MATLAB Experiment III - State Space

3.1 Introduction

MATLAB can also be used to transform the system model from transfer function to state space, and vice versa.

3.2 Transfer Function to State Space

Given a transfer function of the form:

$$
H(s)=\frac{B(s)}{A(s)}=\frac{\text { num polynomial in } s}{\text { den polynomial in } s}=\frac{\text { num }}{\text { den }}
$$

MATALB can be used to obtain a state-space representation of the transfer function with the following command

$$
[A, B, C, D]=t f 2 s s(n u m, d e n)
$$

It is important to note that the state space representation is not unique, i.e. there are many state-space representations for the same system. The MATLAB command gives just one possible state-space equation.

Example. Consider the transfer function

$$
H(s)=\frac{B(s)}{A(s)}=\frac{s}{(s+10)\left(s^{2}+4 s+16\right)}
$$

A possible state-space representation for this system is

$$
\begin{gathered}
{\left[\begin{array}{c}
\dot{x_{1}} \\
\dot{x_{2}} \\
\dot{x_{3}}
\end{array}\right]=\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
-160 & -56 & -14
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]+\left[\begin{array}{c}
0 \\
1 \\
-14
\end{array}\right] u} \\
y=\left[\begin{array}{lll}
1 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]+[0] u .
\end{gathered}
$$

For the example transfer function, MATLAB produces the following state-space representation:

$$
\begin{gathered}
{\left[\begin{array}{c}
\dot{x_{1}} \\
\dot{x_{2}} \\
\dot{x_{3}}
\end{array}\right]=\left[\begin{array}{ccc}
-14 & -56 & -160 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]+\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right] u} \\
y=\left[\begin{array}{lll}
0 & 1 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]+[0] u
\end{gathered}
$$

with the following programme:

```
>> num = [l0}000100]
>> den = [llllll}
>> [A, B, C, D] = tf2ss(num, den)
A =
    -14 -56 -160
```


EE 324 Linear Control Systems

$B=$	0	0	
0	1	0	
1			
0			
$C=$			
0		1	0
$D=$			

3.3 State Space to Transfer Function

To obtain the transfer function from state-space equations, use the following MATLAB code

$$
\text { [num, den] }=\operatorname{ss2tf}(A, B, C, D, \text { num_in) }
$$

where num_in must be specified for systems with more than one input. For example, if there is only one input, then num_in = 1, if there are two inputs then num_in $=2$, etc. For systems with only one input, then the following code is allowed

$$
[\text { num, den }]=\operatorname{ss2tf}(A, B, C, D) .
$$

Example. Given the state-space equations:

$$
\begin{gathered}
{\left[\begin{array}{l}
\dot{x_{1}} \\
\dot{x_{2}} \\
\dot{x_{3}}
\end{array}\right]=\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
-5 & -25 & -5
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]+\left[\begin{array}{c}
0 \\
25 \\
-120
\end{array}\right] u} \\
y=\left[\begin{array}{lll}
1 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right],
\end{gathered}
$$

MATLAB produces the following system transfer function:

$$
H(s)=\frac{B(s)}{A(s)}=\frac{25 s+5}{s^{3}+5 s^{2}+25 s+5}
$$

The MATLAB implementation of this is given by the following code:

```
>> A = [llllllllllll}
> B = [0; 25; -120];
>> C = [11 0 0];
>> D = [0];
>> [num, den] = ss2tf(A, B, C, D)
num =
    0 0.0000 25.0000 5.0000
den =
    1.0000 5.0000 25.0000 5.0000
```

Example. Using MATLAB, obtain the transfer function for the control system in the figure below.

where

$$
\begin{aligned}
\mathrm{G}_{1} & =\left(\begin{array}{ll}
1 & 3 \\
2 & 5
\end{array}\right) x+\binom{0}{1} u ; & \mathbf{C}_{1}=\left(\begin{array}{ll}
1 & 2
\end{array}\right) \\
\mathrm{G}_{2} & =\left(\begin{array}{cc}
-4 & 0 \\
0 & 3
\end{array}\right) x+\binom{1}{0} u ; & \mathbf{C}_{2}=\left(\begin{array}{ll}
3 & 0
\end{array}\right) \\
\mathrm{H} & =\left(\begin{array}{ll}
3 & 2 \\
1 & 0
\end{array}\right) x+\binom{1}{1} u ; & \mathbf{C}_{3}=\left(\begin{array}{ll}
1 & 1
\end{array}\right)
\end{aligned}
$$

Solution: To define the system computer first we have to define the matrices as:

```
>> a1 = [1 3; 2 5];
>> b1 = [0; 1];
>> c1 = [1 2];
>> d1 = 0;
>> a2 = [-4 0; 0 3];
>> b2 = [1; 0];
>> c2= [3 0];
>> d2 = 0;
>> a3 = [3 2; 1 0];
>> b3 = [1; 1];
>> c3= [1 1];
>> d3 = 0;
```

The following MATLAB code will convert the system from state-space to transfer function:

```
>> [numg1, deng1] = ss2tf(al,b1,c1,d1);
>> [numg2, deng2] = ss2tf(a2,b2,c2,d2);
>> [numh, denh] = ss2tf(a3,b3,c3,d3);
>> [numf, denf] = feedback(numg1,deng1, numh,denh);
>> [nums, dens] = series(numf,denf,numh,denh);
>> printsys(nums,dens)
num/den =
```

 \(4 s^{\wedge} 4-10 s^{\wedge} 3-14 s^{\wedge} 2-4 s\)
 \(s^{\wedge} 6-12 s^{\wedge} 5+44 s^{\wedge} 4-22 s^{\wedge} 3-87 s^{\wedge} 2-40 s-4\)
 MATLAB can also be used to convert state-space representations to parallel form or controller canonical form using the command

$$
\text { cannon }(A, B, C, D, \quad ' t y p e ')
$$

where
type = modal, yields parallel form
type = companion, yields controller canonical form.

