
A MIDDLEWARE FRAMEWORK PROVIDING

ADAPTIVE QUALITY OF SERVICE FOR BLUETOOTH

By

THOR EGIL SKAUG

A thesis submitted in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

WASHINGTON STATE UNIVERSITY

School of Electrical Engineering and Computer Science

May 2004

 ii

To the Faculty of Washington State University:

 The members of the Committee appointed to examine the thesis of

THOR EGIL SKAUG find it satisfactory and recommend that it be accepted.

 Chair

 iii

ACKNOWLEDGMENT

I would like to thank my advisor, Dr. David E. Bakken, for talking me into

coming to WSU, for all the assistance and help he has given me, for devoting so

many hours of his own time, and finally, for his incredible kindness towards his

students.

I would also like to thank Dr. Sirisha R. Medidi and Dr. John C. Shovic, for

their help, and for taking the time to be on my committee, and Ms. Ruby Young

for her kindness and helpfulness towards the graduate students at EECS.

I have to thank all of the current and previous MicroQoSCORBA project

members; you have all done some outstanding work: Dr. A. David McKinnon,

Olav Haugan, Tarana Damania, Dr. Wesley Lawrence, Kevin Dorow, Eivind

Næss, Kim Christian Swenson and Ryan Johnston.

A special mention to all my friends back in Norway – I miss you and I wish I

could see you more often, and the friends I have made during my time here at

WSU; you have definitely made this worthwhile.

Barb and Alan – thank you for your incredib le hospitality and good company,

you have made me feel at home in the US.

I give the most sincere thanks to my parents and my brother for making it

possible for me to come to the WSU, for supporting me throughout my studies,

and for believing in me. Without you I would never have been able to do this.

 iv

This research was supported in part by two Cisco University Research

Program donations and Grant NSF-CISE EHS-0209211 from the National

Science Foundation's Embedded and Hybrid Systems program.

Finally: Thank you Emily, for always being there for me, for your inspiration

and support, and your patience. This thesis is dedicated to you.

 v

PUBLICATIONS

Thor Egil Skaug, David E. Bakken, and John C. Shovic, “A Middleware

Framework Providing Adaptive Quality of Service for Bluetooth”, submitted to

The 5th International Middleware Conference, Toronto, Ontario, Canada, October

18th – 22nd, 2004.

 vi

A MIDDLEWARE FRAMEWORK PROVIDING

ADAPTIVE QUALITY OF SERVICE FOR BLUETOOTH

Abstract

by Thor Egil Skaug, M.S.

Washington State University
May 2004

Chair: David E. Bakken

 Bluetooth was originally conceived as a replacement for wires on human

interface devices such as keyboards and headsets. More recently, its range has

been extended such that it has the potential to become a viable and inexpensive

alterative to other wireless technologies. However, its suitability for more

general-purpose applications and traffic is an open question, especially with

regards to application-level quality of service (QoS) control. This thesis analyzes

the QoS mechanisms and hooks Bluetooth provides in terms of their potential as a

building block for middleware- level mechanisms. In particular, the ability to add

higher- level mechanisms useful for adapting to changing conditions on a wireless

link is assessed. The thesis describes the design and implementation of a

configurable set of middleware- level mechanisms that provides such adaptation,

and provides an experimental evaluation of this framework.

 vii

TABLE OF CONTENTS

Page

ACKNOWLEDGMENT.. iii

PUBLICATIONS...v

ABSTRACT..vi

LIST OF TABLES .. xii

LIST OF FIGURES ... xiii

1. Introduction... 1

1.1 Thesis Contributions and Organization .. 2

2. MicroQoSCORBA.. 4

2.1 MicroQoSCORBA Lifecycle Epochs ... 5

2.1.1 Design .. 7

2.1.2 IDL Compilation.. 7

2.1.3 Application Compilation.. 8

2.1.4 System/Application Startup ... 8

2.1.5 Run Time.. 9

2.2 MicroQoSCORBA Architecture ... 9

2.2.1 IDL Compiler ... 10

 viii

2.2.2 Customized ORBs and POAs .. 11

2.2.3 Communications Layer.. 11

2.2.4 Quality of Service .. 12

3. Bluetooth Background .. 15

4. Quality of Service: Bluetooth vs. Middleware ... 20

4.1 Kinds of High-Level Bluetooth Traffic .. 20

4.1.1 RT Audio/Voice ... 21

4.1.2 Streaming Data... 21

4.1.3 Intermittent Data .. 21

4.2 QoS Mechanisms and Their Place .. 22

4.2.1 Error Control.. 22

4.2.2 Automatic Repeat Requests ... 24

4.2.3 Runtime Baseband Packet Type Selection .. 24

4.2.4 Isochronous data .. 25

4.2.5 Bluetooth QoS Setup .. 26

4.2.6 Proactive Temporal Redundancy... 27

4.2.7 Proactive Spatial Redundancy ... 29

4.2.8 Value Redundancy... 30

4.3 Adaptive Quality of Service.. 30

 ix

5. Design and Implementation of MicroQoSCORBA-Bluetooth........................ 32

5.1 Implementation Details ... 37

5.1.1 MicroQoSCORBA-Bluetooth Protocol Stack 37

5.1.2 Implementation of QoS Mechanisms... 39

5.1.3 Interoperabilty and Service Discovery... 42

6. Experimental Evaluation... 43

6.1 Experimental Setup ... 43

6.2 Experiments and results .. 43

6.2.1 Baseline and Middleware Time (1-2) .. 46

6.2.2 Two Way Unicast (3-9).. 47

6.2.3 Two Way Broadcast (10) ... 47

6.2.4 Client Broadcast, Server Unicast (11) ... 48

6.2.5 Client Hybrid Broadcast Unicast, Server Unicast (12)........................ 48

6.2.6 Unicast (13).. 49

6.2.7 Broadcast, Static Proactive Temporal Redundancy (14) 49

6.2.8 Hybrid Broadcast Unicast with No Redundancy (15) 50

6.2.9 Dynamic Reflective Proactive Broadcast (16)..................................... 50

7. Related Work .. 52

7.1 Bluetooth and Middleware.. 52

 x

7.2 Bluetooth Latency Improvements ... 53

7.3 Quality of Service ... 54

7.4 Summary... 55

8. Concluding Remarks and Future Research... 56

8.1 Concluding Remarks... 56

8.2 Future Research... 57

Bibliography.. 58

A. Implementing a driver for the Bluetooth subsystem.. 64

A.1 Serial Bus Drivers .. 64

A.2 USB Drivers... 65

A.2.1 Linux ... 65

A.2.2 Other Platforms ... 66

B. Configuration of the Bluetooth Subsystem.. 67

B.1 Serial Driver Macros .. 67

B.1.1 MQC_BT_SERIAL_DEVICE_SOCKET .. 67

B.1.2 MQC_BT_SERIAL_PORT .. 68

B.1.3 MQC_BT_SERIAL_BAUDRATE... 68

 xi

B.1.4 MQC_BT_SERIAL_DATABITS ... 68

B.1.5 MQC_BT_SERIAL_PARITY .. 68

B.1.6 MQC_BT_SERIAL_STOPBITS .. 68

B.1.7 MQC_BT_SERIAL_RTSCTS .. 68

B.2 USB Driver Macros.. 69

B.2.1 MQC_BT_USB_DEVICE_SOCKET... 69

B.3 QoS Configuration ... 69

B.3.1 MQC_BT_QOS_UNICAST ... 69

B.3.2 MQC_BT_QOS_BROADCAST .. 69

B.3.3 MQC_BT_QOS_HYBRIDCAST... 69

B.3.4 MQC_BT_QOS_PROACTIVECAST.. 69

B.3.5 MQC_BT_QOS_ROLE_SWITCH... 70

C. Additional Notes for the Bluetooth Subsystem.. 71

C.1 Debugging .. 71

C.2 Problems and Solutions for the Linux BlueZ USB Driver......................... 71

 xii

LIST OF TABLES

Table 2.1: Partial listing of Constraint Bounds.. 6

Table 4.1: Bluetooth QoS Mechanisms and Potential MW Improvements 23

Table 5.1: MicroQoSCORBA Bluetooth QoS configurations.............................. 36

Table 5.2: QoS Messages.. 41

Table 6.1: Measurements for experiment 1 and 2 in ms 45

Table 6.2: Measurements for experiments 3-9 in ms.. 46

Table 6.3: Measurements for experiments 10-16 in ms.. 46

 xiii

LIST OF FIGURES

Figure 2.1: MicroQoSCORBA Architecture .. 10

Figure 2.2: MQC Messaging Protocol.. 13

Figure 2.3: MQC QoS Fragment Messaging Protocol.. 13

Figure 2.4: MQC QoS Mechanism Payload Protocol... 14

Figure 3.1: Bluetooth ACL Packet Throughput, Symmetric Channel.................. 18

Figure 5.1: The Bluetooth Software Protocol Stack ... 33

Figure 5.2: MQC Stack and MQC Bluetooth Transport 35

Figure 6.1: timing.idl .. 44

Figure 6.2: Physical Setup for Experiments ... 44

Figure 6.3: Formula for calculating BER from link quality 51

Figure A.1: Example of Platform Specific Device Driver Code Insertion........... 65

 xiv

Audere est Facere

 1

Chapter 1

Introduction

Embedded applications have become increasingly commonplace in recent years.

In the last decade embedded CPUs and supporting chipsets have been made much

cheaper and smaller. As a result, over 90% of all CPUs produced in recent years

are used in embedded systems [TUR03]. In recent years, embedded processors

are commonly being networked, and increasingly with wireless network

technologies.

Bluetooth is a popular standard for wireless networking. It was originally

conceived as a replacement for wires and infrared communication on human

interface devices ranging from cellular phones, keyboards, GPS devices, and

headsets. Its initial range was limited to 10 meters (Class 2 Devices). In recent

years, the range has been extended to 100 meters (Class 1 Devices). Since

Bluetooth is generally considered to be less expensive to implement than other

wireless standards such as IEEE 802.11b, this opens up the possibility for

Bluetooth to be a less expensive and smaller replacement in some circumstances.

This could in turn open up even more application domains for control or

monitoring by embedded processors.

 2

Bluetooth offers a variety of quality of service mechanisms in its API.

However, all of its mechanisms are reactive, meaning they detect problems and

correct them after the fact, very much in the style of stop-and-wait protocols.

