
1) A compound with the formula, BxH 20 O 3 , contains \(36.14 \%\) by mass oxygen. What is the value of the integer, \(x\) ?
Ans: \(x=6\)
2) A mixture of cobalt(II) oxide and cobalt(III) oxide contains \(32.50 \%\) by mass cobalt (II) oxide. What is the total number of oxide ions in a 122 g of the mixture?
Ans: \(1.22 \times 1024\) oxide ions
3.) A sulfur containing compound is treated chemically to convert all its sulfur into barium sulfate. A 8.19 mg sample of the compound gave 5.46 mg barium sulfate.
a) What is the percentage of sulfur in the compound?

Ans: 9.18 \% S
b) If there is one sulfur atom in the molecule, what is the molar mass of the compound? Ans: \(349 \mathrm{~g} / \mathrm{mole}\)
4) An alloy of Co, Rh and Mn contains these elements in the atomic ratio of \(2: 5: 2\), respectively. What is the mass of a sample of this alloy containing a total of \(8.75 \times 1021\) atoms?
Ans: 1.20 g
5) The percent of aluminum in the compound, \(\mathrm{Al}_{2} \mathrm{X} 3\), is \(18.56 \%\). What is the molar mass of element \(X\) ?
Ans:79.00 g/mole
6) 3.9104 g sample of a compound made of carbon, hydrogen, nitrogen, and oxygen is burned completely. \(3.820 \mathrm{~g} \mathrm{CO}_{2}\) and \(3.125 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}\) are produced.
Analysis of nitrogen showed that the compound contains \(46.62 \%\) by mass nitrogen. The molar mass of the compound is about \(170+15 \mathrm{~g} / \mathrm{mole}\).
a) Calculate the empirical formula of the compound. 6a) Ans: C 2 H 8 N 3 O
b) What is the molecular formula of the compound? 6b) Ans: C 4 H 16 N 6 O 2
7) \(169 \mathrm{~g} \mathrm{FeCr} 2 \mathrm{O}_{4}, 298 \mathrm{~g} \mathrm{K2CO3}\) and an excess of \(\mathrm{O}_{2}(\mathrm{~g})\) are sealed in a reaction vessel and allowed to react at high temperature. The amount of K 2 CrO 4 obtained is 194 g . Calculate the percent yield of K 2 CrO 4 .
\(4 \mathrm{FeCr} 2 \mathrm{O}_{4}+8 \mathrm{~K}_{2} \mathrm{CO}_{3}+7 \mathrm{O}_{2}-8 \mathrm{~K}_{2} \mathrm{CrO}_{4}+2 \mathrm{Fe}_{2} \mathrm{O}_{3}+8 \mathrm{CO}_{2}\)
(Molar mass: \(\mathrm{FeCr2O}=223.84, \mathrm{~K}_{2} \mathrm{CO}_{3}=138.21, \mathrm{~K} 2 \mathrm{CrO} 4=194.19 \mathrm{~g} / \mathrm{mole}\) )
Ans: 66.2 \%
SET B: (time required, 1 hour)
1) Excess amount of HCl is added to a mixture of CaCO 3 and K 2 CO 3 . The mixture reacted completely.
\[
\begin{aligned}
& \mathrm{CaCO}_{3}+2 \mathrm{HCl} \rightarrow \mathrm{CaCl}_{2}+\mathrm{H} 2 \mathrm{O}+\mathrm{CO}_{2} \\
& \mathrm{~K} 2 \mathrm{CO}+2 \mathrm{HCl} \rightarrow 2 \mathrm{KCl}+\mathrm{H} 2 \mathrm{O}+\mathrm{CO}_{2}
\end{aligned}
\]
4.48 g CO 2 and 3.57 g KCl are produced along with some CaCl 2 and H 2 O . Calculate the mass of the mixture.
Ans: 11.10 g mixture
2) The percent of manganese in the compound, \(\mathrm{Mn5} \mathrm{X} 2\), is \(42.10 \%\). What is the molar mass of element \(X\) ?
Ans: \(186.9 \mathrm{~g} /\) mole
3) A mixture of potassium phosphate and potassium nitrate contains \(36.55 \%\) by mass potassium nitrate. What is the total number of potassium ions in 83.5 g mixture?
Ans: \(6.32 \times 1023\) ions
4) A carbon containing compound was treated chemically to convert all its carbon into SrCO 3 . A 31.23 g sample of the compound gave \(1.203 \times 10^{2} \mathrm{~g} \mathrm{SrCO} 3\).
a) What is the percentage of carbon in the compound? 4a) ans \(31.3 \%\) C
b) If there are three carbon atoms in a molecule of the compound, what is the molar mass of the compound?
Ans: \(114.8 \mathrm{~g} / \mathrm{mole}\)
5) 80.0 g KClO 3 are mixed with 59.5 g HCl and allowed to react according to the equation:
\[
2 \mathrm{KClO}_{3}+4 \mathrm{HCl} \rightarrow 2 \mathrm{KCl}+2 \mathrm{ClO}_{2}+\mathrm{Cl}_{2}+2 \mathrm{H}_{2} \mathrm{O}
\]
( Molar mass: \(\mathrm{KCl}=74.6, \mathrm{KClO} 3=122.6, \mathrm{HCl}=36.5, \mathrm{ClO} 2=67.5, \mathrm{Cl} 2=71.0, \mathrm{H} 2 \mathrm{O}=18.0 \mathrm{~g} / \mathrm{mole}\) ) The amount of Cl 2 produced is 18.7 g . Calculate the percent yield of Cl 2 .
Ans: 80.6 \%
6) 28.50 g sample of a compound of carbon, sulfur, hydrogen, and oxygen is burned. 35.25 g CO 2 and 14.65 g SO 2 are produced. Analysis of hydrogen showed that the compound contains \(8.514 \%\) hydrogen by mass. The molar mass of the compound is \(500+5 \mathrm{~g} / \mathrm{mole}\).
a) Calculate the empirical formula of the compound. 6a) Ans: C 7 H 21 S 2 O 5
b) What is the molecular formula of the compound? 6b) Ans: \(\mathrm{C}_{14} \mathrm{H} 42 \mathrm{~S} 4 \mathrm{O} 10\)

