
Engineer-to-Engineer Note EE-301

a

Technical notes on using Analog Devices DSPs, processors and development tools
Visit our Web resources http://www.analog.com/ee-notes and http://www.analog.com/processors or
e-mail processor.support@analog.com or processor.tools.support@analog.com for technical support.

Video Templates for Developing Multimedia Applications on Blackfin®

Processors

Contributed by Kaushal Sanghai Rev 1 – September 28, 2006

Copyright 2006, Analog Devices, Inc. All rights reserved. Analog Devices assumes no responsibility for customer product design or the use or application of
customers’ products or for any infringements of patents or rights of others which may result from Analog Devices assistance. All trademarks and logos are property
of their respective holders. Information furnished by Analog Devices applications and development tools engineers is believed to be accurate and reliable, however
no responsibility is assumed by Analog Devices regarding technical accuracy and topicality of the content provided in Analog Devices Engineer-to-Engineer Notes.

Introduction

Blackfin® processors enable a variety of ways to

efficiently manage data for high-performance

applications. This document describes a set of

“templates” that can be used to efficiently

manage multimedia data on Blackfin processors.

The templates provided with this EE-Note can

help users get started in implementing

customized applications, as they can be modified

to fit specific application needs. The first part of

the EE-Note discusses the types of templates

available, and the second part describes specific

examples for each template.

Background

The size of data buffers involved in multimedia

applications exceeds the processor’s internal

memory space. To take advantage of the low-

latency access of the processor’s on-chip

memory (L1/L2), some example templates have

been created that can be used as a starting point

to move peripheral data directly into L1 or L2

memory. The tradeoff to consider is between the

size of the memory and the processing

granularity of the image block within an

application. The templates also exploit the

predictable data access pattern inherent in

multimedia applications to minimize the

transfers required to move data between different

levels of memory, thus improving resource

utilization.

Video Templates Overview

A video sequence can be regarded as a three-

dimensional (3-D) signal, comprising two

dimensions in the spatial domain (i.e., a single 2-

D frame) and one dimension in the temporal

domain (i.e., a temporal sequence of 2-D

frames). The data flow of the video stream can

thus be partitioned in one of the two dimensions:

1) a temporal dimension, or 2) a spatial

dimension. In the temporal dimension, the data

flow can be managed at the granularity of a

group of pictures (GOP) level or at the frame

level. In the spatial dimension, the data

movement can be managed at the granularity of a

line or a macro-block. These various levels of

granularity in a video signal are called sub-

processing blocks. Note that the granularity of

the sub-processing decreases from GOP level to

line level.

The templates discussed in this document exploit

the temporal and spatial characteristics inherent

in video signals described above. The templates

take advantage of the predictable data access

pattern to hide the memory latencies and reduce

the number of memory transfers between

different levels of memory.

In most image processing algorithms, the data

access pattern of the sub-processing block is

predictable. For example, in JPEG compression,

the macro-blocks of an image are accessed

sequentially across the rows. Table 1 shows

 a

Video Templates for Developing Multimedia Applications on Blackfin® Processors (EE-301) Page 2 of 7

examples in which the access pattern of the sub-

processing block is predictable.

Example Application Comments

Color Conversion (e.g.,

YUV to RGB)

The image is accessed line

by line

Histogram Analysis Image data is accessed line

by line

Edge Detection Macro-blocks are accessed

sequentially row wise

JPEG/Motion JPEG Macro-blocks are accessed

sequentially row wise

Motion Detection Macro-blocks are accessed

sequentially row wise;

dependent on past frame

MPEG2/MPEG4 Motion window

sequentially across macro-

blocks; dependent on past

and future frames

Table 1. Predictable Access Patterns

If the data access pattern of the image is known

in advance, the data can be transferred to L1

memory before it is requested by the core. This

avoids cycles consumed due to the core being

held off for a memory request. Also, to hide the

latency of the memory transfer, DMA can be

effectively used in the background for any data

transfer. Using DMA instead of cache helps to

save core cycles consumed by cache misses.