This opens up an opportunity for proactive mechanisms on top of Bluetooth, ones

that use different kinds of redundancy in anticipation of failures in order to lower

latencies while maintaining reliable delivery. While there have been a few

middleware systems implemented over Bluetooth, none employ proactive

mechanisms. Additionally, on these Bluetooth middleware frameworks, the usage

of Bluetooth QoS mechanisms is set no later than connection setup time.

1.1 Thesis Contributions and Organization

This thesis investigates the use of Bluetooth as a transport for distributed

applications, and how middleware can improve the QoS of Bluetooth in peer to

peer wireless networking. The contributions of this thesis are:

• An analysis of the quality of service mechanisms and hooks available in

Bluetooth, in terms of which can be overridden by middleware or not. The

thesis discusses whether middleware or Bluetooth likely does better under

all realistic conditions if granted control of the mechanism and the

potential tradeoffs of migrating specific mechanisms from Bluetooth to

middleware.

• An overview of the design and implementation of MicroQoSCORBA-

Bluetooth (MQC-BT), a Bluetooth transport layer for MicroQoSCORBA

 3

(MQC), including a custom, minimalistic Bluetooth stack designed to

facilitate middleware QoS mechanism integration. MicroQoSCORBA-

Bluetooth extends Bluetooth QoS mechanisms by providing both

proactive redundancy and the hooks to change the parameterization of

these Bluetooth QoS mechanisms at runtime. MicroQoSCORBA-

Bluetooth is the only middleware framework with a Bluetooth transport

we are aware of that offers a QoS API to the application.

• A preliminary experimental evaluation of MicroQoSCORBA-Bluetooth,

demonstrating MW QoS mechanisms that are better than Bluetooth in

some failure-free operational conditions. The thesis also presents baseline

(flat configuration; no QoS options) results indicating that this Bluetooth

stack is faster than BlueZ, the open source Bluetooth protocol stack

included in the most recent Linux distributions.

The remainder of this thesis is organized as follows: Chapter 2 describes

MicroQoSCORBA; Chapter 3 gives background information on Bluetooth;

Chapter 4 gives overviews the possibilities of QoS control in Bluetooth enabled

middleware; Chapter 5 overviews the design and implementation of the

MicroQoSCORBA-Bluetooth transport and QoS subsystem; followed by an

experimental evaluation of this implementation in Chapter 6; related work is

discussed in Chapter 7; and conclusions and future work is presented in Chapter

8.

 4

Chapter 2

MicroQoSCORBA

The MicroQoSCORBA framework is a rethinking from the bottom up what can

and should be configurable in middleware for embedded systems [McK03a,

McK04, MQC04]. MicroQoSCORBA has organized the space of the features and

flexibilities that can possibly be stripped out to support a small footprint. It

makes these choices available to the developer at a fine granularity, and then

tailors the middleware to both the embedded device’s resource constraints and the

flexibilities and features required by the embedded application software to run on

it. This is crucial, because the large number of embedded systems have a very

wide range in terms of both device resource constraints and application

requirements.

MicroQoSCORBA also supports multiple quality of service (QoS)

mechanisms. Its fault tolerance subsystem provides mechanisms for redundancy

(temporal, spatial, value); reliability (best effort, reliable, atomic, uniform

atomic); and ordering (FIFO, causal, and total) [DOR03]. Its security subsystem

provides a variety of mechanisms for encryption, message digests, message

authentication codes, error correction codes, and shared secretes [McK03b].

 5

Ongoing work has added a configurable intrusion detection subsystem [NAE04].

Multiple mechanisms from one or more subsystem may be configured.

Our initial version of MicroQoSCORBA was in Java. We have a beta

version of a C++ version. As of April 2004, it was the fastest CORBA

implementation tested by one independent benchmarking expert for some key

benchmarks, especially for message sizes below 2K bytes [GAU04]. Roundtrip

times start at less than 60 microseconds. MicroQoSCORBA was not specifically

designed to be fast, just highly configurable; its speed is a pleasant side effect of

removing everything that is not absolutely necessary for a given application.

For the remainder of this chapter, we first present the base architecture of

MicroQoSCORBA, then the choices it exhibits at each stage during the lifecycle

of an application, and finally we show how quality of service constraints can be

set static (design time) or dynamic (run time).

2.1 MicroQoSCORBA Lifecycle Epochs

During the design of any distributed application, the designer must provide

information on how the application is to be configured, essentially a set of

tradeoffs. MicroQoSCORBA supports this through an underlying architecture

and toolkit that span the complete development cycle from first concept in the

design stages to application runtime. A MicroQoSCORBA project’s lifetime is

divided into five epochs: Design, IDL Compilation, Application Compilation,

 6

System/Application Startup, and Run Time. During each of these epochs, various

constraints are bound. During the application's lifecycle, as each constraint is

bound, opportunities exist for reducing and/or refining many key facets of the

application. It is beyond the scope of this thesis to provide a complete list of

constraints that can be bound, but a few key constraints are shown in Table 3.1.

Lifecycle Epoch Constraint Bound Examples

HW Heterogeneity Symmetric, Asymmetric

HW Choice X86, Tini, ColdFire

Communications HW
Ethernet, Serial, Infrared,

Bluetooth, IEEE802.11b

Processing Capability 50MHz, 1GHz, 8bit, 32bit

System Size Small, Medium, Large

Design

Power Usage Line, Battery, Parasitic Power

Communication Style Passive, Proactive, Push, Pull

Stub/Proxy
Generation

Inline vs Library Usage

Message Lengths Fixed or Variable
IDL Compilation

Parameter

Marshalling
Fixed Formats

Space/Time
Optimizations

Loop Unrolling, Code
Migration, Function and Proxy

Inlining

Application
Compilation

Library Usage Static vs Dynamic

Device Initialization

Network Startup Bootp, DHCP System/Application
Startup Major QoS

Adaptation
Select Between QoS Modules

Run Time
Minor QoS

Adaptation
Adjust QoS Parameters

Table 2.1: Partial listing of Constraint Bounds

Table 2.1 shows how MicroQoSCORBA attempts to constrain choices as

early as possible in the lifecycle of an application. This can be done because of

 7

the nature of embedded applications where it is possible to determine a large

portion of the constraints early in the design phase. It is also not recommended for

embedded applications to leave constraint decisions open for the startup and run-

time stages, because it may be result in costly, additional resource consumption

such as footprint and context switches. MicroQoSCORBA’s approach is in

contrast to many other reflective middleware frameworks such as QuO, see

related work.

2.1.1 Design

The choices made in the design stage affect all subsequent stages. This is the

stage where key decisions are made in terms of homogeneity vs heterogeneity,

processor type and capability, symmetry in terms of processing power and power

consumption, and means of communication (wired, wireless, Ethernet, Bluetooth,

etc.).

2.1.2 IDL Compilation

During IDL compilation, MicroQoSCORBA exploits the constraints made during

the design stage. An example is if an 8bit processor is used, all larger data types

could potentially be dropped, at least in a homogenous system. The

communication style and role of the devices will be set during this stage.

The IDL compiler will generate or leave out code based on the design

constraints. Is there enough memory available to use inline proxy/skeleton

 8

marshalling in the client and server implementation? Can messages be constrained

to a fixed size? The result is smaller, but less flexible code.

2.1.3 Application Compilation

During the application compilation phase, MicroQoSCORBA plays a rather

subdued role. Existing tools and compilers are used for optimal compilation, and a

specialized compiler is beyond the scope of MicroQoSCORBA.

However, directing the performance of these compilers and tools is quite

beneficial. Thus, if the developer knows that memory will be at a premium, the

MicroQoSCORBA configuration tools can direct the compiler to optimize the

compiled code so that space is conserved. Another constraint that is bound during

this epoch is the choice of static versus dynamic linking of library code, highly

dependant on the type of system to which the application is to be deployed.

2.1.4 System/Application Startup

When power is first applied to an embedded device, both the system and

application will start running. The binding of a few run-time MicroQoSCORBA

constraints may be delayed until this time. The embedded device may have some

hardware configuration options that are set with buttons, switches, etc. and these

settings could control the startup state of the embedded hardware. At startup, the

device's networking parameters might be automatically configured (e.g., DHCP).

Another key hardware factor is that ROM is often more plentiful than RAM.

 9

Thus, multiple implementations could be written and burned into the device’s

ROM, an option very common in embedded systems. At startup the appropriate

implementation could be loaded into RAM. This coarse grained adaptation allows

a device to adapt to its environment.

2.1.5 Run Time

Until the main contribution of this thesis, an adaptive quality of service add-on to

MicroQoSCORBA, runtime flexibility was limited. More and more embedded

systems have sufficient computing resources that can support flexibility at run

time, as was not the case when MicroQoSCORBA was initially designed.

2.2 MicroQoSCORBA Architecture

One of the key benefits of MicroQoSCORBA is its ability to target a range of

embedded devices. This is accomplished by exploiting the various constraints that

can be bound in each lifecycle epoch, as well as by using some novel adaptations

in the standard CORBA architecture. The architecture of MicroQoSCORBA is

shown in 3.2.

Note in Figure 3.2 that the IDL compiler has an increased role, and that the

interaction between the ORBs and the underlying communications technology has

changed. The remainder of this section discusses each of the key components of

MicroQoSCORBA.

 10

client

stubs

CORBA protocols

transport

QoS

customized ORB instance

CORBA protocols

IIOP GIOP MQC IOP

QoS

Value Red Temporal Red. Spatial Red.

Group Comm.. Failure Detec. Wireless QoS

Low Level Transport Adapter

TCP UDP Serial Bluetooth

CORBA protocols

QoS

Transports

customized ORB instance

customized POA instance

skeleton

servant/Object Impl.

IDL Compiler

se
le

ct

ge
ne

ra
te

select

generate

select

Figure 2.1: MicroQoSCORBA Architecture

2.2.1 IDL Compiler

Every CORBA development environment has an IDL compiler. This compiler is

responsible for parsing an application's IDL files and producing the appropriate

stub and skeleton code. Often, these IDL compilers assume that one canonical

ORB implementation exists. For the standard desktop/workstation environment

this is a reasonable assumption, since sufficient resources usually exist at the

desktop to bundle in “everything” that is needed into one ORB implementation.

But, this assumption is inappropriate for MicroQoSCORBA because “one size fits

 11

all” simply does not scale down to small embedded devices. So in the

MicroQoSCORBA development environment, the IDL compiler generates stubs

and skeleton code that has been optimized for a customized ORB.

