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Abstract

A drug-drug interaction (DDI) occurs when the effects of a drug are

modified by the presence of other drugs. DDIs can decrease therapeutic

benefit or efficacy of treatments and this could have very harmful conse-

quences in the patient’s health that could even cause the patient’s death.

Knowing the interactions between prescribed drugs is of great clinical im-

portance; it is very important to keep databases up-to-date with respect to

new DDI.

In this thesis we aim to build a system to assist healthcare profession-

als to be updated about published drug-drug interactions. The goal of this

thesis is to study a method based on maximal frequent sequences (MFS)

and machine learning techniques in order to automatically detect interac-

tions between drugs in pharmacological and medical literature. With the

study of these methods, the information technology community will assist

healthcare community to update their drug interactions database in a fast

and semi-automatic way.

In a first solution, we classify pharmacological sentences depending on

whether or not they are describing a drug-drug interaction. This would en-

able to automatically find sentences containing drug-drug interactions. This

solution is completely based on maximal frequent sequences extracted from

a set of test documents.

In a second solution based on machine learning, we go further in the

search and perform DDI extraction, determining whether two specific drugs

appearing in a sentence interact or not. This can be used as an assisting tool

to populate databases with drug-drug interactions. The machine learning

classifier is trained with several features: bag of words, word categories,

MFS, token and char level features, as well as drug level features. We used

a Random Forest classifier. With this system we participated at the DDIEx-

traction 2011 competition, where we obtained 6th position.

Finally, we introduce Maximal Frequent Discriminative Sequences (MFDS),

a new method for sequential pattern discovery that extends the concept of

MFS to adapt it to classification tasks.
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Resumen

Una interacción entre fármacos (drug-drug interaction, DDI) ocurre

cuando los efectos de un fármaco son modificados por la presencia de otros

fármacos. Las DDIs pueden disminuir el beneficio terapéutico o eficacia

de los tratamientos y pueden tener consecuencias muy graves para la sa-

lud del paciente que podrían incluso llegar causar su muerte. Conocer las

interacciones entre los fármacos recetados a un mismo paciente es de vital

importancia clínica. Es crucial mantener las bases de datos actualizados con

respecto a nuevas interacciones.

El objetivo de esta tesis es construir un sistema para ayudar a los profe-

sionales de la salud a estar actualizados respecto a las nuevas interacciones

entre fármacos. En esta tesis estudiamos un método basado en secuencias

frecuentes maximales (maximal frequent sequences, MFS) y técnicas de

aprendizaje automático para detectar automáticamente interacciones entre

fármacos en la literatura médica y farmacológica. Con el estudio de estos

métodos, la comunidad de las tecnologías de la información podrá ayudar

a la comunidad médica a actualizar sus bases de datos de interacciones de

una forma rápida y semi-automática.

En nuestra primera aproximación, clasificamos frases extraídas de tex-

tos farmacológicos según si incluyen o no la descripción de una interac-

ción entre fármacos. Esto permitirá encontrar automáticamente frases que

contengan DDIs. Esta solución está completamente basada en secuencias

frecuentes maximales.

En nuestra segunda aproximación, basada en aprendizaje automático,

vamos más allá en la búsqueda y realizamos extracción de fármacos que

interactúan. Esto es, determinamos si dos fármacos específicos que apare-

cen en una frase interactúan o no. Esto puede ser usado como herramienta

de asistencia para poblar bases de datos con interacciones entre fármacos.

El clasificador que hemos construido está entrenado con varios conjuntos

de características describiendo cada frase: bolsa de palabras, categorías de

palabras, MFS, características a nivel de carácter y token y características

a nivel de fármaco. El clasificador usado fue Random Forest. Esta solución

fue enviada a la competición DDIExtraction 2011, donde quedó en 6o lugar.

Por último, introducimos las Secuencias Discriminantes Frecuentes Ma-

ximales (maximal frequent discriminative sequences, MFDS), un nuevo con-

cepto de patrones secuenciales que extiende el concepto de MFS para adap-

tarlo a tareas de clasificación.
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Chapter 1

Introduction

1.1 Motivation

Drugs can have adverse effects. Pharmacological companies know most of the

adverse effects a drug can produce before they market it. Nevertheless, patients

on multiple medications can experience unexpected adverse events, caused by the

co-administration of several drugs and these are known as drug-drug interactions.

A drug-drug interaction (DDI) occurs when the effects of a drug are modified

by the presence of other drugs. Following Stockley (2007),

"A DDI occurs when one drug influences the level or activity of

another, possibly intensifying its side effects or decreasing drug con-

centrations and thereby reducing its effectiveness."

Some patients require many drug prescriptions at the same time, and therefore

are at risk of being affected by DDIs. When co-administrating drugs, the effective

dose can vary considerably form the expected one. Drug-drug interactions are

a serious problem when talking about patient safety (Tatonetti et al., 2011). The

proportion of Adverse Drug Reactions (ADRs) due to drug–drug interactions is

estimated to be between 6% and 30% and surveillance on the safety profile of the

interaction between drugs is challenging (Hauben and Zhou, 2003; Pirmohamed

and Orme, 1998).

DDIs can decrease therapeutic benefit or efficacy, leading to an increase of the

duration of the patient’s stay at the hospital, and its consequent increase of costs.

DDIs could have very harmful consequences in the patient’s health that could even

1



2 Chapter 1. Introduction

cause the patient’s death. Knowing the interactions between prescribed drugs is

of great clinical importance, therefore it is very important that healthcare profes-

sionals keep their databases up-to-date with respect to new DDI.

Every day, hundreds of medical and pharmacological papers are written, some

of them describing new drug-drug interactions. MEDLINE is an online biblio-

graphic database on biomedicine and health that contains over 18 million refer-

ences to journal articles. Since 2005, between 2,000-4,000 completed references

are added each day; 700,000 total added in 20101. With this growing amount of

articles, it is not possible for healthcare professionals to keep themselves updated

with every new drug-drug interaction discovered, and this leaves very clear how

necessary is to find efficient methods that help them to better deal with all this

information. Therefore, we need a system to assist healthcare professionals re-

trieve information about new drug-drug interactions published in the literature.

Information Extraction techniques aim to automatically extract relevant informa-

tion from documents. Using these techniques, researches have shown that it is

possible to automatically identify drug-drug interactions in texts.

Even though nowadays health care professionals have access to databases con-

taining drug-drug interactions, these are not very exhaustive and their update pe-

riods can be as long as three years (Rodríguez Terol et al., 2009)2.

1.2 Objectives

In this thesis we aim at building a system to assist health-care professionals to

be updated about published drug-drug interactions. Pharmacists use a particular

vocabulary to describe their DDIs discoveries. This vocabulary, or part of it, could

be represented by a set of patterns used frequently in DDI publications. Maximal

Frequent Sequences (MFS) can represent the patterns that are somehow repeated

in the text. Therefore, MFS could be used to: 1) represent some parts of the

vocabulary used for DDI description; 2) help improve the results of statistical

models to represent that vocabulary.

The goal of this thesis is to study methods based on maximal frequent se-

quences and machine learning techniques in order to automatically detect, in

1These and other facts about Medline are available at http://www.nlm.nih.gov/
pubs/factsheets/medline.html

2via (Segura-Bedmar, Martínez, and Sánchez-Cisneros, 2011)
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pharmacological and medical literature, interactions between drugs. With the

study of these methods, the Information Technology (IT) community will assist

health care community to update their drug interactions database in a fast and

semi-automatic way. For this, we have tackled two different solutions.

In a first solution, we will classify pharmacological sentences depending on

whether or not they are describing a drug-drug interaction. This would enable

health-care professionals to automatically discard texts that do not contain drug-

drug interactions, and therefore decrease the number of documents they have to

review.

In a second solution based on machine learning, we will go further in the

search and perform DDI extraction, determining whether or not two specific drugs

appearing in a sentence interact. This would be an assisting tool to populate

databases with drug-drug interactions.

The main tool we will be using in our two systems is Maximal Frequent Se-

quences. Both systems share the following characteristics:

1) In order to make MFS more flexible, we will add a gap constraint, i.e., allowing

a certain distance between the words forming the pattern.

2) The systems are based on the application of supervised binary classification

algorithms. This makes possible the evaluation of the performance of the

systems.

The description of the rest of this thesis is detailed in Section 1.3.

1.3 Thesis Outline

This Thesis is organized as follows:

In Chapter 2 we define Maximal Frequent Sequences and carry out a survey

of the most important pattern mining algorithms. Following, we modify the Gen-

eralized Sequential Pattern (GSP) algorithm to obtain a new algorithm to extract

MFS. We also present a modification of the algorithm to adapt it to continuous

events. Finally, we discuss the limitations of MFS and present a novel concept:

Maximal Frequent Discriminative Sequences.

In Chapter 3 we define two problems related to DDI: DDI Sentence Identifica-

tion and DDI Extraction, as well as the performance measures used for their eval-

uation. We review the most important contributions of other authors to the field,



4 Chapter 1. Introduction

as well as those that participated in the First Challenge Task: Drug Drug Inter-

action Extraction, a competition carried out to evaluate DDI Extraction systems.