To further save system resources, the templates

utilize the smaller and faster L1/L2 memory

spaces by storing image data from the peripheral

into on-chip memory, thus eliminating the delays

that would be incurred during accesses to

external SDRAM. This applies to algorithms that

operate on finer sub-processing block

granularities (i.e., a line or a macro-block).

The templates are designed such that once the

application’s sub-processing block is identified

and the real time constrains are met, the image

processing algorithm can be dropped into one of

the templates to obtain an efficient data layout.

This is demonstrated by taking specific examples

for each of the templates.

In certain algorithms, data dependency can exist

between the sub-processing blocks in the

temporal domain (i.e., current frame of reference

and past or future frames). In these cases,

managing data is more complicated. One such

scenario is discussed in the Inter-Frame

Processing template.

The proposed video templates are discussed in

the next few sections, and example applications

are provided to demonstrate the recommended

approach to using the templates.

Proposed Video Templates

In this section, three different templates, based

on the granularity of the sub-processing block,

are broadly described. They include the sub-

processing blocks in the spatial domain (line and

macro-blocks), as well as templates for

applications where data dependencies exist in the

temporal domain.

Line Processing

For line processing, one approach is to collect

one frame at a time in external memory from the

peripheral. After each frame is collected, a line-

by-line memory transfer can then be performed

to L1 data memory, using either cache or DMA.

A more efficient approach involves transferring a

line directly from the peripheral into L1 data

memory and subsequently transferring the

processed line directly from L1 to a peripheral

interface or external memory
1
. This decreases the

number of memory transfers required and saves

valuable external bus bandwidth.

1 On ADSP-BF56x processors, two PPIs can be used for

I/O video. On ADSP-BF53x processors, one PPI interface

and one other peripheral interface (i.e., SPORT, Ethernet

etc.) can be used for I/O. For sending/reading compressed

images, the USB or LAN interface can be used on ADSP-

BF56x or ADSP-BF53x processors.

 a

Video Templates for Developing Multimedia Applications on Blackfin® Processors (EE-301) Page 3 of 7

Figure 1 shows the data flow implemented

within the line-based template. DMA is used to

transfer the image directly to L1 data memory

from the peripheral. The image is then processed

and sent out to the peripheral from L1 via DMA.

Double-buffering is maintained in L1 memory to

allow concurrent DMA and core accesses, in

addition to avoiding L1 sub-bank contention.

Figure 1. Data Flow Diagram for Line Processing Template

Macro-Block Processing Template

For macro-block processing, the frame is

processed in sections of dimension (n x m),

where n is the height and m is the width of the

macro-block. The L1 data memory would be

insufficient to place the entire n rows of an

image at a time, so either L2
2
 or external

memory must be used. However, to conserve the

external bus bandwidth, using only L2 memory

will help.

Figure 2. Data Flow Diagram for Macro-Block
Processing Template

2 L2 memory is available on ADSP-BF56x processors. On

ADSP-BF53x processors, external memory can be used for

placing buffers.

L2 memory would be insufficient to place an

entire image, so only n rows of an image are

transferred from the Parallel Peripheral Interface

(PPI) to L2 memory at a time. Macro-blocks are

then transferred from L2 to L1 data memory.

Double-buffering is used in L1 and L2

memories, and DMA channels are used for all

memory transfers. The dataflow diagram for this

template is shown in Figure 2. Also, in this

template, external memory can be used for an

input or output frame buffer to ensure more

uniform use of resources. In Figure 2, either the

Tx or Rx buffers can be placed in external

memory.

Inter-Frame Processing Template

This template can be used for applications in

which dependencies exist between sub-

processing blocks in the temporal dimension

(i.e., between past and future frames). The L1

and L2 memory spaces are insufficient to place

the dependent frames in memory. Thus, the

external SDRAM memory is used to map the

dependent frames.

Sub-processing blocks of the dependent frames

are then transferred from external memory to L1

memory. If L1 memory space is insufficient, L2

 a

Video Templates for Developing Multimedia Applications on Blackfin® Processors (EE-301) Page 4 of 7

memory can be used for placing internal buffers.