2.2.2 Customized ORBs and POAs

Only so much can be done in the stub and skeleton code to reduce (or improve)

resource usage for a given application. Thus, MicroQoSCORBA supports the

ability to use customized ORB instances, several of which could coexist in the

MicroQoSCORBA development environment. Depending upon the choices

previously discussed, multiple ORBs and POAs might exist. Some of these could

be automatically generated via the CASE tools or they could be custom, “hand

coded” ORBs that are finely tuned to a given application.

The IDL compiler is made aware of the existence of the customized ORBs

via various configuration settings. During the IDL compilation, the compiler

inserts appropriate statements into the generated stub and skeleton code so that the

desired ORB/POA implementation is used.

2.2.3 Communications Layer

Increased functionality generally comes with an associated increase in cost. Thus

many small, embedded devices have very limited communications abilities. For

some applications, the support for IIOP interconnectivity may actually entail more

code than is required for the application logic. In these cases, support for a lighter-

 12

weight communication layer is needed. On the client side, the IDL generated

stubs have a reference to the protocol and transport layer to be used. These

references are given to the ORB so messages may be sent or received as needed.

We note that the ORB could have used an abstract factory pattern [GHJV95], but

that would have required linking in functionality for all of the

MicroQoSCORBA's communication layers into a given application, something

that was neither needed nor desired.

2.2.4 Quality of Service

With the recent port of MicroQoSCORBA for C++, we redesigned the

architecture slightly to include a quality of service layer. With the increasing

amount of QoS subsystems developed for MicroQoSCORBA, we identified the

need for a common platform anchoring these. The QoS layer uses a messaging

protocol for prepending GIOP messages with QoS sensitive information. We

designed this layer so that MicroQoSCORBA can easily be extended with new

QoS subsystems, and for all of them to work together in harmony.

We define two types of QoS in MicroQoSCORBA: Static and Dynamic.

Static QoS occurs when the designer decides on the constraints for a given QoS

subsystem at design time, while dynamic QoS occurs when the designer allows

the middleware to find the best fit properties at runtime, usually within a set of

design-time constraints. MicroQoSCORBA's profiling and CASE tools will aid

the designer in picking and choosing a set of compatible quality of service

 13

subsystem implementations and their settings, ruling out ones that do not make

any sense to combine (something the developer cannot, in general, know).

GIOP messages are prepended with QoS information, see figure 2.2,

according to the protocol shown in figure 2.3.

0 n n+1 m

QOS Fragment GIOP Fragment
n = 0, m = 1

Figure 2.2: MQC Messaging Protocol

0 31 32 63 64 95 96 n

MAGIC SIZE UID MECHANISM[0]

n+1 m m+1 q … x+1 y

MECHANISM[1] MECHANISM[2] … MECHANISM[n]

Figure 2.3: MQC QoS Fragment Messaging Protocol

The magic field is used for the QoS layer to identify a prepended QoS

message from a GIOP message (this field always contains the byte sequence

‘MQOS’), the size field indicates the length of the mechanisms payload field, and

the uid field helps the QoS layer identify which client-server session. The

mechanisms payload field is variable length, and includes 1..n QoS-mechanism

messages. Each of these sub-messages includes information about a specific

mechanism. An example is if proactive temporal redundancy is used. Then the

field would contain information about the message sequence number for ordering

purposes so that the receiving end can discard any redundant copies.

 14

0 7 8 39 40 n

MECHANISM ID SIZE PAYLOAD

Figure 2.4: MQC QoS Mechanism Payload Protocol

Figure 2.4 shows the QoS mechanism payload field protocol. The first octet

contains a unique identifier for the mechanism. Then there are 4 octets containing

the size of the payload field and finally the variable length payload field. The

payload field includes the information to be exchanged about the specific QoS

mechanism. The different mechanisms and their payload contents will be

discussed in more detail later in this thesis.

 15

Chapter 3

Bluetooth Background

Bluetooth [BSI01, BSI03] is a short-range, low-cost, low-power wireless standard

operating in the 2.4 GHz band, developed by the Bluetooth Special Interest

Group, a trade association comprised of leaders in the telecommunications,

computing, automotive, industrial automation and network industries [BT04].

 One of the most important functionalities of a two-way wireless

communication system is to determine how and when radio units at each node in

the network can communicate. A solution common to many wireless technologies

is to equip all nodes with a both a transmitter and a receiver, operating

simultaneously on different frequencies [MOR02]. This is called frequency

division duplexing, and is a form of full-duplex transmission, common to most

cell-phone systems.

Bluetooth uses Time Division Duplexing (TDD), which utilizes the same

frequency synthesizer, giving half duplex transmission. With TDD, one node

transmits while the other receives, and the other way around [MOR02]. When two

nodes communicate using Bluetooth, time is divided into time slots of 625

microseconds each. Time slots are either downlink slots or uplink slots. The

 16

master transmits to slaves in downlink slots, and the slave transmits to the master

in uplink slots. In a connection relationship, one node is the master, and the other

is slave, the master controls the traffic in the network. Downlink slots are

typically even numbered, while uplink slots are odd. Polling is when a node

spends one or more time-slots listening for incoming data. The scheme gets

slightly more complicated when the master has connections to several slaves.

How this is achieved is, however, not important for understanding of the

remainder of this thesis.

There are several types of Bluetooth baseband packets, with varying time slot

occupancies. Bluetooth offers two types of physical links, namely asynchronous

connectionless (ACL) and synchronous connection-oriented (SCO) links. ACL

links are used for data transmissions, while SCO links are used for real-time two-

way voice.

Transmission of Bluetooth baseband packets is allotted 366 microseconds per

time slot, while the remaining 259 microseconds is used for frequency hopping.

There are seven types of ACL baseband packets: DMn, DHn, and AUX1. M

denotes medium speed, H high speed, and n the number of time slots occupied by

the packet. Medium type packets use forward error correction (FEC), while both

medium and high speed packets have error detection through CRC. Uncorrectable

errors in medium type packets and detected errors in high speed packets result in

the receiving device issuing a retransmit request. This stop-and-wait scheme is

 17

called automatic retransmit request (ARQ) [BSI01, BSI03, VAL02a], and packets

are retransmitted until completion.

Packets using more time-slots have less overhead per percent of payload,

since the packet headers, error correction and detection codes occupy less of the

total packet. However, if the transmission fails, and the packet has to be

retransmitted, the latency increases with the number of time-slots used. AUX1

packets have no error detection or correction overhead, and thus no ARQ scheme.

These are intended for calculating bit error rates (BER) by frequently transmitting

a known bit pattern [BSI01, BSI03, MOR02].

Since Bluetooth has a raw data rate of 1 Mb/s, there is room for 366 bits of

data in each time-slot. An access code and a header occupy 126 bits of each

packet-fragment, and a further payload header occupies 8 bits for one-slot

packets, and 16 bits for three and five-slot packets. The error detection and (for

M-type packets) error correction overhead further decreases the space for

application data in a packet.

A symmetric channel in Bluetooth means that the master and slave both use

the same packet type for exchanging data, while the opposite is called an

asymmetric channel. Assuming a BER of 0 and a symmetric channel, throughput

varies between 108.8 kb/s for DM1 packets to 433.9 kb/s for DH5 packets. For a

forward asymmetric channel, DH5 packets should have a throughput of up to

723.2 kb/s if we assume no bit errors.

 18

Throughput for Different ACL Packet Types with Varying BER

0

50

100

150

200

250

300

350

400

450

0.
00

00
1

2.
5E

-0
5

0.
00

00
4

5.
5E

-0
5

0.
00

00
7

8.
5E

-0
5

0.
00

01

0.
00

02
5

0.
00

04

0.
00

05
5

0.
00

07

0.
00

08
5

0.
00

1

0.
00

25
0.
00

4

0.
00

55

0.
00

7

0.0
08

5
0.
01

0.
02

5
0.
04

0.
05

5
0.
07

0.
08

5 0.
1

BER

T
h

ro
u

g
h

p
u

t
(k

b
/s

) DM1

DM3

DM5

DH1

DH3

DH5

Figure 3.1: Bluetooth ACL Packet Throughput, Symmetric Channel

Even though DH5 packets have the highest throughput rate, this is not the

case when one has to account for BER, and bit errors will happen when

transmitting over radio. Figure 3.1 shows the result of computing throughput for

the different packet types on a symmetric channel with different BER. From this

we can derive the following coarse grained packet selection scheme:

• Use DH5 packets for BER less than 10-4.

• Use DM5 packets for BER between 10-4 and 10-2.

• Use DM1 packets when BER exceeds 10-2.

 19

There is of course room for a finer grained granularity to this selection

scheme, and additionally, all packet types are not necessarily supported by both

devices.

Finally, BER can be computed in two ways; either by using the before

mentioned AUX1 packets, or derived from the link quality (LQ) and received

signal strength indicator (RSSI) of Bluetooth.

 20

Chapter 4

Quality of Service: Bluetooth vs. Middleware

Bluetooth devices were initially not meant to be used in any kind of sizeable

distributed application. With the introduction of class A Bluetooth devices, the

technology is becoming more interesting for such purposes. In this case, we must

assume that the range of hosts includes anything from very small embedded

systems to powerful desktop computers; Bluetooth is rapidly becoming a cheap

alternative to other wireless standards. In many cases, it is meaningful to move

QoS control from the Bluetooth device that has limited computational power, into

middleware. This chapter presents the tradeoffs, limitations and improvements of

such a migration.

4.1 Kinds of High-Level Bluetooth Traffic

The Bluetooth specification provides the mechanisms for transmitting data or

audio between two or more devices. There are three kinds of high- level Bluetooth

traffic:

• Realtime audio/voice streaming

• Streaming data

 21

• Intermittent data

4.1.1 RT Audio/Voice

Periodic analog data with hard real- time requirements transmitted over an SCO

link. Impractical for use by MW, because of air coding/compression and the fact

that once a connection is established, a consistent 64 kb/s data steam is opened

between the two devices. Sending application data (not voice) over such a link

would mean that the receiver would have to continually parse every part of the

stream to receive even a few messages. Even more troublesome, the message

could be corrupted by the compression, giving no guarantees of being able to

recover every bit. Note that newer Bluetooth specifications allow transparent data,

(meaning no air coding/compression).

4.1.2 Streaming Data

Periodic digital data interactions transmitted over an ACL link. Typical examples

include, but are not limited to, streaming data files (MP3, MPEG4, etc.) and

sensors pushing data at a fixed rate per second.

4.1.3 Intermittent Data

Aperiodic digital data interactions transmitted over an ACL link. Typical usage

includes, but is not limited to, client-server request/reply messages and pushing

alerts and sensor data updates based on a threshold trigger.