After describing briefly the systems submitted to the competition, a description

of our system is given. Following, further modifications of the system submitted

at the competition are presented. At the end, some conclusions are drawn.

Finally, Chapter 4 highlights the most important conclusions about our work

and defines new lines of investigation to follow this research.



Chapter 2

A New Maximal Frequent

Sequences Extraction Algorithm

Data mining can briefly be described as the "development of efficient algorithms

for finding useful high-level knowledge from large amounts of data" (Fayyad et

al., 1996). Pattern mining is a data mining problem that involves finding patterns

in large amounts of data. Usually, these patterns define behaviours that are re-

peated and can be used for prediction. Pattern mining is a very extensive field,

and it includes many algorithms.

Even thought the first pattern mining algorithms were to mine frequent item-

sets, some of them evolved in order to cover other needs, such as the possible

sequentiality of the items. The most known algorithm is the Apriori algorithm

(Agrawal and Srikant, 1994). This algorithm was used to extract relations be-

tween collections of items, and it did not take into account the order in which the

items appeared, but just their appearance.

Sequential Pattern Mining is a field of Pattern Mining that extends the prob-

lem definition by adding a sequentiality constraint to the patterns. This kind of

algorithms are relevant when the data to mine has a sequential nature, for exam-

ple when the data is composed of words that compose sentences. Section 2.3

describes the different types of sequential pattern mining algorithms and reviews

the most important ones: Apriori, AprioriAll, GSP Algorithm, MineMFS (Aho-

nen) Algorithm, PrefixSpan, GenPrefixSpan, SPADE, cSPADE and DIMASP.

The selection of important algorithms is based in the review presented in (García-

Hernández, 2007).

5



6 Chapter 2. A New Maximal Frequent Sequences Extraction Algorithm

The distribution of this Chapter is organized as follows. In Section 2.1 we re-

view some definitions in order to understand Maximal Frequent Sequences. MFS

are explained in detail in Section 2.2. In Section 2.3 we carry out a survey of

the most important pattern mining algorithms. Following, in Section 2.4 we ex-

plain in detail a new algorithm to extract MFS, and we add an adaptation so it

can be used with temporal events. In Section 2.5 we introduce a new concept,

Maximal Frequent Discriminative Sequences, and detail the algorithm that can be

used to extract them. Finally, in Section 2.6 we draw some conclusions about the

algorithms described.

2.1 Definitions

In order to understand further sections, we first need to review some definitions.

Itemsets A collection of items that occur together without any specific order.

Sequences or Strings A sorted list of k elements with the form:

< p1, p2, p3, . . . pk >

Subsequences and Substrings A subsequence is a sequence derived from a given

sequence by selecting certain of its items and respecting their order. A sub-

string is a specific case of subsequence where all the items are consecutive.

Given a sequence <p = p1 . . . pk> and a sequence q where all the elements

pi appear in q and they do so in the same order in which they appear in

p, then p is substring of q. In other words, p is substring of q if exists an

integer i that satisfies:

p1 = qi,

p2 = qi+1,

p3 = qi+2,

. . .

pn = qi+(n−1)



2.1. Definitions 7

Subsequences, unlike substrings, do not require the items to be consecutive,

instead there is a maximum distance allowed between the items. Some au-

thors call this distance gap (Agrawal et al., 1996; García-Hernández, 2007).

Frequent Sequences Being S a document collection, where each document con-

sists in a sequence of words, a sequence p ∈ S is frequent in the document

collection S if p is subsequence of at least β documents ∈ S, where β is a

given threshold. In this case, we say that p is a sequence β-frequent, or we

simplify it by saying that p is frequent.

Please, note that only one occurrence per document will be taken into ac-

count. The fact that one sequence appears more than once in the same

document will not increase its frequency.

N-grams A n-gram is a contiguous sequence of n words from a given sequence

of text. A 2-gram, also known as bigram, is a contiguous sequence of 2

words.

For example, given the sentence:

s =< w1, w2, w3, w4 >

The bigrams included in the sentence are:

[w1, w2], [w2, w3], [w3, w4]

Skip-grams A skip-gram is a sequence of words from a given sequence of text

that allows a gap between the words. A k-skip-n-gram is a sequence of n

words that allow a maximum gap of k words.

For example, given the sentence:

s =< w1, w2, w3, w4 >

The 2-skip-2-grams included in the sentence are:

[w1, w2], [w2, w3], [w3, w4]

[w1, w3], [w2, w4]

[w1, w4]
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2.2 Maximal Frequent Sequences

Following the definitions described previously, Maximal Frequent Sequences are

defined as follows:

Maximal Frequent Sequence A sequence p is a Maximal Frequent Sequence in

S if p is frequent in S and does not exist any other sequence p′ in S such as

p is subsequence of p′ and p′ is frequent in S.

MFS are an interesting tool since they can represent the most important parts

of texts. Given a text collection, the fact that there are sequences that are repeated

in some of the texts shows how relevant is the information that those MFS de-

scribe. Also, we must point out the wide applicability of the extraction of MFS

since the technique is domain and language independent. The fact that they are

sequences and not strings, i.e., they allow gap between words, makes them more

flexible and therefore they can capture higher level patterns.

The gap is the maximum distance that is allowed between two words of a

MFS. Following this, if we set the gap to 0, the word in the MFS will be adjacent

words in the original text. For example,

< wi0 , . . . , win >, with ij∈1. . .k,

is a maximal frequent sequence of k words,

ij≤ij−1 + η + 1, when gap = η., and therefore ij = ij−1 + 1, j > 1, when

gap = 0

For example, given a sentence collection S containing s1, s2 and s3:

Sentence s1 A drug may increase the effects of other drugs.

Sentence s2 A given drug may potentiate the side effects of other drugs.

Sentence s3 Concomitant administration of some drug may lower the desirable

effects of other drugs.
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Setting minimum frequency (β) to 3 and setting the maximum gap allowed

between items to 1, we obtain the following MFS:

<’drug’, ’may’, ’the’, ’effects’, ’of’, ’other’, ’drugs’>

The sequences (’effects’, ’of’, ’other’,’drugs’) is also frequent, but since we

are searching only for maximal sequences and it is included in a larger sequence,

the shorter one is discarded.

MFS have shown to be useful in different tasks such as document cluster-

ing (Hernández-Reyes et al., 2006a), text summarization (Ledeneva, Gelbukh,

and García-Hernández, 2008), document representation (Hernández-Reyes et al.,

2006b), measuring text similarities (García-Blasco, 2009) and authorship attribu-

tion (Coyotl-Morales et al., 2006).

Our hypothesis holds that MFS will be a good tool to capture frequent sen-

tence structures (patterns) used by pharmacologist to define DDIs. Since we will

be working with texts, allowing a gap between the words will make these patterns

more flexible, instead of limiting the search to exact same sentences.

2.3 Related Work

During the last decade, several sequential pattern discovery algorithms have been

presented. These algorithms can be divided, according to their search method,

into bottom-up and top-down. The bottom-up algorithms use the sequences of

length k − 1 to build sequences of length k, i.e., they go from bottom to top,

finding first the shortest sequences and building longer ones upon them. The A

priori algorithm (Agrawal and Srikant, 1994), as well as those classified as pattern

growing algorithms are bottom-up algorithms. The top-down algorithms search

directly long patterns, avoiding having to search for the short ones, for example

the SPLMiner algorithm (Seno and Karypis, 2002).

Most of the algorithms for sequential pattern discovery fall into the bottom-up

algorithms class. Nevertheless, there exist differences between them depending

on how they find longer patterns based on the shorter ones. We can divide this

kind of algorithms into a priori algorithms and pattern growing algorithms.
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A priori These methods use the information of k-length patterns to find the k+1-

length patterns, i.e., they use the previous information for the following

step. They start from the 1-length patterns and keep building longer pat-

terns. This kind of algorithms usually generate candidate patterns and after

check in the database if their frequency is still above the threshold. In order

to build the patterns with length k, this family of algorithms finds possible

candidates by merging the k − 1 patterns with k − 2 equal elements. For

example, being two patterns p = p1, p2, p3 and q = q1, q2, q3, the algorithm

will merge p and q to form a new candidate pattern only if p2 = q1 and

p3 = q2, and will do so by linking q3 to p. The new pattern z will be of the

form: z = p1, p2, p3, q3. Samples of these algorithms are the Apriori algo-

rithm (Agrawal and Srikant, 1994) and the Generalized Sequential Pattern

(GSP) algorithm (Agrawal et al., 1996).

Pattern growing A difference of the A priori algorithms, pattern growing algo-

rithms do not generate candidate patterns. After building a structure that

represents the documents, these algorithms build the maximal frequent se-

quences navigating through it. Samples of these algorithms are the MineMFS

algorithm (Ahonen-Myka, 1999), PrefixSpan (Mortazavi-Asl et al., 2004;

Pei et al., 2001), GenPrefixSpan (Antunes and Oliveira, 2003), SPADE

(Zaki, 2001), cSPADe (Zaki, 2000) and DIMASP (García-Hernández, Martínez-

Trinidad, and Carrasco-Ochoa, 2004).