\section*{SET C:}
1) A phosphorus containing compound is treated chemically to convert all its phosphorus into \(\mathrm{Mg} 3(\mathrm{PO} 4) 2\). A 7.88 g sample of the compound gave \(4.75 \mathrm{~g} \mathrm{Mg3(PO4)2}\). percentage by mass of phosphorus in the compound?
Ans: 14.2 \% P
2) The percent by mass of boron in the compound, \(\mathrm{B}_{7} \mathrm{X}_{3}\), is \(42.1 \%\). What is the molar mass of \(X\) ?
Ans: \(34.7 \mathrm{~g} / \mathrm{mole}\)
3) A 39.11 g sample of a compound containing Cr is analyzed to show the presence of 86.22 \(\% \mathrm{Cr}\). It is found that there are five chromium atoms per molecule of the compound. What is the molar mass of the compound?
Ans: \(301.6 \mathrm{~g} / \mathrm{mole}\)
4) The percent by mass of silicon in the compound, \(\operatorname{Si8} \mathrm{X}_{3}\), is \(72.33 \%\). What is the molar mass of element \(X\) ?
ans: \(28.65 \mathrm{~g} / \mathrm{mole}\)
5) Consider the following reaction:
\(3 \mathrm{CaBr} 2+2 \mathrm{Na} 3 \mathrm{PO} 4 \rightarrow \mathrm{Ca}_{3}(\mathrm{PO} 4) 2+6 \mathrm{NaBr}\)

A reaction mixture contained 22.44 g of CaBr 2 and \(16.85 \mathrm{~g} \mathrm{Na3PO} 4\).
( Molar mass: \(\mathrm{CaBr} 2=199.9, \mathrm{Na3PO} 4=164.0, \mathrm{Ca3}(\mathrm{PO} 4) 2=207.2, \mathrm{NaBr}=102.9 \mathrm{~g} / \mathrm{mole}\) )
a) What is the mass of \(\mathrm{Ca3}(\mathrm{PO} 4) 2\) produced after the reaction is complete? Ans: 7.753 g
b) How many grams of each reactant is left after the reaction is complete?

Ans: zero grams of CaBr 2 and \(4.58 \mathrm{~g} \mathrm{Na3PO} 4\)```