 22

The specification has clearly not been designed with an aim to allow full

control to middleware; most of the choices are done in the hardware

implementation. Table 1 is an overview of QoS mechanisms, their current place

according to specification, whether or not middleware can override any hardware

implementations, and what QoS property that each mechanism fulfills.

4.2 QoS Mechanisms and Their Place

We enumerate QoS mechanisms in Table 1, in terms of what is offered by

Bluetooth, what can be added with middleware. We discuss the different

mechanisms, where their best place is, and whether or not it is possible to move

certain mechanisms from Bluetooth to middleware given the current Bluetooth

specification. In this section, when we use the term middleware, we refer to the

host software protocol stack.

4.2.1 Error Control

Error detection (CRC) is used by Bluetooth hardware on all DMn and DHn

packets, while forward error correction (FEC) is applied only to DMn packets.

The Bluetooth specification does not allow this to be disabled or migrated to

middleware; the only solution is to use AUX1 packets, which is explicitly

disallowed by the Bluetooth specification. AUX1 packets are likely to outperform

DMn and DHn packets within a certain BER range [VAL02a], if the middleware

is located on a host with decent computational strength and a fast error control

 23

algorithm is employed. The forward error correction scheme used for DMn

packets is (15, 10) shortened Hamming code [MOR02].

Mechanism

Supported by

Bluetooth HW

Spec?

D

Does the mechanism have a

better place in

Middleware?

A L

Error control

FEC/

Detection

YES: FEC w/ DMn,

detection with DHn NO
Likely better if the use of

AUX1 packets was allowed

Y N

Automatic

Repeat

Requests

YES: automatic if

DHn detects error, or

DMn’s FEC cannot

correct all errors

NO
Potentially, if both 1) and 2)

can be disabled in BT HW

Y N

Runtime

Baseband

Packet Type

Selection

YES: SW provides

set of allowed packet

types, HW reserves

the right to use DM1

at any time

NO

Likely, if complete control of

packet type is available to

MW, i.e. DM1 can be

disallowed, and AUX is

allowed

Y Y

Isochronous

Data

YES: timeout in

message delivery.

Software notified by

event/interrupt if

message cannot be

completely

transmitted in the

given time

Not

forced

Likely, can adaptively and

proactively adjust timeouts

based on runtime

instrumentation

N
1
 Y

BT QoS Setup Allows allocation of

resources & config.

parameter settings to

“reserve” BW

Not

forced

No, but can provide better

params via IDL analysis

and/or instrumentation

N
2
 Y

Proactive

Temporal

Redundancy

Not supported for

unicast, only for

broadcast. MW likely

to be more effective

N/A

YES, BT HW & SW does

not have enough app-level

knowledge

Y Y

Proactive

Spatial

Redundancy

Hardwire frequency

hopping provides

some crude spatial

redundancy within

BT frequency band.

NO
YES: replicated devices with

active replication

Y Y

D = Possible to disable hardware implementation, A = Availability, L = latency
1
 Determines availability in terms of data streams, but not guarantees.

2
 YES, if availability concerns means latency requirements

Table 4.1: Bluetooth QoS Mechanisms and Potential Middleware

Improvements

 24

4.2.2 Automatic Repeat Requests

Reactive temporal redundancy is used on all DHn and DMn packets, and cannot

be disabled. As with error control, if AUX1 packets were allowed middleware

would have the choice between proactive, reactive and no redundancy. Note that

this ARQ scheme is not used on broadcast messages, in which case the

middleware has full control of redundancy scheme. For DMn packets, a

retransmit is requested only if the packet still has an error after the forward error

correction scheme has been applied at the receiving device. DHn packets are

requested retransmitted if an error is detected through the redundancy checksum.

It is easy to derive from this that using DHn packets in general is a gamble for

most BER intervals.

4.2.3 Runtime Baseband Packet Type Selection

Most Bluetooth hardware chooses baseband packet types in real-time using

Channel Quality Driven Data Rate (CQDDR). CQDDR selects packet types based

on the current channel BER, which is determined through communication

between the local and remote link managers (LMs). During connection setup, the

application specifies a set of allowed packet types (i.e. DM1, DM3 and DH5).

However, DM1 packets are by specification always available for use by the

hardware implementation. CQDDR makes the correct choice in most situations,

 25

although for very small messages (10 bytes or less), this choice seems

inexplicable; because initial experiments suggest that it can result in a higher RTT

than with 100 byte messages. Note that for broadcast messages, the packet type

used is undefined in the Bluetooth specification, although most vendors simply

use DM1 packets. This is of course due to the fact that broadcast messages are

intended for a number of recipients, and selecting packet types based on a number

of different connection BERs is hard; DM1 is the safe choice.

4.2.4 Isochronous data

Middleware can set flush timeouts that the Bluetooth hardware can use to create

isochronous data transmissions. Isochronous data transmissions are used when the

application has a certain deadline for when the data has to be successfully

transmitted. This deadline is called a flush timeout. There are no timeliness

guarantees, other than that if the entire higher layer message is not successfully

transmitted within the specified time window, the remainder of the message is

discarded, and the application is notified. Middleware can possibly improve the

use of isochronous data, because it has the potential to exploit various properties

of the current state of the wireless network and the application. Note that this

mechanism is intended to be controlled by software; the Bluetooth hardware

simply acts on the timeout value if isochronous data is desired by the software

protocol stack.

 26

4.2.5 Bluetooth QoS Setup

Bluetooth has its own QoS mechanisms targeting link utilization (resource

management), latency and timeliness requirements. The connection master

decides this, usually after a negotiation between the higher stack layers on both

sides. From a middleware standpoint, this gives a server the ability to assign

priorities to different connections (fair or priority based). An example is when a

Bluetooth device that has more than one active link, it has to decide how often to

poll each one. By default, each link is polled 50% of the time.

Resource management is only useful when a server can handle multiple

clients over Bluetooth. If there is only a single client, the connection should

consume all the resources available for the link. If there is more than one client,

the server must be able to direct the Bluetooth device’s polling interval. There are

several opportunities that middleware can take advantage of, including, but not

limited to, load balancing for servers and connection based priority scheduling.

For some distributed applications, with multiple clients and one server, different

clients could have different soft real-time requirements, and the server can then

schedule polling of the links accordingly. As we know, a Bluetooth device can

have at most 3 active ACL connections, thus load balancing is probably not

required, unless the application is hosted on devices with very strict and small

processing and memory capabilities.

 27

4.2.6 Proactive Temporal Redundancy

Temporal redundancy is to do the same thing more than once, in the same or in

different ways, until the desired effect is achieved [DORTHESIS]. An example of

temporal redundancy is the retransmission of a message in order to tolerate

omissions due to electromagnetic noise or temporary receiver overflow [VER01].

In Bluetooth, temporal redundancy is reactive, that is, if a message is found

to have errors, a new copy is requested. Bluetooth’s reactive temporal redundancy

is achieved through a stop-and-wait automatic repeat request (ARQ) scheme.

Since this scheme is implemented in hardware, moving it middleware would

probably not bear many fruits. Therefore, it is more interesting to explore the

option of being proactive.

There are, however, two ways of implementing proactive temporal

redundancy in middleware, both relying on ARQ to be (effectively) disabled:

• AUX1 baseband packets

• Peer broadcasting

AUX1 packets have as earlier stated, no retransmit scheme, and this allows

middleware to be proactive, and also reactive, in its choice of redundancy. The

use of AUX1 packets is mathematically proven to be more efficient (higher

throughput, same reliability) than DMn and DHn packets for certain BER

[VAL02a], but is hard to implement due to the fact that the Bluetooth

 28

specification [BSI01, BSI03] does not allow ACL connections to use this type of

packet. Some devices allow use of AUX1 through vendor specific HCI commands

[ERI01], but these are mostly restricted (and intended) to calculating BER, not

allowing user defined application data to be transmitted.

Use of ARQ packets also requires the software side to implement error

detection and correction, but this could be viewed as a possibility more than a

restriction for a Quality of Service mechanism.

Broadcasting is the second way of implementing proactive temporal

redundancy. Bluetooth’s active broadcast messages have as we have earlier seen

no ARQ protocol, and because of this, no guaranteed reliability. In a simple

CORBA application, it can be assumed that the piconet only contains nodes that

are part of a client-server relationship. When a Bluetooth device issues a

broadcast, it is only received by the nodes with which the device has an active

connection. Additionally the node issuing the broadcast is required to be the

master for the connection. This way of communicating is almost the same as

using AUX1 packets, leaving everything but error control to middleware.

Both the abovementioned schemes will effectively disable Bluetooth ARQs,

allowing middleware to be proactive, semi-proactive 1, and also reactive. It is

obvious that due to failure probabilities and the overhead associated with issuing a

1
 Semi-proactive is a hybrid between proactive and reactive where the message is first transmitted

a number of times without ARQ, then once with ARQ.

 29

retransmit request, proactive schemes are more successful as the size of the

message increases.

The drawback of using broadcasts as a means of unicasting in Bluetooth is

the huge overhead associated with switching roles, recalling that only the link

master can broadcast. Therefore, full duplex broadcasting is expected to have a

significant latency increase compared to AUX1 and normal unicasting.

4.2.7 Proactive Spatial Redundancy

Spatial redundancy consists of having multiple copies of the same component

[VER01]. In our case, there are two types of redundant components in the system:

• Replicated links: A client and a server sharing more than one

wireless link to mask device and link failures. The receiving end

picks the first available message, according to an ordering policy.

• Replicated servers: A client having links to several server replicas to

mask link problems and server failures. The client sends requests to

both servers and picks the first reply according to an ordering policy.

The overhead associated with spatial redundancy depends on the size of the

request message, the middleware’s ability to pick the best link for the first

transmission attempt, and the computational overhead in middleware associated

with maintaining two or more links, compared to one.

 30

All the previous mechanisms can of course be combined with spatial

redundancy, and other opportunities include proactive failure detection and

handoff between servers.

4.2.8 Value Redundancy

By definition, value redundancy is adding extra information to a message

[VER01], usually in order to increase some property of fault tolerance or security.

Bluetooth exhibits a lot of value redundancy in terms of CRC and FEC. By the

nature of MicroQoSCORBA’s QoS messaging protocol, it is also clear that

MicroQoSCORBA exhibits some crude value redundancy when any QoS

mechanism that needs communication between the client and the server QoS

layers is used. Note that MicroQoSCORBA also offers a set of fault tolerance

mechanisms, including security that is part of the value redundancy domain.