Yang (2006) described the problem of sequential pattern mining as NP-hard.

In order to find a Maximal Frequent Sequence of length k, any algorithm would

have to review 2m − 1 combinations of elements, having to check the frequency

of each one of the candidate sequences.

We are interested in extracting Maximal Frequent Sequences from a docu-

ment collection. We want to be able to have a gap constraint, i.e., allowing certain

flexibility between the elements of the MFS. Most of the algorithms did not con-

template the gap constraint at their first definition, but efforts have been made

afterwards to add it.

In the following sections, we will briefly describe the most important algo-

rithms, and their modifications to allow the gap constraint. We are specially in-

terested in the GSP algorithm (Agrawal et al., 1996) since it is the one we imple-

mented, with some modifications, to extract MFS from the document collection.
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2.3.1 Apriori Algorithm

The Apriori algorithm (Agrawal and Srikant, 1994) is the most well-known and

influential algorithm for extracting frequent itemsets. It works on a botton-up

fashion. Given a frequency threshold β, the Apriori algorithm retrieves all the

itemsets that appear at least β times. For doing so, the algorithm first calculates

the frequency of each item. With the list of frequent items, builds a list of possible

pairs of items, and then calculates their frequencies, keeping only the ones that are

β-frequent. In other words, for each iteration, it uses the β-frequent k-itemsets

(itemsets with size k) to find the β-frequent k + 1-itemsets. The process stops

when no more β-frequent itemsets are found. This algorithm does not take into

account the sequentiality of the items.

The Apriori algorithm significantly reduces the search space with the Apriory

Property, defined as follows:

Apriori Property If an itemset p is not frequent, then for any item q, p∪ q is not

frequent for any p. In other words, no superset of p, i.e., itemsets containing

p, will be frequent.

Gunopulos et al. (2003) analyze the Apriori algorithm, proving that it is opti-

mal when the search is done within a small search space, i.e., a small amount of

documents. However, the problem comes when working with large datasets.

The Apriori algorithm and its variations have been successfully used to solve

data mining problems (Agrawal and Srikant, 1994; Mannila and Toivonen, 1997;

Mannila, Toivonen, and Verkamo, 1994, 1995).

To adapt the Apriori algorithm to the sequential pattern mining problem, Agrawal

et al. (1996) propose two new algorithms: the AprioriAll algorithm and the Gen-

eralized Sequential Pattern (GSP) algorithm. Even thought AprioriAll and GSP

both allow to retrieve the sequential patterns, the GSP algorithm is an evolution

of the AprioriAll algorithm and it allows gap constraints.

2.3.2 Generalized Sequential Pattern Algorithm

Generalized Sequential Pattern (GSP) algorithm (Agrawal et al., 1996) is a gener-

alization of the Apriori (Agrawal and Srikant, 1994) algorithm whose main prop-

erty is handling sequential patterns. It also integrates the following concepts:
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• Taxonomies: Given a directed acyclic graph of itemsets, describing an is-a

hierarchy, and given two sequences s and r, for the purpose of determining

if s is a subsequence of r, we will consider si equal to sj if the latter is an

ancestor of the former.

• Sliding windows: A data-sequence contributes to the support of a sequence

only if it appears inside a time interval, known as sliding window.

• Time constratints: Two thresholds are defined, min gap and max gap. In

order to consider two elements consecutive, their time difference should be

between min and max gap.

GSP overall method can be summarized as follows. Given a number of β-

frequent k-sequences of itemsets, it will generate (k + 1)-sequences with the

following steps:

1. Join all contiguous k-sequences to obtain (k + 1) sequences.

2. Prune candidate (k + 1)-sequences that do not have enough support (i.e.,

the sequence does not appear in the database more than a threshold).

While the main procedure of the GSP algorithm and the Apriori algorithm

is the same, the GSP algorithm, unlike the Apriori algorithm, handles sequential

patterns and it allows gaps between the items of the sequences.

2.3.3 PrefixSpan and GenPrefixSpan

PrefixSpan (Mortazavi-Asl et al., 2004; Pei et al., 2001) constructs recursively the

patterns with the help of projected databases. An α-projected database is the set

of subsequences in the database that follow α, i.e., that are suffixes of sequences

that have prefix α. This reduces the search space in each step.

PrefixSpan does not accept gap constraints, and it was adapted for this task

by Antunes and Oliveira (2003), becoming GenPrefixSpan. The spirit of the al-

gorithm is the same, but it redefines the method used to construct the projected

databases. Instead of looking only for the first occurrence of the item, every oc-

currence is considered.

The problem with these two algorithms is that they need to do as many pro-

jections of the database as frequent sequences are found. However, they are
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depth-first traversal algorithms, which makes not necessary having all projected

databases in memory at a time. Also, the search space is reduced at each projec-

tion, which makes the algorithm faster.

2.3.4 SPADE and cSPADE

Sequential Pattern Discovery using Equivalence classes, SPADE (Zaki, 2001), is

an algorithm for discovering the set of all frequent sequences. The algorithm

uses a vertical id-list database format, where each sequence is associated to the

list of documents where it appears, along with their positions. The algorithm

decomposes the original search space into smaller pieces using lattice theory, that

can be processed independently in main-memory, reducing I/O costs by reducing

database scans. Also, it allows two different search strategies for enumerating

the frequent sequences: breath-first and depth-first search, which can minimizes

computational costs.

2.3.5 MineMFS

The basic idea of MineMFS (Ahonen-Myka, 1999, 2002) is to combine bottom-

up and greedy methods. This avoids generating all the frequent subsequences

of the maximal frequent sequences. On the one hand, maximal sequences are

constructed from shorter sequences, on the other hand a frequent sequence that

is not contained in any known maximal sequence is expanded until the longer

sequence is not frequent anymore.

Starting from a set of frequent pairs, the algorithm takes a pair and adds an

item to it, in a greedy manner, until the longer sequence is no more frequent. In

the same way, the algorithm goes through all the pairs, but it only tries to expand

a pair if it is not already a subsequence of some maximal sequence, in order to

avoid the same maximal sequence being discovered more than once. When all

the pairs are processed, every pair belongs to some maximal sequence. If some

pair can not be expanded, it is itself a maximal sequence. The same process is

repeated with all the frequent sequences that the algorithm finds. Any frequent

sequence that is not contained in any known maximal sequence is expanded until

the longer sequence is not frequent anymore.
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2.3.6 DIMASP

The DIMASP algorithm (García-Hernández, Martínez-Trinidad, and Carrasco-

Ochoa, 2004; García-Hernández, Martínez Trinidad, and Carrasco-Ochoa, 2006;

García-Hernández, 2007) follows the pattern-growth strategy where small fre-

quent sequences are found first with the objective of growing them to obtain

MFSs.

In their work, the authors present two versions of the DIMASP algorithm, with

and without gap constraint. We will focus on the version with the gap constraint

DIMASP-Cn, where n is the maximum gap allowed.

DIMASP is divided in 4 stages:

Stage 1: Documents Transformation. Pairs of words are extracted from the orig-

inal documents. Each pair of word is assigned with an id. Each pair of

words is composed of two consecutive words, taking into account the gap

constraints. This is, given the document <w1, w2, w3, . . . , wn>, and setting

the gap = 1, the pair of words that would be taken into account would be:

<w1, w2>, <w1, w3>, <w2, w3>, <w2, w4>, . . ., <wn−1, wn>, <wn−2, wn>.

Stage 2: Data Structure Building. With the pairs of words, a tree data structure

is build with the characteristic that all pairs of words are linked and it is

possible to reconstruct the document from the tree.

Stage 3: Frequent Sequences Search. Given a frequency threshold β and the

gap constraint defined by the user, the algorithm searches for frequent se-

quences through the tree. For each pair of words, the longest frequent se-

quence that can be built out of the documents in the collection is stored.

Stage 4: Maximal Frequent Sequences Identification. Out of the frequent se-

quences found in Stage 3, the algorithm finds the ones that are maximal,

i.e., the maximal frequent sequences. This search is done fast using a prefix

tree.

We need to point out that, since the algorithm does not have a minimum length

constraint, every word that is β-frequent and it is not contained in any MFS is

also returned by the algorithm as a MFS. This is done right after Stage 3 of the

algorithm is completed.
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2.4 A New Algorithm for MFS Extraction

In this section, a new algorithm to extract MFS is presented. The algorithm 1 is

based on the GSP Algorithm (Agrawal et al., 1996), but with some differences.

We are interested in extracting sequences of simple elements, i.e., sequences of

words, not itemsets as the GSP algorithm does, and we do not consider tax-

onomies. As the GSP algorithm, our algorithm will allow a gap between the

elements of the found sequences, nevertheless we fixed the minimum gap to 0,

i.e., words could always be consecutive. Additionally, we want the sequences to

be frequent and maximal, therefore the algorithm must discard any shorter fre-

quent sequence included in a maximal one.