The data flow diagram in Figure 3 shows an

application in which dependencies exist on a

macro-block basis over a past frame.

Figure 3. Data Flow Diagram for Inter-Frame Processing Template

In Figure 3, the current_frame and

reference_frame pointers are interchanged

every other frame. For applications where

dependencies exist on a line basis, line transfers

can be made between L1 and external memory.

Dependencies can also exist between several

sub-processing blocks. In these cases, a slice of a

frame (set of lines) can be transferred to internal

memory.

Optimizations Specific to Blackfin Processors

To further improve performance and system

bandwidth utilization, several optimizations

within the templates have been adopted. The

following optimizations are included in the

templates:

 16/32-bit transfers: Maximum bus width is

used for all peripheral DMA and memory

DMA transfers. 16-bit transfers are initiated

for ADSP-BF53x processors, and 32-bit

transfers are initiated for ADSP-BF56x

processors.

 Efficient use of DMA channels: No two

simultaneous memory transfers are initiated

on the same DMA channel.

 SDRAM bank partitioning: The SDRAM is

partitioned into four banks to ensure

simultaneous access to multiple frame buffers

and minimal turn-around times. For example,

the ADSP-BF561 EZ-KIT Lite® board has

64 Mbytes of SDRAM, which can be

configured as four 16-Mbyte internal

SDRAM banks. To take advantage of the

bank structure, no two frame buffers that are

accessed simultaneously are mapped to the

same SDRAM bank.

 DMA traffic control: DMA traffic control

registers are used for efficient system

bandwidth utilization.

Refer to Embedded Media Processing
[3]

 and

Video Framework Considerations for Image

Processing on Blackfin Processors (EE-276)
[5]

 to

learn more about developing optimized

multimedia applications on Blackfin processors.

Using the Templates

To use the templates for specific applications,

first identify the following items:

 The granularity of the sub-processing block

in the image processing algorithm. This is

 a

Video Templates for Developing Multimedia Applications on Blackfin® Processors (EE-301) Page 5 of 7

required to choose a specific template for the

application.

 The available L1 and L2 data memory, as

required by the specific templates.

 An estimate for the computation cycles

required per sub-processing block. This will

indicate whether the application meets the

real-time constraints within the template.

 The spatial and temporal dependencies

between the sub-processing blocks. If

dependencies exist, modify the templates to

account for data dependencies.

Table 2 lists the core cycles available per sub-

processing block for each of the templates. The

table lists the cycles for use with Debug and

Release modes of VisualDSP++® builds. Fewer

core cycles are available in macro-block

processing because it requires additional pointer

manipulation. For inter-frame processing,

multiple transfers are required between

dependent frames, reducing the available core

cycles as compared to line or macro-block

processing. Note that the cycles shown for inter-

frame processing are only for a transfer of a slice

of a frame (set of lines) to internal memory.

Table 2. Specification for Each Template

Since most data accesses are managed from L1

memory, the number of cycles lost due to

memory latency is minimized. The cycles shown

can therefore be entirely budgeted for the core

computation cycles required by an algorithm.

The core processing cycles required for an

algorithm should be computed theoretically or

obtained by using the cycle counters available on

Blackfin processors. A simulator or emulator

session in VisualDSP++ can be used to obtain

this information.

Table 2 also shows the required data memory

space for L1 and L2 memories and the buffer

chaining mechanism used within the templates.

For more information on buffer chaining, refer to

the DMA drivers in the VisualDSP++ Device

Drivers and System Services Manual for Blackfin

Processors
[6]

.

Template Approx.

CCLK/Pixel

(Debug)

Approx.

CCLK/Pixel

(Release)

L1 Data Memory

Required

L2 Data Memory

Required

Comments

Line

Processing

36 42 2 * Line Size N/A Buffer chaining with

loopback

Double-buffering in L1

Macro-

Block

Processing

30 36 2 * Macro-Block Size

Macro-Block Size = n * m

Macro-Block Height * 2 *

Line Size

(Size of Frame Slice)

Buffer chaining with

loopback

Double-buffering in L1

and L2

Inter-

Frame

Processing

30 35 Sub-Processing Block

Size * # of Dependent

Blocks

Sub-Processing Block Size

* # of Dependent Blocks

Only L1 or L2 can be used

Buffer chaining with

loopback

Double-buffering in L1 or

L2

 a

Video Templates for Developing Multimedia Applications on Blackfin® Processors (EE-301) Page 6 of 7

Example Applications

Each of the templates is evaluated with an

example application. Table 3 lists the examples

provided for each of the templates.