4.3 Adaptive Quality of Service

The mechanisms discussed in section 4.2 are all usually chosen at design

time, hence they are static mechanisms. In wireless networks, such as Bluetooth,

the choice of mechanism that seems valid at design time might turn out to be a

poor choice due to unforeseen changes in the wireless network at runtime.

Therefore, it is important that a middleware offering wireless transports is able to

adapt to such changing conditions.

 31

For Bluetooth, the before mentioned mechanisms that are suited for runtime

adaptation are all related to the various types of redundancy (temporal, spatial and

value). Additionally, as earlier discussed, Bluetooth hardware adapts at runtime

by selecting the best- fit baseband packet type through the use of CQDDR.

 32

Chapter 5

Design and Implementation of

MicroQoSCORBA-Bluetooth

Figure 5.1 shows the software part of the Bluetooth protocol stack as defined in

the Bluetooth Core Specification. The Host Controller Interface (HCI) protocol

layer is used to format messages (commands, events and data) that are

interchanged between the host (software stack) and the host controller (hardware

stack). The Logical Link Control and Adaptation Protocol (L2CAP) layer

multiplexes messages that are pushed upwards in the stack to the appropriate

destination layer. L2CAP also segments and reassembles messages, and together

with the HCI layer it delivers messages in order. Each layer above L2CAP also

has its own messaging protocol.

Most general purpose Bluetooth software stacks adhere to the guidelines of

the Bluetooth specification, giving a lot of flexibility for supporting various

Bluetooth profiles: Headset, Printer, Bluetooth Network Encapsulation Protocol

(BNEP), and so forth [GRA03]. When using Bluetooth as a CORBA transport,

the underlying software stack can be optimized to include only the protocols

needed for the middleware to function properly. This means that there is no need

 33

to support profiles, service discovery and so forth, only connection setup, link

management and data transport is of concern. For additional QoS control in

middleware it is almost a requirement that the Bluetooth software stack used by

the CORBA transport offers more than a general purpose stack. Hooks must be

available for hands-on control of the Bluetooth device.

Figure 5.1: The Bluetooth Software Protocol Stack

We have developed a Bluetooth transport for MicroQoSCORBA. This

includes a stripped-down object oriented Bluetooth software protocol stack2, see

figure 5.2, to communicate with Bluetooth devices. This stack includes only HCI

and L2CAP protocol layers optimized for CORBA. There is no need for our

L2CAP layer to multiplex data, as the only layers above it belong to the ORB. Its

only function is to segment and reassemble messages, encapsulating them in the

2
 Not certified by the Bluetooth SIG and is used for MQC experiments only.

HCI

L2CAP

RFCOMM

TCS SDP

WAPOBEX

Two

Way

Voice

Application

 34

L2CAP messaging protocol. Any other tasks related to link QoS negotiation are

performed by MicroQoSCORBA’s QoS layer, encapsulated in the ORB. These

two layers act as a socket between the Bluetooth hardware and the

MicroQoSCORBA Bluetooth transport.

We tunnel GIOP messages over the MQC-L2CAP layer, compliant with the

OMG specification for GIOP tunneling over Bluetooth [OMG03a]. Inter-ORB-

operability is not currently supported due to the manner in which we accomplish

middleware QoS control. Our own Bluetooth stack was needed in order to analyze

the effects of moving QoS mechanisms into middleware. Most third party

Bluetooth software stacks are deve loped according to the guidelines of the

Bluetooth specification, not permitting the user full freedom of sending and

receiving raw HCI commands and events. A nice side effect of such a small

Bluetooth stack is that the memory footprint and the total stack time3 of a message

is reduced.

In order for Bluetooth QoS control and management to have a meaningful

place in software, the host must have an advantage in computational power over

the host controller. If not, the computational overhead introduced by moving

some mechanisms from hardware to software is too high. Placing QoS control in

middleware gives the application a lot more flexibility, and combined with

3
 We define total stack time as the time it takes from a message is submitted at one end of the

stack (stub, proxy / OS device driver) until it reaches the other end (OS device driver / proxy,

stub).

 35

sufficient computational power, it is clearly an improvement over the existing

Bluetooth QoS control and mechanisms. For each type of control action that is

issued from the host to the host controller, there is significant overhead due to the

interchange of commands and events.

MicroQoSCORBA is a configurable middleware, and its Bluetooth extension

is also highly configurable. Table 5.1 shows the mechanisms and configuration

options that are available. The various mechanisms that are needed in the

application designer’s configuration can be selected, and those that are not needed

are not compiled into the binaries. We support a number of configuration options,

including inquiry and page scan intervals, whether or not inquiries and page scans

are enabled when a connection already exists, etc. We also support preset static

and dynamic Bluetooth QoS setup parameters, proactive temporal redundancy

with static or dynamically adaptive number of retransmits, and spatial

redundancy.

Figure 5.2: MQC Stack and MQC Bluetooth Transport

MQC Bluetooth TransportMQC ORB Upper

MQC QoS

MQC Bluetooth Transport

OS Driver (USB/Serial)

Bluetooth Device

MQC Transport

MQC Minimum L2CAP

MQC Minimum HCI

Application

 36

MicroQoSCORBA-Bluetooth masks heterogeneity in operating system, host

hardware, and host controller hardware. All that is needed for it to work with any

given hardware configuration is an implementation of the device driver for the

HCI transport. We currently support serial and USB interfacing in Linux.

Design Time Choice Run Time Behavior
Mechanism

Static Dynamic

Can Be

Excluded At

Compile

Time? Static Dynamic

QoS Setup Preset Values
Value

Range
YES

Preset

Resource

Allocation

Dynamic Resource

Allocation

Isochronous

Data
Preset Values

Value

Range
YES

Preset

Transmissi

on Timeout

Dynamic

Transmission

Timeout

Proactive

Temporal
Redundancy

Preset

Redundancy
Level

Dynamic

QoS
Mechanism

YES
Preset

Redundanc
y Level

Reflective Dynamic

Adaptation based on
Link Quality

Spatial

Redundancy

Preset Number of

replicated servers
N/A YES

Client uses

replicated
servers

N/A

Packet

Types

Preset Specified

Set
N/A NO

Preset

packet

types

N/A

Page and

Inquiry

Scan
Intervals

Preset Values N/A NO
Preset

Intervals
N/A

Page Scan

with active
connection

Preset Boolean

Switch
N/A YES

Enabled or

Disabled
N/A

Inquiry

Scan with
active

connection

Preset Boolean

Switch
N/A YES

Enabled or

Disabled
N/A

Table 5.1: MicroQoSCORBA Bluetooth QoS configurations

 37

5.1 Implementation Details

5.1.1 MicroQoSCORBA-Bluetooth Protocol Stack

The MicroQoSCORBA Bluetooth protocol stack is object oriented and

implemented in C++. We implement a subset of the two lowest protocol layers of

the Bluetooth stack, namely the L2CAP and HCI layers. In the implementation

these two layers essentially expand into three core objects: lower HCI layer, upper

HCI layer and a socket that is used by the transport wrapper.

The socket implementation complies with the GIOP Tunneling over

Bluetooth Specification, and also offers a number of hooks for the controlling

software to implement QoS mechanisms. The upper HCI layer is used for all

commands and events that are interchanged between the stack and the device;

complying with a subset of the HCI layer in the Bluetooth specification (we do

not implement functionality which is not necessary). The lower HCI layer is dual

threaded; the extra thread is used to receive events and data from the device.

Received events and data are multiplexed here and delivered to their appropriate

destination: events to the upper HCI layer, and data to the appropriate socket.

There are two concerns here; first of all, access to the received data (events and

data) must be efficiently synchronized between the two threads. Second, the data

must be subject to ordering.

This is accomplished through a message pump, more specifically an

asynchronous-synchronous message passing kernel with selective receives. This

 38

solves the problem of fine grained synchronization. Ordering is important, and the

following scenario is typical: The software issues a data send fo llowed

immediately by a command. Both actions will result in the device issuing one or

more events for each action. Assuming the actions belong to different threads,

there is a problem, since both threads will be expecting one or more events. Our

message passing kernel will store these messages, and the expecting parties will

be waiting for specific properties contained in the events. When such an event is

inserted into the data structure, the waiting process/thread will be woken up and

receive the correct event.

In our Linux implementation, we use the POSIX [LEW91] thread library to

accomplish fine grained synchronization. Our code should be easily portable to

Java with the recent introduction of the Java Synchronization Library [JCP04],

while most embedded platforms have their own synchronization primitives, also

making a port feasible.

For simplicity in porting, we have used a number of wrapper classes to

implement a small MicroQoSCORBA synchronization library. Any port of the

MicroQoSCORBA Bluetooth stack would only need to switch the

synchronization anchor calls such as wait, signal, lock and unlock.

Note that it seems that most JSR-82 compliant implementations solve the

problem of synchronization and ordering by reversing the flow control, in which

case the host controller is to be considered inferior to the host in terms of

 39

computational ability [MOR02]. This is of course not a desired solution, but is

expected to change with the introduction of the before mentioned Java

Synchronization Library. Our implementation neatly bypasses this problem by

using the compact message passing kernel.

5.1.2 Implementation of QoS Mechanisms

The MicroQoSCORBA QoS layer is an ideal location for Bluetooth QoS

mechanisms. This layer provides a platform for runtime QoS adaptations, a new

addition to MicroQoSCORBA. The transport wrapper layer provides the QoS

layer with the socket it uses for communications, in our case a

MicroQoSCORBA-Bluetooth socket. The QoS layer implements a number of

mechanisms targeting Bluetooth, and the socket is the interface providing the

hooks that are the building blocks for these.

For our Bluetooth QoS implementation, the client and server side QoS layer

implementations exchange information about link quality, received signal strength

(both for BER calculation), temporal redundancy, spatial redundancy and packet

types. Table 5.2 shows the various mechanisms utilized by the Bluetooth

implementation.

Temporal Redundancy. Here the client and the server need to communicate

sequence numbers in order to drop redundant messages.

 40

Spatial Redundancy. This message is only sent from the server to the client, and

includes the address of the server that sent it. Recall that spatial redundancy can

either be over replicated links between one client and one server, or between one

client and multiple server replicas. The server address identifies both the server

and the link used.

Bluetooth Packet Type. This message is used for the client and server(s) to agree

on a set of packet types. This is useful both to create symmetric and asymmetric

links as well constraining unreliable packet types, such as DHn packets.