The algorithm takes as input the following parameters:

docs The collection of documents we want to extract MFS from.

freqmin The minimum frequency that the MFS must have, i.e., minimum num-

ber of documents where it must appear. This parameter is equivalent to the

support count parameter in GSP.

lengthmin The minimum length that the MFS must have, i.e., minimum num-

ber of items in the MFS.

gap Maximum distance allowed between the items of the MFS, i.e., maximum

number of items that it is allowed to skip.

The output of the algorithm is a list of the MFS with information about which

documents they appear in, as well as the positions of each item of the MFS in the

referred documents.

In each iteration, the algorithm only keeps in memory the sequences of length

k, and the MFS of length < k. Patterns will grow until there are no more pat-

terns to merge. The algorithm can be divided into 3 stages: Getting Skip-grams,

Candidate Generation and Prune.

2.4.1 Stage 1: Getting Skip-grams

In the first stage, the algorithm extracts all the gap-skip-bigrams.

The function getSkipgrams(gap,listsentences,n) retrieves all the gap-skip-n-

grams from the sentences in listsentences. Each skip-gram contains information
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about its frequency, as well as the documents, sentences and positions where it

appears.

Only skip-grams with a frequency equal or greater than freqmin are kept.

Algorithm 1: A new Maximal Frequent Sequences Extraction Algorithm.
Input: docs, freqmin, lengthmin, gap
Output: listmfs

listsentences ← split(docs)1

skipbigrams← getSkipgrams(gap,listsentences, 2)2

candidatesk ← {∀s ∈ skipgrams|sfreq ≥ minfreq}3

listmfs ← candidatesk4

k ← 15

while candidatesk 6= ∅ do6

k ← k + 17

foreach c1 ∈ candidatesk do8

c1prefix ← Prefix(c1,k − 1)9

foreach c2 ∈ candidatesk do10

if Sufix(c2,k − 1) = c1prefix then11

candidate← c2+ Sufix(c1,1)12

if candidatefreq ≥ minfreq then13

candidatesk+1 ← candidatesk+1 ∪ {candidate}14

toRemove← toRemove ∪ {c1, c2}15

listmfs ← listmfs ∩ {toRemove}16

listmfs ← listmfs ∪ candidatesk+117

candidatesk ← candidatesk+118

foreach mfs ∈ listmfs do19

if mfslength ≥ minlength then20

listmfs ← listmfs ∪mfs21

return listmfs22

2.4.2 Stage 2: Candidate Generation

After stage 1, the algorithm has found all the skip-bigrams, i.e., patterns of length

2, that appear in at least freqmin sentences.

The Candidate Generation consists in growing patterns by merging them to

make them maximal. The merge step is performed as follows:

In iteration k, each pair of patterns of length k that end and start, respectively,

with the same k − 1 sequence will be candidates to become a pattern with length
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k + 1. The sentences that contain the new pattern will be the intersection of the

sentences that contained each of the patterns that were merged.

For example, in the first iteration, we have patterns:

S =<a,b,c> in sentences (1,3,4,5)

R =<b,c,f> in sentences (1,2,3,5)

S and R are candidates to become a pattern Q =<a,b,c,f> with length 4.

Pattern Q appears in sentences (1,3,5).

2.4.3 Stage 3: Prune

If the selected patterns to merge in the candidate generation step are frequent

and therefore can be considered for the next iteration of candidate generation, the

algorithm removes the two k-length patterns that generated the (k + 1)-length

pattern. This is because, since they were merged, they are now contained in the

new and longer pattern and we are only interested in maximal patterns.

Following the previous sample, if freqmin is set to 2 or 3, then Q is a frequent

pattern and S and R will be merged into Q and removed. Otherwise, if freqmin

is set to a value greater than 3, the candidate pattern would not be frequent and it

would be discarded, keeping S and R as maximal frequent patterns.

At the end, the algorithm removes all mfs that do not fulfill the minlength

restriction.

2.4.4 Adaptation to Continuous Events

The algorithm has been adapted to extract MFS from sequences of continuous

events1, i.e., temporal events. In this case, the position of the events is a times-

tamp, and the input of the algorithm is a long document containing all the events,

rather than a list of documents. The gap is also a timestamp and defines the max-

imum time that the algorithm allows between two consecutive events, i.e., if an

event of the MFS occurs in t1, the following event can occur in t2, if t2 ≤ t1+gap.

The biggest difference is that we go from element distributed in a discrete

way to items distributed continuously with possible overlaps. The concept of

1We have applied this algorithm to time series internally at Bitsnbrains S.L http://

bitsnbrains.net. However, we have not performed an evaluation with a public corpus yet.



18 Chapter 2. A New Maximal Frequent Sequences Extraction Algorithm

document is eliminated, and in this case, the frequency of an event is not in how

many documents it appears, but how many times it appears.

2.5 Maximal Frequent Discriminative Sequences

Extraction

Sometimes maximal frequent sequences are more restrictive that we would like

them to be. When setting the parameters for running the algorithm, we tend to

set a low frequency threshold in order to find as many MFS as possible. This is

good but just to some extent. When using MFS as input for a predictive model, it

is not crucial to find the maximal sequences, but the most relevant. In this case,

frequency, by itself, is not a good criterion to stop looking into longer sequences.

For example, we would like to classify sentences as describing a friendship.

We have the following list of sentences:

s1 Bob is best friend of Alice. (Positive)

s2 Carol is best friend of Dave. (Positive)

s3 Charlie is friend of Diana. (Positive)

s4 Chuck has no friends. (Negative)

s5 Mallory is a bad friend. (Negative)

If we extract MFS with minfreq = 2, gap = 1 and minlength = 3, we would

extract "is best friend of". If we decided to use this pattern to classify friendships,

we could classify correctly s1 and s2 as positive, and s4 and s5 as negative. But

we would classify s3 incorrectly as negative.

If we had a criterion that extracted "is friend of" instead of "is best friend of",

we could have classified every sentence correctly.

In situations like this, by extracting MFS we could be loosing patterns that

have a higher discriminative power. This problem has already been expressed in

the literature (Karunaratne, 2011).

We modified the algorithm in order to introduce a discriminative power crite-

ria, that will determine whether or not the growing of a sequence should continue.

This would retrieve the sequences that have more discriminative power respect to
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the corpus they are extracted from. The importance of a frequent sequence is hard

to determine, but a good starting point is information gain.

Information Gain is defined as follows:

Information Gain (IG) Let Attr be the set of all attributes and Ex the set of all

training examples, value(x, a) with x ∈ Ex defines the value of a specific

example x for attribute a ∈ Attr, H specifies the entropy, and |x| is the

number of elements in the set x. The information gain for an attribute

a ∈ Attr is defined in Equation 2.1:

IG(Ex, a) = H(Ex)−
∑

v∈values(a)
|{x∈Ex|value(x,a)=v}|

|Ex|
×

H({x ∈ Ex|value(x, a) = v} (2.1)

Following this, the algorithm would change in the Prune step. Instead of

looking if the merged (k − 1)-length sequences still keep the minfreq condition,

the algorithm would look now if the new k-length candidate sequence has more

IG than the (k − 1)-sequences that would have to be merged. If the new one has

more IG, then the merge is done, discarding the shortest sequences. Otherwise,

the merge is not done and the shortest sequences are kept.

Even in this algorithm, the output will not contain sequences that are subse-

quence of any other sequence retrieved by the algorithm, so the sequences will

still be maximal.

The algorithm still needs a parameter to shorten the number of results re-

turned. This parameter could either be a threshold for IG, under which all se-

quences are discarded or, as it is in our case, a minfreq constraint. There should

be also some criteria to look up to k + n length sequences for higher IG than k,

even if k + 1 do not increase IG. We have performed experiments with the algo-

rithm as described as an early proof-of-concept. Note that IG is only one of the

possible criteria that could be used as discriminative power measure.

We name Maximal Frequent Discriminative Sequences (MFDS) the patterns

that are extracted using this process.

Following with the previous example, with minfreq = 2, minlength = 3 and

gap = 1, the following 1-skip-bigrams are generated: "is best", "is friend", "best

of", "friend of".
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In iteration k = 2, the candidate sequences to merge are the ones shown in

Table 2.1. We can also observe in that table the result of the merging, i.e., the

candidate sequences for iteration k = 3.

Table 2.2 shows each, for each candidate sequence, the comparison of the IG

values of c1, c2 and the merged candidate, as well as the actions performed by the

algorithm in each case. If IG(c1) or IG(c2) is greater than IG(merged) then, keep

c1 and c2 and discard merged. Discard c1 and c2 and keep merged in other case.

Since minlength = 3, the algorithm outputs:

"is friend of", "is best of", "is best friend".

As we can see, the best sequence "is friend of" has been found by the algo-

rithm. This increases the number of sequences found and this should be addressed

in further work.
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Table 2.1: 1-skip-bigrams and merged sequences for sample, with their respective
IG values.