Template Application

Line Processing Color conversion,

YUV4:2:2 to RGB

Macro-Block

Processing

Edge detection

Inter-Frame Processing Motion detection

Table 3. Example Applications for Each Template

The templates and the examples for each are

included in the associated ZIP file
[7]

 for this EE-

Note. The examples are located in the directory:

<template_name>/BF561/examples

These examples were tested on the ADSP-BF561

EZ-KIT Lite evaluation board with an input

camera source and output video configured for

ITU-R-656 frame format. For details on ITU-R-

656 format, refer to the appropriate Hardware

Reference Manual
[1,2]

. The example programs

operate on a D1-sized (720x480) image.

Combining Templates

Some applications are likely to have more than

one image-processing algorithm with different

sub-processing block granularities or data

dependencies between the sub-processing blocks.

In that case, multiple templates can be combined

into one project. This section discusses the

combination of templates for such applications.

Multiple Sub-Processing Blocks

Consider an application that may involve some

pre-processing on a line basis, along with macro-

block processing. In this case, the line processing

template and the macro-block processing

template can be combined into one framework.

Line processing should be modified to store the

processed image to L2 or external memory, and

then the macro-block template should be invoked

to process the stored image.

Multiple Access to a Sub-Processing Block

Consider another example, such as histogram

equalization, where the line processing template

is invoked twice. In this case, the image is

accessed twice⎯once to compute the cumulative

grayscale values, and a second time to apply the

equalization. For this application, one line at a

time from L1 can be processed, stored back to

external memory, and then brought back into L1.

Data Dependency in the Spatial Dimension

Data dependencies may exist between several

lines or macro-blocks of an image, and access to

multiple sub-processing blocks at one time may

be required. An example use for this template is

the motion estimation algorithm, which accesses

several macro-blocks.

Dual-Core/Multiprocessor Applications

The templates can be combined to develop

applications for the ADSP-BF561 dual-core

processor in a multiprocessor system. Based on

the dual-core programming model, different

templates can be executed on either core.

Conclusions

Managing data efficiently is critical to increase

performance and improve system bandwidth

utilization on resource-constraining embedded

platforms. To help address this, efficient data

management techniques have been incorporated

within a set of templates for developing

multimedia applications on Blackfin processors.

The templates will help to produce optimized

data layouts and reduce development time.

 a

Video Templates for Developing Multimedia Applications on Blackfin® Processors (EE-301) Page 7 of 7

References

[1] ADSP-BF533 Blackfin Processor Hardware Reference. Rev 3.2, July 2006. Analog Devices, Inc.

[2] ADSP-BF561 Blackfin Processor Hardware Reference. Rev 1.0, July 2005. Analog Devices, Inc.

[3] Embedded Media Processing. David Katz and Rick Gentile. Newnes Publishers., Burlington, MA, USA, 2005.

[4] Digital Video and HDTV. Charles Poynton. Morgan Kaufmann Publishers Inc., San Francisco, CA,USA, 2003.

[5] Video Framework Considerations for Image Processing on Blackfin Processors (EE-276). Rev 1, September 2005.

Analog Devices Inc.

[6] VisualDSP++ 4.5 Device Drivers and System Services Manual for Blackfin Processors. Rev 2.0, March 2006.

Analog Devices, Inc.

[7] Associated ZIP File. Rev 1, September 2006. Analog Devices, Inc.

Readings

[8] ADSP-BF53x/ADSP-BF56x Programming Reference. Rev 1. May 2005. Analog Devices, Inc.

Document History

Revision Description

Rev 1 – September 28, 2006

by Kaushal Sanghai

Initial Release