Bluetooth Communication Type. This message is used in connection setup stage

for the client and server to agree on a style of communication. The octet is split

into two 4 bit parts, the low order bits contain the client transmission style, and

the high order bits contain the server messaging style. Styles of communication

include, but are not limited to:

• Client unicast, server unicast

• Client broadcast, server unicast

• Client broadcast, server broadcast

• Hybrid broadcast, unicast schemes

 41

In the case where both the client and the server broadcast messages, they

need to be aware that they need to switch master/slave relationship between each

transmission, and the exchange of this message ensures that.

Bluetooth BER. This message is only used in tandem with proactive temporal

redundancy when application is configured to adapt to changes to link quality at

runtime. The purpose is to exchange BER information, so that each node can be

proactive in terms of heuristically calculating the number of redundant retransmits

that are needed in order to achieve message completion.

Parameters
Mechanism Mechanism ID

Description Size

Temporal Redundancy 0x01 Sequence Number 4 octets

Spatial Redundancy 0x02 Server Address 10 octets

Bluetooth Packet Type 0x03 Packet Types 2 octets

Comm Type 1 octet Bluetooth

Communication Type
0x04

Role Switch Required 1 octet

Link Quality 1 octet
Bluetooth BER 0x05

RSSI 1 octet

Table 5.2: QoS Messages

 42

5.1.3 Interoperabilty and Service Discovery

Bluetooth has its own device and service inquiry protocol. This is used by most

Bluetooth devices to discover other devices in range, and which services are

offered by each discovered device. An example is a roaming laptop user that

needs to print a document. Using his Bluetooth device, the user discovers a

number of Bluetooth devices, and some offering a printing service.

This style of service discovery is similar to the naming service approach of

CORBA, but differs in the fact that Bluetooth directly addresses all devices in

range, while a CORBA application will only be looking for a naming service, a

centralized repository that keeps track of the available services. Both approaches

use a broadcast- like discovery.

The OMG has developed a specification for wireless CORBA IORs: the

Mobile Interoperable Object Reference standard [OMG03b]. This type of IOR is

generalized to support all types of mobile communication technology, and

MicroQoSCORBA does not need to fully comply in order to achieve object

referencing. Currently, we embed only the Bluetooth hardware address as the

location of a service in the object reference, much like the way a server’s ip-

address is used for any IP-based transport.

 43

Chapter 6

Experimental Evaluation

6.1 Experimental Setup

Experiments were conducted on two machines with the following specifications:

1 Intel Pentium 4 2.4 GHz processor with hyper threading, 1 GB DDR RAM, 800

MHz FSB, Slackware 9.0 operating system with Linux kernel version 2.4.25. The

Bluetooth devices used were Belkin F8T003 USB dongles with Cambridge

Silicon Radio (CSR) chipsets.

6.2 Experiments and results

The basis for the three first experiments is to measure the roundtrip time (RTT)

for a remote method invocation. The last experiment measures the elapsed time

for a server push. For the purpose of evaluation we use a simple application based

on the IDL in Figure 6.1. After each invocation, the elapsed time is computed and

stored in a histogram data structure. By using a histogram we are able to filter

events that are not part of our application’s execution, for example execution time

devoted to other tasks.

 44

We measure RTTs for 1000 iterations of foo.bar(...) calls, using timing.idl.

We define RTT to be the time that passes from when a client calls a method

located on the server until the call completes. For the three first experiments we

use a symmetric channel, while the last experiment makes use of an asymmetric

channel, since this makes most sense in a push scenario.

Figure 6.1: timing.idl

Figure 6.2: Physical Setup for Experiments

Experiments 1 and 2 were conducted to measure the performance of our

Bluetooth stack (MicroQoSCORBA-Bluetooth), while experiments 3-10 were

HOST

TIME KEEPER

TCP/IP

HOST

DEVICE DEVICE

USB

RADIO

module timing {
interface foo {

long bar (in long arg1);

};

};

 45

conducted to measure the performance when the QoS control is assigned to the

host controller. Experiments 11-16 were conducted to measure the performance

with QoS control in middleware, to prove that Bluetooth are missing some

important mechanisms Experiments 3-12 measure the RTT in ms in a client-

server scenario, while we for experiments 13-16 measure the elapsed time from

the client calls foo->bar(…) until the server receives this call in its skeleton. This

is a typical server push scenario. Figure 6.2 shows the physical setup for the

experiments.

1. Baseline MQC-BT versus baseline MQC with BlueZ transport

wrapper
2. Middleware Time

3-9. Two way unicast, reactive redundancy, different packet types
10. Two way broadcast with a static number of retransmits, DM1

packets

11. Client Broadcast, Server Unicast, static proactive temporal
redundancy, DM1 packets

12. Client hybrid broadcast unicast, server unicast, DM1 packets
13. Unicast
14. Broadcast with static temporal redundancy

15. Hybrid broadcast unicast with no redundancy (other than the extra
unicast)

16. Proactive broadcast

Transport RTT MW Time

1 MQC w/ MQC-BT Transport Wrapper 10.42 0.011

2 MQC w/ BLUEZ Transport Wrapper 11.14 N/A

Table 6.1: Measurements for experiment 1 and 2 in ms; comparison between

MQC-BT and BlueZ

 46

Packet Type Best Worst Avg Freq Rank

3 DM1 19.00 60.00 37.18 39.00 7

4 DM3 | DM1 9.00 43.00 10.40 10.00 1

5 DM5 | DM1 10.00 45.00 14.33 13.00 3

6 DH1 | DM1 15.00 45.00 32.21 34.00 6

7 DH3 | DM1 8.00 40.00 15.32 10.00 4

8 DH5 | DM1 10.00 42.00 17.13 12.00 5

9 All packets 9.00 45.00 10.42 10.00 2

Table 6.2: Measurements for experiments 3-9 in ms

Best Worst Avg Freq Dropped

10 398.00 961.00 434.07 437.000 10.0%

11 17.00 48.00 20.41 19.000 0.3%

12 18.00 47.00 19.24 19.000 0%

13 16.00 41.00 18.63 18.50 0%

14 8.00 28.00 8.52 8.00 4.8%

15 8.00 28.00 9.37 8.00 0%

16 8.00 39.00 12.22 9.00 0%

Table 6.3: Measurements for experiments 10-16 in ms

6.2.1 Baseline and Middleware Time (1-2)

We compare MicroQoSCORBA with our own Bluetooth transport against

MicroQoSCORBA with a BlueZ transport wrapper. The BlueZ transport wrapper

uses an L2CAP socket. Table 3 shows that our implementation has slightly lower

roundtrip latency as the BlueZ stack, on average 720 microseconds, an

improvement of 6%. Note that the BlueZ stack was compiled without SCO code

 47

for optimization. We observe that the middleware time (computational time) for

our implementation is negligible; most of the round trip time is spent during

transmission between the two devices. We define middleware time to be the

execution time from foo.bar(...) is called until the message is delivered to the low-

level transport driver (in our case the USB driver).

6.2.2 Two Way Unicast (3-9)

We measure roundtrip times for a two way unicast of a call to foo.bar(...), with

varying packet-type combinations, giving the Bluetooth hardware CQDDR

algorithm different sets of packet types to use.

Table 4 shows the roundtrip times in ms for various packet type

combinations, using MicroQoSCORBA over Bluetooth. Since there is no way of

forcing the Bluetooth device not to use DM1 packets, these are always available

for CQDDR to use, making it impossible to achieve a perfect symmetric link for

testing purposes. Not surprisingly, Use of DHn packets alone perform badly over

time, since the LM will often use DM1 to be sure of packet completion. For our

GIOP messages, 3-5 time slots seem to be the best fit, and therefore DM1 and

DH1 packets have the highest latencies.

6.2.3 Two Way Broadcast (10)

The second experiment measures roundtrip times for foo.bar(...) where the client

and the server broadcast the messages. This scheme requires the sending node to

 48

change its role to master before it can send a broadcast. We log the number of

dropped messages. See Table 5 for results. Since we know that broadcast

messages are sent using DM1 packets on devices using CSR chipsets, we can

compare the results to the unicast measurements. We observe that the latency

overhead resulting from the bottleneck of constantly switching roles is huge; this

scheme is not suitable for client-server communication.

6.2.4 Client Broadcast, Server Unicast, static proactive temporal redundancy (11)

The third experiment is a combination of the first two, where the client sends

requests using broadcast and the server replies using unicast. The removes the

bottleneck of having the client and the server negotiate link roles each time a

message is transmitted. Table 5 shows promising results, as the roundtrip times

are ~ 20 ms less than with normal unicast of DM1 packets.

6.2.5 Client Hybrid Broadcast Unicast, Server Unicast (12)

A hybrid broadcast unicast scheme first broadcasts the message (with no

broadcast retransmits), then immediately unicasts a redundant copy. For

comparability, this scheme uses DM1 packets for the unicast. In most cases, bar

high BER, the broadcast message will complete, and we know this is faster than a

unicast based on the previous experiments. If it doesn’t, it is backed up by the

reliable unicast message.

 49

We chose only to have the client use this scheme, while the server replies

using unicast, to avoid the previously discussed overhead introduced by role-

switching. As we see from Table 5, the RTT is further decreased with ~ 1 ms, and

this scheme does not drop packets. There is, as expected, no additional overhead

associated with sending the extra unicast message, because the transmitting node

would otherwise be waiting for a reply message, thus this is performed when the

previous experiment would be in an idle state. Likewise, the reception of a

redundant message does not introduce any latency overhead.

6.2.6 Unicast (13)

We observe that the measured time is approximately half the roundtrip latency for

DM1 packets, as expected. This experiment was run with on a symmetric channel

to be able to compare apples to apples, and we would expect slightly lower

latencies if an asymmetric channel was used.

6.2.7 Broadcast, Static Proactive Temporal Redundancy (14)

Here we observe the expected performance burst that we get by using proactive

redundancy. We experience on average a 54% performance improvement over

unicast, but this scheme drops almost 5% of the messages. Since we are only

pushing data, the server does not have to switch role before it can send anything,

and this scheme reaps the benefits. We note that 4.8% of the messages were lost,

 50

but that must be expected in any scenario when a radio link is used with no

temporal, spatial or value redundancy.