Sequence IG

iteration k = 2
is best 0.29
best friend 0.29
is friend 0.67
best of 0.29
friend of 0.67

iteration k = 3
is friend of 0.67
is best of 0.29
is best friend 0.29
best friend of 0.29

Table 2.2: Candidate sequences to be merged, their IG values and actions taken
by the algorithm.

c1 c2 merged Case and Action

is best best of is best of IG(c1) = IG(c2) = IG(merged)
Keep merged, discard c1 and c2.

is friend friend of is friend of IG(c1) = IG(c2) = IG(merged)
Keep merged, discard c1 and c2.

is best best friend is best friend IG(c1) = IG(c2) = IG(merged)
Keep merged, discard c1 and c2.

best friend friend of best friend of IG(c1) = IG(merged) < IG(c2)
Keep c1 and c2, discard merged.
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2.6 Conclusions

In this chapter we have presented a new algorithm for MFS extraction inspired in

the GSP algorithm (Agrawal et al., 1996). The algorithm allows gaps between the

items of the sequences. The gap makes the MFS more flexible.

We have further modified the algorithm to handle continuous events, going

from items distributed in a discrete way to items distributed continuously. In this

scenario, each item has a timestamp as a position, and therefore there could be

overlaps.

After analyzing the limitations of MFS, we have modified the algorithm in

order to introduce a discriminative power criteria, e.g. Information Gain, that

determines whether or not the growth of a sequence should continue. With this

novel method, we retrieve what we named as Frequent Discrimitative Sequences.



Chapter 3

MFS for Drug-Drug Interaction

Extraction

In order to go beyond bag of words for DDI detection, we need to capture more

complex patterns such as multi-word terms, or grammatical patterns. Our hypoth-

esis holds that we can model these patterns as common subsequences with high

probability of either describing DDI or not describing it.

Using a training set of sentences, we can determine, for each extracted maxi-

mal frequent sequence, how likely is for it to be describing an interaction between

drugs. Those patterns and their probabilities will help to identify new drug-drug

interactions.

We propose two solutions for helping health care professionals to be updated

about published drug-drug interactions. The first solution is aimed at determin-

ing whether or not a sentence included a drug-drug interaction description. The

second solution goes further in the search, and performs DDI extraction, i.e., de-

termining if two given drugs in a sentence interact or not.

Our first approximation is completely based on maximal frequent sequences

extraction, while the second one is a machine learning approximation, that uses

maximal frequent sequences, among others, as features. Following, we will de-

scribe in detail both approximations, and we will see the effectiveness of maximal

frequent sequences for this particular task.

This Chapter is organized as follows: Section 3.1 contains the problem defini-

tion. Section 3.2 describes the performance measures that will be used to evaluate

the systems. Section 3.3 explains the start of the art of DDI extraction. Section 3.4

23
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describes the corpus used to build and evaluate our systems. In Section 3.5 we

tackle the problem of DDI sentence identification and describe our system. In

Section 3.6 we explain the DDI Extraction Challenge 2011, and following, in

Section 3.7 we describe the system submitted to the competition. Section 3.8

presents some improvements made to the system submitted to the competition.

Finally, in Section 3.10, we draw some conclusions.

3.1 Problem Definition

In this thesis we tackle two problems related to drug-drug interaction. The first

task is drug-drug interaction sentence identification. This problem consists in

determining whether or not a given sentence is describing one or more interactions

between drugs. For this, we built classification models in the following form:

Given the sentence S, we build a classifier such as

c : S → {0, 1}

Where c(S) will determine whether or not the sentence S contains a DDI for

any drugs.

The second problem we tackle is the one of drug-drug interaction extraction.

This problem is defined as follows:

Given the sentence S, extracted from a pharmacological text,

S = w1, w2, . . . , d1, . . . , wn, . . . d2, wn+k . . .

containing a set of drugs

Ds = {d1, d2, . . .}, with |Ds| > 1

Ds, with |Ds| > 1, our task is to create a classification model

c : S, d1, d2 → {0, 1}
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that determines if sentence S is describing a DDI between drugs d1 and d2,

where (d1, d2) ∈

(

Ds

2

)

.

If S contains n different drugs, with n > 1, there will be n(n−1)
2

pairs ∈ Ds2

that are potential interactions, and the classifier will have to determine, for each

pair, if the sentence is describing a DDI between the drugs in the pair.

For example, in the sentence:

S = Quinidine and procainamide doses should be reduced when either is ad-

ministered with amiodarone.

Ds = {quinidine, procainamide, amiodarone}
(

Ds

2

)

= {(quinidine, procainamide), (quinidine, amiodarone), (procainamide,

amiodarone)}

In this case, the sentence describes an interaction only between quinidine and

amiodarone, and procainamide and amiodarone. So an ideal classifier would re-

sult in:

c(s, quinidine, procainamide) = 0

c(s, quinidine, amiodarone) = 1

c(s, procainamide, amiodarone) = 1

Some classifiers output a value in [0,1] when classifying a sample that repre-

sent its confidence. In our case, 0 means not DDI and 1 means DDI. The closest

that value is to 1, the most confident the classifier is about the sample being a

DDI. Since this is a binary classification problem, we need to define a confidence

threshold over which the classification will be positive (1) and under which the

classification will be negative (0), and this way change the output of the classifier

to a discrete, binary classification {0,1}.

3.2 Performance Measures

Drug-drug interaction sentence identification and DDI Extraction are supervised

binary classification problem. In order to evaluate classifiers, we will use the

common measures for this kind of problems. In this section, we describe such

measures.

Table 3.1 shows a confusion matrix example, composed by the basic mea-
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sures: true positives (TP), false positives (FP), true negatives (TN) and false nega-

tives (FN). With these measures the performance measures Precision (3.1), Recall

(3.2), F-Measure (3.3) and Accuracy (3.4) are calculated.

Table 3.1: Confusion matrix example.

Actual classification

Positive Negative

Predicted classification
Positive True positive (TP) False positive (FP)
Negative False negative (FN) False positive (FP)

Precision (P) is the fraction of samples classified as positives that are actually

positives.

Precision =
TP

TP + FP
(3.1)

Recall (R) is the fraction of positive samples correctly classified.

Recall =
TP

TP + FN
(3.2)

F-Measure (F) is the harmonic mean of Precision and Recall.

F -Measure = 2 ·
P ·R

P +R
(3.3)

Accuracy Right answers (positive and negative) over all answers given.

Accuracy =
TP + FP

total
(3.4)

In order to compare different classifiers in a comprehensive and intuitive way

we can plot the Precision-Recall curve (PR-curve), that consists in plotting Preci-

sion against Recall for every confidence threshold. The PR-curve is a quick way
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to visualize every possible set up of the system. The area under the PR-Curve,

AUC-PR, is a good measure to compare different classifiers (Davis and Goadrich,

2006) and will also be used in this thesis.

Analogously, we can plot F-Measure and confidence threshold, F-measure

curve, to visualize the optimum threshold with respect to F-Measure.

3.3 Related Work

Drug-drug interaction identification is a relatively new field in the computational

community. An increasing interest has been shown during the last few years, and

new corpora has been presented as well as evaluation campaigns.

Duda et al. (2005) presents an approximation to the DDI sentence identifi-

cation problem. The authors present an approximation to automatically extract

articles that talk about DDIs from MEDLINE. Their system consists in a SVM

classifier trained on a dataset of stemmed text words and MeSH terms.

Segura-Bedmar (2010) presents two techniques for DDI Extraction in biomed-

ical texts. Both approaches were evaluated using the DrugDDI corpus (Segura-

Bedmar, Martínez, and Pablo-Sánchez, 2010). The DrugDDI corpus is described

in detail in Section 3.4.

The first approach is a hybrid approach, combining shallow parsing and pat-

tern matching to extract relations between drugs from pharmacological texts.

Complex sentences were split into clauses, and appositions and coordinate struc-

tures were detected using shallow syntactic and semantic information as given by

MMTx. Pattern matching was applied to the split clauses in order to extract re-

lations using patterns described by a experienced pharmacist after observing the

training corpus. With this approximation, the author obtained 0.487 Precision and

0.257 Recall.

The second approach is based on kernel methods and combines two sequence

kernel methods to integrate the information of the whole sentence where the re-

lation occurs (global context kernel) and the context information about the inter-

acting entities (local context kernel). This approximation used shallow syntactic

information such as sentence splitting, tokenization and lemmatization, as well

as part-of-speech (PoS) tagging. The system obtained 0.55 Precision and 0.84

Recall when evaluated with the DrugDDI corpus.

Sánchez-Cisneros, Segura-Bedmar, and Martínez (2006) presents the first on-
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line tool for detecting drug-drug interactions from biomedical texts called DDIEx-

tractor. The tool allows users to search by keywords in the Medline 2010 baseline

database and then detect drugs and DDIs in any retrieved document.

