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Below is a list of problems for our lab session

Wednesday, November 24th (kl. 13.00-16.00), Room MA436-446.

As usual there are new files in the site back-up and some typo’s have been fixed.
Moreover, there was a single index error which threw of the off the flight time
calculated by the range rk* familily of function by exactly one time step. It
is likely that I will start maintaining a git repository instead of issuing these
updates as zip files.
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Problem 1 (Maximal range of artillery) Find the maximal range of the gun
defined by the minimal working example of range rkx2 by solving the equation

r′(θ) = 0 (1)

with respect to θ using the bisection algorithm as implemented in bisection2.m.

Hint: You will be able to extract the derivative from your extended artillery
table function my eat.m by defining a function

f=@(theta)[0 0 0 1]*my_eat(v0,theta,method,dt,maxstep);

and then feeding f to the bisection algorithm along with a suitable bracket.
Make sure that everything else is defined before you define the auxiliary function
f.
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Problem 2 (Locating the apex of a shell’s trajectory) Shells can be fired “man-
ually” and tracked for T seconds by first defining the initial condition and the
calling the function rk.m which computes the trajectory using one of several
methods. The commands are very simple. The command

y0=[0; 0; v0*cos(theta); v0*sin(theta)];

puts the muzzle at (0, 0) and sets the elevation to θ. The command

[t, tra]=rk(@shell4,0,T,y0,N,1,’rk2’);

fires the shell, tracking it for T seconds, using timestep T/N . Compute the apex
of the shell’s trajectory when a shell is fired by the gun defined by the minimal
working example of range rkx2 and an initial elevation of 60 degrees.

Hint: You should write your own function my apex.m which calls rk and
extracts tra(k,end). Then my apex can be feed to the bisection algorithm.

Remark 1 You are always looking for a way to verify that your numbers make
sense, right? If tra is a trajectory, then

plot(tra(1,:),tra(2,:),tra(1,1:k:end),tra(2,1:k:end),’*’)}

puts a star at every kth timestep.
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Problem 3 (Succes and failure of interpolation) Functions cnf.m and enf.m

for computing and evaluation the Newton form of the interpolating polynomial
are now available on the website.

1. (Basic sanity check) Construct the interpolating polynomial p of degree
at most 10 which interpolates f(x) = sin(x) on k = 11 equidistanct nodes
on the interval [−π, π]. The absolute error will be small, but there just
might be a problem at the endpoints.

2. (Possible failure of interpolation) Increase k to k = 21 and k = 31 and
you will get into trouble at the endpoints.

3. (Practical application of interpolation) Construct a small artillery table
for the gun defined by the minimal working example of range rkx2. Use
10 equidistant nodes, i.e. deg=0:10:90. Construct the polynomial which
interpolated the range function r on these 10 nodes. Compare the range
function with the interpolated value on a few favorite values, say 45 degrees
and 36 degrees. You should be pleasantly surprised at the quality of the
approximation. Do a more extensive artillery table and plot the result
against the values interpolated from the small table.

4. (Runge’s function and failure of interpolation) Interpolate the function
f(x) = 1/(1+25x2) on the interval [−1, 1] using k equidistant nodes. Pay
particularly attention to the size of the relative error as a function of k.
Initially, it will decrease, but as k becomes larger, the error will skyrocket.

5. Return to the polynomial which interpolates the artillery table. Techni-
cally, the polynomial has degree 9, but have a close look at the coefficients!
They are not all equally large?

Remark 2 Interpolation with a polynomial of high degree is not necessarily a
good idea. The only thing which will ensure succes is choosing a few nodes on
a short interval. Recall the error formula:

f(x)− p(x) =
f (n+1)(ξ)

(n+ 1)
ω(x), ω(x) =

n∏

i=0

(x− xi). (2)

Certainly, the derivatives of f might very well be bounded, as in the case of
f(x) = sin(x) or they might become very large as we increase n, but the only
thing that will ensure that ω(x) is small, is if you pick x inside a short interval
which contains the nodes xi. Therefore, if you must deal with a large interval,
then break it into small subintervals and use a different polynomial of low degree
on each subinterval.
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Problem 4 (Evaluation of polynomials) A polynomial p can be evaluated using
Horner’s method which is discussed in Problem 39 of the auxiliary problems
in the directory http://www8.cs.umu.se/kurser/5DV005/HT14/Notes/. The
method is implemented as woo.m which also computes an upper bound on the
error, i.e. a number µ, such that

|p(x)− ŷ| ≤ µu (3)

where ŷ is the computed value of p(x) and u is the unit round off.

1. Begin by recalling the problem of applying the bisection algorithm to the
equation

g(x) = 0 (4)

where g(x) = x3 − 3x2 + 3x− 1 is evaluated using Horner’s method, i.e.

g(x) = ((x− 3)x+ 3)x− 1 (5)

The fundamental problem is that any error made while computing

a(x) = ((x− 3)x+ 3)x (6)

is raised to prominence when we carry out the final subtraction

g(x) = a(x)− 1. (7)

Reissue the commands

g=@(x)((x-3).*x+3).*x-1;

x=1+linspace(-1,1,1025)*2^-22;

plot(x,g(x))

in order to refresh your memory of the difficulty of computing the sign of
g correctly.

2. Use woo to compute g, i.e. y=woo(coef,x) where coef is a vector of
coefficients which define the polynomial g.

Remark 3 The situation will remain unchanged as we are in fact doing
exactly the same operations as before, but we just eliminated any lingering
doubt as to what MATLAB really does when it evalutes the expression for
g.

3. The fundamental question is if woo can be used to automacially recognize
when the computed sign of g is untrust worthy. This is the point were
the computed error bound is important. Issue plot(x,abs(y),x,mu*u)

where u = 2−53 is the unit round off error in double precsion and verify
that the error estimate is in fact larger than the absolute value of the
computed values of g!
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4. Explain why this means that we can not be sure that the computed values
of g(x) have the correct sign!

5. Redefine x until you can find the largest interval I = [s, t] around 1 where
the woo recognizes that the computed sign of g can not be trusted. A
command such as

find(abs(y)<mu*2^-53)

will probably be helpful.

6. Reissue the commands which will attempt to solve g(x) = 0 using the
bisection algorithm. If you start with the bracket a = 0.3 and b = 1.3,
then the algorithm will “fail” as the final interval does not even contain the
true root. Verify that the failure takes place just inside I, the exact interval
were woo correctly warns that the computed sign can not be trusted.

Remark 4 You just had an encounter with a technique called running error
analysis, where estimates of the rounding error are computed together with the
primary objective. This is a very powerful technique, which has fallen into
disuse.

6