6.2.8 Hybrid Broadcast Unicast with No Redundancy (15)

This scheme uses the same means of transmission as the previously described

hybrid scheme. We see that it is almost as efficient as using a proactive broadcast

scheme and we do not have to worry about selecting the degree of redundancy at

design time, since the second redundant message is 100% reliable. Most of the

time the first (broadcasted) message is going to complete, and in the few cases it

doesn’t, the second 100% reliable message will. In those cases, when the link is

not good enough for the first message to complete, we will experience a decrease

in roundtrip time, and this is why the latency performance is slightly inferior to

the one in the previous experiment.

6.2.9 Dynamic Reflective Proactive Broadcast (16)

Our proactive broadcast scheme is based on exchange of link quality information

between the client and the server. It is possible to derive the bit error rate (BER)

from link quality [HOL04] using the formula depicted in Figure 6.3. With

knowledge of the link quality, a binomial distribution function is used to calculate

the probability of a message being dropped due to unrecoverable bit-errors. Using

this probability the server uses varying levels of proactive temporal redundancy

when pushing data to the client.

 51

()

≥≥
≥≥

≥

∗−+
∗−+

∗−
=

 089

90214

 215

 0064.0)90(1.0

 0008.0)215(001.0

 000025.0)255(

lq

lq

lq

if

if

if

lq

lq

lq

lqBER

Figure 6.3: Formula for calculating BER from link quality

The measured results in terms of latency are not as good as the above two

schemes while we observe the same the reliability as the second scheme. We

believe the reason this scheme has inferior latency measurements is the fact that

the network conditions were not optimal for these mechanisms. In very good

network conditions, the single broadcast of the hybrid scheme will complete most

of the time, and therefore the reflective scheme should have better performance.

 52

Chapter 7

Related Work

Most of the research on Quality of Service related to Bluetooth is either based on

mathematical results, or simulation results from adding Bluetooth protocols to ns2

[NS04], related to routing, handoff/handover and management of pico- and

scatternets. However, there are some contributions directly related to our research.

7.1 Bluetooth and Middleware

The Object Management Group (OMG) has developed a specification for wireless

CORBA transports [OMG03b]. This specification includes mobile IOR, GIOP

tunneling, and handoff solutions for wireless networks. Our Bluetooth transport

does not comply with this specification, but it can easily be extended to do so.

OMG also has a specification in progress for GIOP tunneling over Bluetooth

[OMG03a], which matches our implementation of tunneling GIOP messages over

L2CAP.

MIWCO is a research project at the Department of Computer Science,

University of Helsinki [MIW03]. MIWCO is an open source implementation of

the Wireless Access and Terminal Mobility in CORBA specification [OMG03b],

 53

a wireless extension to the MICO ORB [MICO03]. VIVIAN is an extension to

MIWCO that implements GIOP tunneling over L2CAP [VIV04]. Mobiware is an

adaptive QoS API that abstracts wireless hardware devices as CORBA objects

[ANG04], but is not generalized to Bluetooth technology.

Mascolo et al. provide a detailed characterization of various middleware

systems designed to support mobility in distributed systems [MCW02], while

Capra et al. present CARISMA, a mobile computing middleware that exploits

reflective techniques to enable mobile application designers to address

requirements such as context-awareness and adaptation [CEM03].

7.2 Bluetooth Latency Improvements

Valenti and Robert discuss the effects of using AUX1 packets in Bluetooth ACL

links, and moving error control into software by using turbo coding, [VAL02b],

later realizing that due to the small sizes of Bluetooth baseband packets, the full

potential of turbo coding is not achieved [VAL02a]. Their results show that

AUX1 packets have higher throughput than DMn and DHn packets for certain

signal to noise ratios (SNR). All their results are based on the assumption that

Bluetooth can allow AUX1 packets and packet selection in software. They do not

discuss the presence of CQDDR, which is used by most Bluetooth devices today.

Valenti et al. also provide a detailed analysis of the throughput of DMn and DHn

 54

packets, showing that DHn packets never achieve maximum throughput

[VAL02c].

Das et al. discuss enhancing the performance of ACL traffic by optimizing

the L2CAP segmentation process for maximum slot utilization [DAS01]. This is

interesting, and could be incorporated into a further optimized Bluetooth

subsystem for MicroQoSCORBA, but was found unsuitable for this thesis,

superseded by the need to compare experimental results to existing Bluetooth

frameworks.

7.3 Quality of Service

Quality of Service for CORBA Objects (QuO) is a reflective middleware

framework for adaptive, application level QoS [ZIN97]. QuO, in contrast to

MicroQoSCORBA, leaves most constraints to be bound later in the cycle, in order

to best facilitate runtime adaptivity. An embedded systems middleware

framework cannot afford the late binding flexibility of QuO. For QuO it is

necessary to support the runtime adaptivity necessary to deal with the dynamic

characteristics inherent in the wide-area network environments it supports.

Scheiter et al. propose a system for applying QoS to MPEG-4 transmissions

over Bluetooth, and mention the important role of middleware controlling and

applying QoS to the underlying Bluetooth hardware [SCH03].

 55

van Der Zee and Heijenk enumerate and categorize the different QoS options

available in Bluetooth hardware [vdZ01], but do not discuss improvements or

problems with the current Bluetooth specification, while Yaiz and Heijenk

propose a guaranteed service approach for Bluetooth based on different polling

schemes [YAI03].

7.4 Summary

We know of no middleware implementations that offer QoS over Bluetooth

transports. Nor do we know of any other middleware framework (CORBA or

non-CORBA) that allows both hardware and application constraints to be used to

tailor the middleware. Middleware for small, embedded devices are sparse or non-

existent, especially if be consider the fact that MicroQoSCORBA is designed to

support multiple design time and runtime QoS property constraints. Adding a

regular Bluetooth transport to any middleware is trivial, as most Bluetooth

software stack implementations offer a socket interface, or in the case of JSR-82

[JCP02], a Java API for Bluetooth. However, custom Bluetooth stacks designed to

control QoS are sparse, or non-existent. We reiterate that our research concerns

middleware QoS control between two Bluetooth nodes, and not problems related

to handoff and/or routing.

 56

Chapter 8

Concluding Remarks and Future Research

8.1 Concluding Remarks

In order for middleware to successfully implement strong and flexible QoS

mechanisms, there is a need for the Bluetooth specification to be extended in such

a way that there are hooks that the overlying software can use to take control of

QoS management. Further, in order for middleware to use Bluetooth while

maintaining QoS, a custom Bluetooth software stack must be used. This is

because, if the recommendations of the Bluetooth specification are followed, the

software stack does implement the hooks necessary to control the most important

QoS mechanisms needed by a Bluetooth peer to peer network.

The experiments show that middleware can improve the latency in Bluetooth

networks by using broadcasts to tunnel GIOP messages. Even though this is not a

desired way of transporting CORBA messages, it shows that there are lots of

improvements that still can be made to the performance of peer to peer Bluetooth

communication. This can easily be helped if the Bluetooth specification is

extended to allow vendors to implement use of AUX1 packets for data

transmission.

 57

This thesis shows that error control, selection of temporal redundancy scheme

and packet selection in many cases can be done more correctly and efficiently in

middleware, and that our proactive schemes have lower latencies than the normal

unicast transmission method commonly used by connection-oriented L2CAP data

transmissions.

8.2 Future Research

Immediate future work should include performing experiments with hardware that

supports AUX1 packets in environments where it is possible to deterministically

choose the link quality. Further tests can then be performed with the reflective

QoS mechanisms in environments where they are better suited.

Bluetooth broadcasting could be utilized for optimizing group

communication and with that specialized MicroQoSCORBA fault tolerance

subsystems for Bluetooth could be implemented. The effects of moving security

from Bluetooth into middleware should be analyzed as part of a possible

extension to the MicroQoSCORBA security subsystem. This would relieve

Bluetooth hardware of the task of guaranteeing confidentiality, integrity and

availability, as we suspect the greater computational power of most hosts will

perform these mechanisms more efficiently.

 58

Bibliography

[TUR03] J. Turley. The Essential Guide to Semiconductors. 1st edition,

Prentice Hall, 2003.

[BSI01] Bluetooth Special Interest Group. Specification of the Blue tooth

System, version 1.1. http://www.bluetooth.com, 2001.

[BSI03] Bluetooth Special Interest Group. Specification of the Bluetooth

System, version 1.2. http://www.bluetooth.com, 2003.

[MOR02] R. Morrow. Bluetooth Operation and Use. 1st edition, McGraw-

Hill, 2002.

[VAL02a] M.C. Valenti and M. Robert. Custom coding, Adaptive Rate

Control, and Distributed Detection for Bluetooth. In Proceedings

of IEEE Vehicular Technical Conference (VTC), (Vancouver, BC),

Sept. 2002, pp. 918-922.

[McK03a] A. D. McKinnon, K. E. Dorow, T. R. Damania, O. Haugan, W. E.

Lawrence, D. E. Bakken, and J. C. Shovic. A Configurable

Middleware Framework with Multiple Quality of Service

Properties for Small Embedded Systems. In Proceedings of the 2nd

IEEE International Symposium on Network Computing and

Applications, Cambridge, MA, April 16-18, 2003, 197–204.

 59

[McK04] A. D. McKinnon. Supporting Fine-grained Configurability with

Multiple Quality of Service Properties in Middleware for

Embedded Systems. Ph.D. Dissertation, Washington State

University, 2004.

[MQC04] MicroQoSCORBA. http://microqoscorba.net.

[DOR03] K. Dorow and D. E. Bakken. Flexible Fault Tolerance In

Configurable Middleware For Embedded Systems. In Proceedings

of the Workshop on Architectures for Complex Application

Integration (WACAI2003), part of the 27th Annual International

Computer Science Software and Applications Conference

(COMPSAC 2003), IEEE, Dallas, Texas, November 3–6, 2003.

[McK03b] A.D. McKinnon, D.E. Bakken, and J. C. Shovic. A Configurable

Security Subsystem in a Middleware Framework for Embedded

Systems. Submitted for publication.

[NAE04] E. Næss, D. A. Frincke, and D. E. Bakken. Configurable

Middleware-Level Intrusion Detection for Embedded Systems.

Submitted for publication.

[GAU04] G. H. Thaker. Middleware Comparator.

http://www.atl.external.lmco.com/projects/QoS/.

 60

[OMG03a] Object Management Group. GIOP Tunneling over Bluetooth

Specification. Adopted specification, OMG document dtc/03-05-

06. May 2003.

[HOL04] Marcel Holtmann. CSR BlueCore Specific Information.

http://www.holtmann.org

[NS04] The Network Simulator. http://www.isi.edu/nsnam/ns.