Protein-Protein Interaction (PPI) extraction is an area of research very simi-

lar to DDI extraction that has received a bigger attention from the scientific co-

munity. The BioCreative III Workshop hosted two tasks of PPI document clas-

sification and interaction extraction (Arighi, Cohen, et al., 2010). Some of the

features present in a wide range of participants were bag-of-words, bigrams, co-

occurrences and character ngrams. This kind of features will have a key role in

our system. In (Hakenberg et al., 2010) the authors use patterns as one of their

main features to extract PPI. (Bui, Katrenko, and Sloot, 2011) uses a hybrid ap-

proach with clustering and machine learning classification using Support Vector

Machines (SVM).

3.4 Corpus

The DrugDDI corpus (Segura-Bedmar, Martínez, and Pablo-Sánchez, 2010) is a

corpus annotated with linguistic information, named entities and drug-drug inter-

actions.

The corpus is composed of documents extracted from the DrugBank1 database

(Wishart et al., 2008). The DrugBank database is an online resource that offers

information about over 4,900 pharmacological substances, including drug syn-

onyms, brand names, chemical compositions and interactions. For the corpus,

only the text available in the field interactions, containing unstructured informa-

tion about known interactions, was retrieved. A total of 579 documents with

an average of 10.3 sentences and 5.46 interactions per document were collected,

each one describing interactions for a given drug. These documents were later

annotated with drug-drug interactions by an experienced pharmacist. The corpus

considers only DDIs at the sentence level, not taking into account DDIs that are

described across several sentences.

The corpus was divided into two datasets. The first one consists of 446 doc-

uments and was used as the training dataset. The second set consists of 133

documents and was used as the test dataset. Drugs are tagged in the corpus, ac-

cording to their type. Table 3.2 shows the different types of interacting drugs that

1http://drugbank.ca
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were tagged in the corpus, as well as the presence of each drug in the training and

test datasets. As we can observe, the distribution of drug types in both datasets is

balanced. Table 3.3 shows some statistics on the DrugDDI corpus.

Table 3.2: Types of drugs present in the corpus and their relative frequency.

Type Test presence Train presence

Clinical Drug (clnd) 26 (0.6%) 105 (0.66%)
Pharmacological Substance (phsu) 3237 (76%) 11987 (76%)
Antibiotic (antb) 198 (4.67%) 670 (4.25%)
Biologically Active Substance (bacs) 228 (5.37%) 945 (5.99%)
Chemical Viewed Structurally (chvs) 27 (0.64%) 70 (0.44%)
Amino Acid, Peptide or Protein (aapp) 524 (12.36%) 1979 (12.56%)

Table 3.3: Statistics on the DrugDDI corpus. Table extracted from (Segura-
Bedmar, Martínez, and Sánchez-Cisneros, 2011).

Number Avg./document

Documents 579
Sentences 5,806 10.03
Phrases 66,021 114.02
Tokens 127,653 220.47
Sentences with at least one DDI 2,044 3.53
Sentences with no DDI 3,762 6.50
DDIs 3,160 5.46 (0.54 per sentence)

Two versions of the DrugDDI corpus are available, with different formats:

MMTx format (Aronson, 2001) and Unified format (Pyysalo et al., 2008). The

Unified format only contains labels for drugs and interactions. This format is

the most used format in protein-protein interaction corpora. The MMTx2 for-

mat contained, in addition to drugs and interactions, sentence splitting, tokeniza-

tion, POS-tagging, shallow syntactic parsing and linking of phrases with UMLS

Metathesaurus concepts. In this thesis, we only used the Unified format, there-

fore, we will not go deeper into the MMTx format of the corpus3.

Figure 3.1 shows a fragment of one of the documents in Unified format. We

can observe the different drugs tagged, as well as for each pair of drugs a boolean

indicative of whether they are being described as DDI or not. Table 3.4 shows the

2Analyzed by the UMLS MetaMap Transfer (MMTx) tool.
3More information about the MMTx format can be found at (Segura-Bedmar, Martínez, and

Pablo-Sánchez, 2010).
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corpus statistics. Note that these statistics cover only documents and sentences

that contain, at least, one drug pair.

Figure 3.1: Fragment of the document Norfloxacin_ddi.xml.

Table 3.4: DrugDDI corpus statistics on sentences containing at least one drug
pair.

Training Test Total

Documents 399 134 533
Sentences 2812 965 3777
Pairs of drugs 23827 7026 30853
Interactions 2397 755 3152

Table 3.5: Distribution of positive and negative examples in training and test-
ing datasets. Extracted from (Segura-Bedmar, Martínez, and Sánchez-Cisneros,
2011) and simplified.

Set Documents Examples Positives Negatives

Training 437 (75.5%) 25,209 2,421 (9.6%) 22,788 (90.4%)
Test 142 (24.5%) 5,548 739 (13.3%) 4,809 (86.7%)
Total 579 30,757 3,160 (10.27%) 27,597 (89.73%)

3.5 DDI Sentence Identification

As we have seen in Section 3.1, the problem of DDI Sentence Identification con-

sists in determining whether a sentence is describing a drug-drug interaction or

not. In this section we will describe the system we built for this matter.

In this first approach4, maximal frequent sequences were used to identify pat-

terns from a set of sentences extracted from biomedical texts. For each MFS

4This section is based on our publication (García-Blasco, Danger, and Rosso, 2010).
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extracted, we calculated which percentage of the sentences in which it appeared

were positive samples, and that gave us a confidence threshold. These MFS were

afterwards used to identify, out of a test set of documents, sentences that contained

drug-drug interactions.

In Section 3.5.1, we describe some details about the corpus preprocessing

performed for this experimentation. Section 3.5.2 describes the experiments per-

formed for this task. In Section 3.5.3 we can find a review, as well as a discussion,

of the results obtained.

3.5.1 Corpus Preprocessing

The corpus used was the DrugDDI corpus (Segura-Bedmar, Martínez, and Pablo-

Sánchez, 2010), explained in detail in Section 3.4. In this case, the corpus was

divided into two datasets. The first one consisted of 446 documents and was used

as training dataset. The second one consisted of 133 documents and was used

as test dataset. As we saw, drugs were tagged in the corpus, according to their

type, e.g. clinical drug, pharmacological substance, antibiotics, etc. Prior to the

extraction of MFS, we performed some preprocessing to the corpus, in order to

obtain different versions of the corpus that would result in different kinds of MFS

extracted.

Taking advantage of the annotations in the corpus, two different preprocessing

methods were applied to the original training dataset. The first one consisted

in replacing all drug names that appeared in the text with their type, e.g. each

clinical drug was replaced with the token clnd, pharmacological substance with

the token phsu , antibiotic with antb, etc. We refer to this dataset as 6drugs. The

second preprocessing method consisted in replacing all drug names with the token

#drug#. We refer to this dataset as #drug#. When we talk about the dataset norm,

we refer to the original dataset, without any preprocessing. To make the different

datasets generated more clear, Table 3.6 shows a sentence and its modification

according to each dataset preprocessing.

3.5.2 Experiments

The objective of this experiment is to identify drug-drug interactions in biomedi-

cal texts using maximal frequent sequences.
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Table 3.6: A sample sentence for each dataset generated after preprocessing.

Dataset Example

norm barbiturates may decrease the effectiveness of oral contraceptives,
certain antibiotics, quinidine, theophylline, corticosteroids, anti-
coagulants, and beta blockers.

6drugs phsu may decrease the effectiveness of oral contraceptives, certain
antb, phsu, phsu, phsu, phsu, and phsu.

#drug# #drug# may decrease the effectiveness of oral contraceptives, cer-
tain #drug#, #drug#, #drug#, #drug#, #drug#, and #drug#.

Different sets of MFS were extracted from the training set using different

parameters. The algorithm was executed with the three different versions of the

corpus and the following values for the parameters:

Table 3.7: Parameters of the experiments.

preprocessing norm, 6drugs, #drug#
freqmin 10, 15, 20
gap 0, 1, 2
minlength 4

The MFS detected were rated using a new function that we define as likeliness

3.5 and represents the probability of the MFS describing a DDI.

likeliness(MFSi) =
times MFSi identifies DDI

times MFSi appears in the corpus
(3.5)

3.5.3 Results

The MFS found had an average length between 4.09 and 4.51 depending on the

parameters and the preprocessing of the corpus.

As explained in Section 3.5.2, each MFS has associated a likeliness value, that

is an indicator of how likely is the MFS to describe a drug-drug interaction. Fig-

ure 3.2 shows the amount of MFS found for the different corpus, with freqmin = 20.

The bars are also divided according to the likeliness of the MFS.

The algorithm detected more patterns in the #drug# dataset. With this dataset

and for gap = 2 and minlenght = 10 the greatest amount of patterns were found,

since they are the less restrictive parameters.
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Figure 3.2: Number of MFS and their likeliness.

For example, using the #drug# corpus, with reqmin=10 and gap = 1, the

following MFS was found:

’#drug#’, ’may’, ’the’, ’effects’, ’of’, ’#drug#’

This MFS was extracted from sentences like:

• Acetazolamide may increase the effects of other folic acid antagonists.

• Alcohol may potentiate the side effects of bromocriptine mesylate.

• Dopamine D2 receptor antagonists (e.g., phenothiazines, butyrophenones,

risperidone) and isoniazid may reduce the therapeutic effects of levodopa.

• Concomitant administration of other sympathomimetic agents may poten-

tiate the undesirable effects of Foradil.

We define a threshold for the likeliness value of each maximal frequent se-

quence extracted. Above this threshold a maximal frequent sequence will be con-

sidered as a descriptor of a drug-drug interaction. With this, we will classify the

sentences included in the test dataset, and evaluate the performance of the method.

This threshold will play an important role in the performance of the method.
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In Figures 3.3, 3.4 and 3.5 the F1-measure over the likeliness threshold is

shown for the different preprocessing and gap = 0, 1 and 2 respectively. With a

greater gap, Recall grows but it obtains less Precision.

For datasets #drug# and 6drugs, the best threshold is in the range [0.6, 0.7].

For the normal text, without preprocessing, the best threshold is in the range

[0.1, 0.5].

Figure 3.3: F1 for freqmin=10, with gap = 0.

Observing the maximal frequent sequences extracted, we can find different

types of sequences. Those that have a high value of likeliness can be mostly

divided in two big groups, those which contain verbs that denote effects, i.e. in-

crease, decrease, enhance, etc., and those which contain 2 or more drugs. Ta-

ble 3.8 shows some examples of this two types of maximal frequent sequences

extracted from the documents, their frequency and likeliness.

Table 3.9 gives an overview of the results obtained in the experiments, with

gap=2 and freqmin=10.

The test set consists of 1151 sentences, with 461 of them describing DDI. The

baseline for this task is allDDIs, in which all sentences are labeled as containing
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Figure 3.4: F1 for freqmin=10, with gap = 1.

Table 3.8: Examples of extracted MFS.

MFS Sample freq likeliness

With verbs denoting effects:
(’#drug#’, ’may’, ’increase’, ’of’) 30 0.93
(’may’, ’decrease’, ’the’, ’of’) 21 0.90
(’#drug#’, ’may’, ’enhance’, ’the’, ’of’) 10 1.0
(’with’, ’#drug#’, ’increase’, ’the’, ’of’) 10 1.0
(’#drug#’, ’is’, ’administered’, ’with’) 21 0.81

With 2 or more drugs:
(’#drug#’, ’may’, ’the’, ’effects’, ’#drug#’) 13 1.0
(’#drug#’, ’should’, ’not’, ’be’, ’with’, ’#drug#’) 11 1.0
(’#drug#’, ’reduce’, ’the’, ’of’, ’#drug#’) 15 0.93

DDI. Table 3.9 contains a relation of the results obtained in this research.

As Table 3.9 shows, some of the parameters give a very high Recall value

(0.95). Drug-drug interactions are described by the researchers using a reduced

vocabulary and similar sentence structures, i.e. "Amiodarone should be used with
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Figure 3.5: F1 for freqmin=10, with gap = 2.

Table 3.9: Comparison of results.

Precision Recall F1

baseline 0.40 1 0.28

6drugs 0.48 0.93 0.63

norm 0.68 0.41 0.51
#drug# 0.46 0.95 0.62

caution in patients receiving propranolol". This allows us to find a set of MFS

that retrieve the great majority of the DDIs described. However, the same sen-

tence structures are sometimes used in other contexts, i.e. "It should be used

with caution in patients with diabetes". This sentence does not define a DDI, but

it does contain a MFS with high likeliness value and it will be labeled as DDI

descriptor, decreasing Precision.
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3.6 DDI Extraction

3.6.1 First Challenge Task: Drug Drug Interaction Extraction

DDIExtraction2011 (Segura-Bedmar, Martínez, and Sánchez-Cisneros, 2011) pro-

poses a first challenge task in Drug-Drug Interaction Extraction to compare differ-

ent techniques for DDI extraction and to set a benchmark that will enable future

systems to be tested. Each team participating in the challenge was allowed to

submit up to 5 runs with different settings of their system. A total of 10 teams

from different parts of the world participated in the challenge, submitting a total

of 40 runs.

The goal of the competition was, for every pair of drugs in a sentence, decide

whether an interaction is being described or not.

The corpus used for the competition was the DrugDDI corpus, presented in

(Segura-Bedmar, Martínez, and Pablo-Sánchez, 2010). The corpus is described in

Section 3.4. In Section 3.6.1.2 a review of the different systems submitted to the

competition is carried out.

3.6.1.1 Evaluation

The runs submitted to the competition were evaluated according to their F-Measure.

Table 3.10 shows the results obtained by the best run submitted by each team in

the competition5. For each team we can see Precision, Recall and F-Measure

obtained, as well as the Accuracy.

In the following Section, we shortly describe the most relevant systems that

participated in the competition. In general, approaches based on kernels methods

achieved better results than the classical feature-based methods.

3.6.1.2 Systems Submitted to the Competition

Ten teams participated in the competition, submitting a total of 40 runs. Each

team presented a different approximation. Following, we do a short description

of the most relevant systems submitted, as well as the results obtained by each

system in the competition. The systems are sorted by the position in the final

5Our team was BNB_NLEL, named after Bitsnbrains S.L. http://bitsnbrains.net
and Natural Language Engineering Lab http://www.dsic.upv.es/grupos/nle.
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Table 3.10: Precision, Recall, F-Measure and Accuracy obtained by the best run
of each team in the DDI Extraction Challenge 2011 and their system description.
Table extracted from (Segura-Bedmar, Martínez, and Sánchez-Cisneros, 2011)
and simplified.

Team Description P R F Acc

WBI Combination of several kernels and
a case-based reasoning (CBR) sys-
tem using a voting approach.

0.6054 0.7192 0.6574 0.9194

LIMSI-FBK A feature-based method using
SVM and a composite kernel-based
method.

0.5859 0.7046 0.6398 0.9147

FBK-HTL composite kernels using the MEDT,
PST and SL kernels.

0.5839 0.7007 0.6370 0.9142

UTurku Machine learning classifiers such
as SVM and RLS; DrugBank and
MetaMap.

0.5804 0.6887 0.6299 0.9130

LIMSI-CNRS A feature-based method using lib-
SVM and SVMPerf

0.5518 0.6490 0.5965 0.9056

BNB-NLEL Feature-based method using Ran-
dom Forests

0.6122 0.5563 0.5829 0.9145

Laberinto-UHU A feature-based method using clas-
sical classifiers such as SVM, Naive
Bayes, Decision Trees, Adaboost

0.5000 0.4437 0.4702 0.8925

DrIF Two machine learning-based (CFFs
and SVMs) and one hybrid ap-
proach which combines CFFs and a
rule-based technique.

0.4037 0.4887 0.4422 0.8675

ENCU A feature-based method using
SVM.

0.2957 0.4649 0.3615 0.8235

IUPUITMGroup All paths graph (APG) kernel 0.1170 0.2556 0.1605 0.7126

ranking. We skip the description of our system, which was ranked as 6th. It will

be described in detail in Section 3.7.

I Relation Extraction for Drug-Drug Interactions using Ensemble Learn-

ing

In this approximation, Thomas et al. (2011) built a majority voting system that

uses several classifiers. They had two types of classifiers, i.e., kernel and case-

based reasoning. The best run submitted used a voting system with two kernels

(all-paths graph and shallow linguistic) and a case-based reasoning classifier. The
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system archived Precision 0.6054, Recall 0.7192, and F-Measure 0.6574, being

the best performing system.

II Two Different Machine Learning Techniques for Drug-Drug Interaction

Extraction

The approximation presented in (Chowdhury et al., 2011) consists of the combi-

nation of two different machine-learning approaches. The first one is a feature-

based method using a SVM classifier with a set of lexical, morphosyntactic and

semantic features (e.g. trigger words, negation). The second one is a kernel com-

posed of a mildly extended dependency tree (MEDT) kernel, a phrase structure

tree (PST) kernel and a shallow linguistic kernel. This system reached position

two in the classification, with a 0.5859 Precision, 0.7046 Recall and 0.6398 F-

Measure.

III Drug-drug Interaction Extraction Using Composite Kernels

After trying different types of kernels, Chowdhury and Lavelli (2011) obtained

their best performing result with a system that combined three kernels: a mildly

extended dependency tree (MEDT) kernel, a phrase structure tree kernel and a

global context kernel. This system obtained 0.5839 Precision, 0.7007 Recall and

0.6370 F-Measure, being the third best performing team.

IV Drug-Drug Interaction Extraction from Biomedical Texts with SVM

and RLS Classifiers

The system presented by Bjorne et al. (2011) is based on the publicly available

Turku Event Extraction System (Neves, Carazo, and Pascual-Montano, 2009)

which abstracts event and relation extraction by using an extendable graph format.

The system extracts information in two main steps: detection of trigger words

(nodes) denoting entities in the text, and detection of their relationships (edges).