[OMG03b] Object Management Group. Wireless Access and Terminal

Mobility in CORBA version 1.0. OMG document formal/03-03-

64, March 2003.

[MIW03] An Open Source Implementation of Wireless CORBA.

http://www.cs.helsinki.fi /u/kraatika/wCORBA.html.

[VIV04] VIVIAN Consortium. GIOP Tunneling over Bluetooth L2CAP.

http://www-nrc.nokia.com/ Vivian/Public/Html/ltp.html.

[ANG04] O. Angin, A. T. Campbell, M. E. Kounavis, and R. R. F. Liao. The

Mobiware Toolkit: Programmable Support for Adaptive Mobile

Networking.

[VAL02b] M.C. Valenti and M. Robert. Improving the QoS of Bluetooth

Through Turbo Coding. In Proceedings of IEEE Military

Communications Conference (MILCOM), (Los Angeles, CA), Oct.

2002, pp. 1057-1061.

 61

[VAL02c] M.C. Valenti, M. Robert, and J.H. Reed. On the throughput of

Bluetooth data transmissions. In Proceedings of IEEE Wireless

Communications and Networking Conference (WCNC), (Orlando,

FL), March 2002, pp. 119-123.

[ZIN97] J. A. Zinky, D. E. Bakken, and R. E. Schantz. Architectural

Support for Quality of Service for CORBA Objects. Theory and

Practice of Object Systems, vol. 3, num. 1, April, 1997.

[SCH03] C. Scheiter, S. Rainer, M. Zeller, R. Knorr, B. Stabernack, and K.

Wels. A System for QoS Enabled MPEG-4 Video Transmission

Over Bluetooth for Mobile Applications. In Proceedings of IEEE

International Conference of Multimedia & Expo (ICME), 2003.

[vdZ01] M. van der Zee and G. Heijenk. Quality of Service in Bluetooth

Networking - Part I. Technical Report University of Twente, TR-

CTIT-01-01, January 2001, 61 pp.

[JCP02] Java Community Process. Java APIs for Bluetooth. Java

Specification Request 82, http://www.jcp.org/en/jsr/detail?id=82

[GRA03] Dean A. Gratton. Bluetooth Profiles: The Definitive Guide. 1st

edition, Prentice Hall, 2003.

[ERI01] Ericsson. Ericsson ASIC Specific HCI Commands and Events for

Baseband C. 2003.

 62

[VER01] P. Verissimo and L. Rodrigues. Distributed Systems for System

Architects. Kluwer Academic Publishers, Boston, Massachusetts.

2001.

[BT04] The Official Bluetooth Website. www.bluetooth.com

[YAI03] R. Ait Yaiz and G. Heijenk. Providing Delay Guarantees in

Bluetooth. In Proceedings of Workshop on Mobile and Wireless

Networks, MWN 2003, Providence, Rhode Island, USA, May 19 –

22, 2003.

[DAS01] A. Das, A. Ghose, A. Razdan, H. Saran, and R. Shorey. Enhancing

performance of asynchronous data traffic over the bluetooth

wireless ad-hoc network. In Proceedings of the Twentieth Annual

Joint Conference of the IEEE Computer and Communications

Societies (INFOCOM), vol. 1, pp. 591-600, 2001.

[GHJV95] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns:

Elements of Reusable Object-Oriented Software. Reading, MA:

Addison-Wesley, 1995.

[WAP02] Open Mobile Alliance, Wireless Application Protocol Architecture

Specification, 2002

http://www.wapforum.org/what/technical.htm

 [LEW91] D. Lewine. Posix Programmers Guide. 1st edition, O’Reilly &

Associates, April 1991.

 63

[JCP04] Java Community Process. Concurrency Utilities. Java

Specification Request 166, http://www.jcp.org/en/jsr/detail?id=166

[MCW02] C. Mascolo, L. Capra, W. Emmerich. Mobile Computing

Middleware. In Advanced Lectures on Networking, Springer

Verlag New York, Inc., pp. 20-58, 2002.

[CEM03] L. Capra, W. Emmerich and C. Mascolo. “CARISMA: Context-

Aware Reflective Middleware System for Mobile Applications”,

IEEE Transactions on Software Engineering, 29(10):929-945,

2003.

[MICO03] MICO Object Request Broker. www.mico.orb

 64

Appendix A

Implementing a driver for the Bluetooth subsystem

A.1 Serial Bus Drivers

MicroQoSCORBA comes with a complete serial bus implementation for Linux

and Windows. For other platforms an implementation is required. To do so, the

following steps are required:

• Add a preprocessor constant to the mqc_config file in the mqc directory in

the section “OS Type”. This constant should be named MQC_XXX, where

XXX is the name of the platform.

Example:

PREPROC_PARAMS+=-DOS_LINUX

• Add a code section to the HCIDeviceSerialSocket class in the

mqc/transports/bluetooth directory. This section should be

inside a preprocessor macro for the platform specified in the mqc_config

file. See Figure A.1 for an example. The implementation must complete

all the functionality defined in the class. Refer to the Windows and Linux

implementations for examples.

 65

Figure A.1: Example of Platform Specific Device Driver Code Insertion

A.2 USB Drivers

A.2.1 Linux

USB drivers are a little trickier to implement. The current implementation of the

Bluetooth subsystem includes USB functionality on Linux distributions for

Bluetooth devices with Cambridge Silicon Valley chipsets. However, this

implementation does not work “out of the box”, a few “simple” steps are required

as the implementation makes use of the BlueZ USB driver:

• The Linux Kernel must be rebuilt with the BlueZ stack implementation,

but NOT with any SCO code.

• All the BlueZ components should be built as loadable modules, not linked

into the kernel binary.

• Apply the Linux kernel patch,

mqc/transports/bluetooth/bzusbpatch, to the kernel source

code using the standard patch command included in any Linux

distribution.

• Recompile the kernel and install the kernel modules

#ifdef OS_LINUX

...implementation...

#endif

 66

• After rebooting, start the USB device(s) by using the following command

<hciconfig devno up>, where devno is the device number found by

executing <hciconfig> with no arguments

• If hciconfig is not existent on the system, download this tool from

www.bluez.org, and install it.

A.2.2 Other Platforms

For other platforms than Linux, an implementation is required. Refer to the steps

of section A.1, but the implementation must be made to the

HCIDeviceUSBSocket class. For details on how to implement the driver,

refer to platform specific manuals, and [MOR02] pages 380-381.

 67

Appendix B

Configuration of the Bluetooth Subsystem

There are several configuration switches for the MicroQoSCORBA Bluetooth

subsystem. Since the C++ version of MicroQoSCORBA does not yet have a

backend GUI configuration toolkit, these have to be set manually in the

mqc/mqc_config file. The remainder of this appendix enumerates the available

switches, and describes their functionality.

B.1 Serial Driver Macros

Refer to the specification for the Bluetooth device being used to determine the

correct settings for the following macros.

B.1.1 MQC_BT_SERIAL_DEVICE_SOCKET

This macro switch enables the serial port Bluetooth driver. Code is compiled for

Windows or Linux depending on what type of OS_ switch is set. Note that this

switch is mutually exclusive with any other device driver socket macro switches.

 68

B.1.2 MQC_BT_SERIAL_PORT

This macro should contain a file name for the serial port. For Windows platforms,

an example could be: MQC_BT_SERIAL_PORT="COM1", whereas for Linux

platforms an example could be: MQC_BT_SERIAL_PORT=\"/dev/ttyS0\".

B.1.3 MQC_BT_SERIAL_BAUDRATE

This macro contains the baud rate at which the serial connection will run. An

example is: MQC_BT_SERIAL_BAUDRATE=CBR_57600.

B.1.4 MQC_BT_SERIAL_DATABITS

This macro contains the data bits for the serial connection. An example is:

MQC_BT_SERIAL_DATABITS=8.

B.1.5 MQC_BT_SERIAL_PARITY

This macro contains the parity settings for the serial connection. An example is:

MQC_BT_SERIAL_PARITY=NOPARITY.

B.1.6 MQC_BT_SERIAL_STOPBITS

This macro contains the stop bits setting for the serial connection. An example is:

MQC_BT_SERIAL_STOPBITS=ONESTOPBIT.

B.1.7 MQC_BT_SERIAL_RTSCTS

This macro switches between RTS and CTS for the serial connection To enable:

MQC_BT_SERIAL_RTSCTS=1, to disable: MQC_BT_SERIAL_RTSCTS=0.

 69

B.2 USB Driver Macros

B.2.1 MQC_BT_USB_DEVICE_SOCKET

This macro is a switch that enables the USB Bluetooth driver. Code is compiled

for Windows or Linux depending on what type of OS_ switch is set. Note that this

switch is mutually exclusive with any other device driver socket macro switches.

B.3 QoS Configuration

B.3.1 MQC_BT_QOS_UNICAST

This macro will force the Bluetooth subsystem to use unicast to transport GIOP

messages. Note that if not QoS configuration switches are set, this is the default.

B.3.2 MQC_BT_QOS_BROADCAST

This macro will force the Bluetooth subsystem to use broadcast to transport GIOP

messages.

B.3.3 MQC_BT_QOS_HYBRIDCAST

This macro will force the Bluetooth subsystem to use hybridcast to transport

GIOP messages.

B.3.4 MQC_BT_QOS_PROACTIVECAST

This macro will force the Bluetooth subsystem to use proactivecast to transport

GIOP messages.

 70

B.3.5 MQC_BT_QOS_ROLE_SWITCH

This macro must be set if unicast is not used on both the client and the server.

 71

Appendix C

Additional Notes for the Bluetooth Subsystem

C.1 Debugging

The MicroQoSCORBA Bluetooth subsystem implementation is complete with

detailed trace information. This is an important debugging tool when

implementing new low level drivers (serial, USB, etc.), and also when porting the

implementation to other platforms. To enable debugging, set the MQC_DEBUG

macro flag in the mqc_config file.

To include additional debug statements, use the MQC_TRACE macro as

defined in the types.h file.

C.2 Problems and Solutions for the Linux BlueZ USB Driver

The implementation is heavily tested on various Linux distributions using USB as

the interface between MicroQoSCORBA and the Bluetooth device. Should the

subsystem still malfunction due to some unforeseen event, it is recommended to

take the following steps:

• Run hciconfig down for all the devices

• Unload all the BlueZ modules from the system

 72

• Unplug the devices from the USB host controller

• Load the BlueZ modules

• Plug the devices back into the USB host controller

• Run hciconfig up for all the devices