With this information, the authors built a support vector machine classifier and

a regularized least-squares (RLS) classifier. The best results were obtained with

the RLS classifier, reaching the fourth position in the classification with Precision

0.5804, Recall 0.6887 and F-Measure 0.6299.
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V Feature Selection for Drug-Drug Interaction Detection Using Machine-

Learning Based Approaches

In a first step, Minard et al. (2011) built a knowledge database including the pair

of drugs in the corpus that always interact, to later combine this information with

the decisions of their classifier. The systems use machine learning methods based

on SVM by using LIBSVM and SVMPerf tools with different sets of features

that included lexical, morphosyntactic and semantic features, as well as corpus

based features (e.g. most frequent drug in the document). This system reached

fifth position in the evaluation ranking with Precision 0.5518, Recall 0.6490 and

F-Measure 0.5965.

VI A Machine Learning Approach to Extract Drug-Drug Interactions in

an Unbalanced Dataset

Mata et al. (2011) present a machine learning approach using as features a set

of manually selected words which included mostly all of the verbs, some nouns,

and prepositions, adverbs and conjunctions that might express negation of fre-

quency. Afterwards, this features were ranked with a chi-squared feature selec-

tion method, selecting 496 features. The authors also use SMOTE algorithm to

tackle the problem of the unbalanced corpus. The final classifier used by the au-

thors was Random Forest with 50 iterations, which gave them the seventh position

in the classification ranking with Precision 0.5000, Recall 0.4437 and F-Measure

0.4702.

3.7 Our DDI Extraction 2011 Submission

In this section we will describe the system presented for the First Challenge Task:

Drug Drug Interaction Extraction. We used the DrugDDI corpus, described in

Section 3.66. We built a system to perform DDI Extraction, i.e., to identify inter-

actions between two specific drugs, instead of just determine whether a sentence

describes an interaction between drugs or not as we did in Section 3.5.

As explained in Section 3.1, we need a classifier

c : S, d1, d2 → {0, 1}

6This section is based on our publication (García-Blasco et al., 2011)
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that determines if sentence S is describing a DDI between drugs d1 and d2.

In order to train the classifier7, we had to define a feature set to represent each

sample. Each sample is one possible interaction, i.e., each unique combination of

two drugs appearing in a sentence of the corpus. Given the small size of the corpus

and the difficulty to properly estimating a model, it was necessary to reduce the

dimensionality of the feature space.

The first step was to preprocess the corpus. For doing so, each sentence was

tokenized8 with standard English tokenization rules (e.g. split by spaces, removal

of apostrophes, conversion to lower case, removal of punctuation marks) with the

following particularities:

• Each token or group of tokens that represent a drug were replaced by the

token #drug#.

• Numbers were replaced by _num_.

• Stop words were not removed.

• Stemming was applied9.

• Percentage symbols were preserved as independent tokens.

Following, we will describe the different features used in the system.

3.7.1 Bag of Words

The first feature set is a classic bag of words. From the set of all words appearing

in the preprocessed corpus, we discarded those with a frequency lower than 3 and

stop words. With the resulting set of words, we generated a dataset where each

sample was a possible interaction in the corpus and each feature was the presence

or not of each word between the two drugs of the potential interaction. Using

this dataset, every word was ranked using Information Gain Ratio (IGR) with

7We used RapidMiner for every classification and clustering model. Available at http:
//rapid-i.com/.

8The tokenization was performed with Apache Lucene. Available at http://lucene.
apache.org.

9The stemming algorithm used was Snowball for English. Available at http://

snowball.tartarus.org.
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respect to the target class 10. Then, every word with IGR lower than 0.0001 was

discarded11. The presence of each of the remaining words was a feature in the

final dataset. Finally, 1.010 words were kept. Samples of words with a high gain

ratio are: exceed, add, solubl, amphetamin, below, lowest, second, defici, occurr,

stimul and acceler.

3.7.2 Word Categories

In biomedical literature complex sentences are used very frequently. MFS and

bag of words are not able to capture relations that are far apart inside a sen-

tence. To somehow reflect the structure of the sentence, we defined some word

categories. This way, we can have some information about dependent and inde-

pendent clauses, coordinate and subordinate structures, etc. Some of this cate-

gories were also included in (Segura-Bedmar, 2010). We added two categories

that include absolute terms and quantifiers, as well as a category for negations.

Table 3.11 enumerates the words included in each category.

Table 3.11: Word categories.

Category Words included

Subordinate after, although, as, because, before, if, since, though, unless,
until, whatever, when, whenever, whether, while.

Independent markers however, moreover, furthermore, consequently, neverthe-
less, therefore.

Appositions like, including, e.g., i.e.
Coordinators for, and, nor, but, or, yet, so.
Absolute never, always.
Quantifiers higher, lower.
Negations no, not.

For each word category we defined two features. One indicating how many

times any word in the category appeared in the sentence, and the other indicating

how many times they appeared between the two drugs of the potential interaction.

So, if a word appeared in a sentence between two drugs, both features would be

set to 1. If two words of the same category appeared between two drugs (or the

same word appeared twice), both features would be set to 2.

10Information Gain Ratio was calculated using Weka. Available at http://www.cs.
waikato.ac.nz/ml/weka/.

11The threshold for IGR was manually adjusted fixed by analyzing intuitively the results.
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3.7.3 Maximal Frequent Sequences

Similar to bag of words, we used sequences of words as features. For this, we

used maximal frequent sequences.

We extracted all the MFS from the training corpus, with a minimum frequency

of 10 and minimum length of 2. Given the size of the corpus, sometimes very

long MFS have no capability to generalize knowledge because they sometimes

represent full sentences, instead of patterns that should be frequent in a kind of

sentence. To avoid this, we restricted the MFS to a maximum length of 7 words.

With this, we obtained 1.010 patterns.

Since we setted the minimum frequency of the MFS to 10, many of the pat-

terns extracted do not have enough samples in the training corpus to estimate

correctly the model. For this reason, we decided to group different patterns with

similar characteristics into clusters of MFS.

Clusters were calculated with the Kernel K-Means algorithm (Zhang and Rud-

nicky, 2002), using radial kernel, with respect to the following relative frequencies

of the MFS and the words that it contains:

Sentence Frequency Percentage of sentences containing the MFS.

Sentence Frequency with Interaction Percentage of sentences, with at least one

interaction, containing the MFS.

Pair Frequency Percentage of times the MFS appears between two drugs.

Pair Frequency with Interaction Percentage of times the MFS appears between

two drugs that are interacting.

Average Word Frequency Average frequency in the corpus of the words con-

tained in the MFS.

Average Word with Interaction Average frequency of the words contained in

the MFS in sentences that contain interactions.

With this, we obtained 274 clusters. Each of these clusters is a feature of the

final dataset which is set to 1 if, at least, one of the MFS of the cluster matches

with the potential interaction. For this matter, we define the following Matching

Algorithm 2. Note that this algorithm is specific for the problem of DDI extrac-

tion.
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Algorithm 2: MFS Matching Algorithm.
Input: mfs, sentence, drug1index, drug2index
Output: match

startThreshold← 01

endThreshold← 02

if "#drug#" ∈ mfs then3

startThreshold← First index of "#drug#" in mfs4

endThreshold← length(mfs)− last index of "#drug#" in mfs5

6

startIndex← drug1index− startThreshold ∗ (gap+ 1)7

if startIndex < 0 then8

startIndex← 09

endIndex← drug2index+ endThreshold ∗ (gap+ 1)10

if endIndex > length(sentence) then11

endIndex← length(sentence)12

13

textToCompare← Substring of sentence from index startIndex to14

endIndex

if mfs is subsequence of textToCompare then15

match← 116

else17

match← 018

return match19

If the MFS contains the token #drug# then the startThreshold is set to the first

index of #drug# in the MFS, if not it it set to 0. The same for the endThreshold, if

the MFS contains the token #drug#, then it is set to difference between the length

of the MFS and the last index of #drug# in the MFS, otherways it is set to 0.

For example, given the MFS:

MFS1 = <’administration’, ’#drug#’, ’may’, ’the’, ’effects’, ’#drug#’>

startThreshold would be set to 1, and endThreshold would be set to 0. In

other words, startThreshold and endThreshold represent how many words appear

in the pattern before the first and after the last appearance of the token #drug#,

respectively.

With this thresholds and the input sentence, we calculate the piece of the sen-

tence that we have to compare with the MFS.

For example, given the sentence:
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s1 = The administration of drug1 may increase the effects of drug2.

and the thresholds calculated in the previous sample, the part of the sentence

that we would have to compare with the MFS would be:

textToCompare = "administration of drug1 may increase the effects of drug2".

After preprocessing, the sentence would not have the name of the actual drugs

in it, but just the token #drug#. Therefore, the text to compare would be:

textToCompare = "administration of #drug# may increase the effects of

#drug#".

Since the gap is set to 1, the sentence does contain the MFS, and the matching

algorithm would return 1.

In case the MFS does not contain the token #drug#, then the MFS is matched

with the text in between the drugs that compose the potential interaction descrip-

tion.

3.7.4 Token and Char Level Features

At the token and char level, several features were defined. We must recall that,

during preprocessing, every token or group of tokens labeled as drugs where re-

placed by the token #drug#. Table 3.12 describes this subset of features. Each

one of these features appears twice in the final dataset, once computed on the

whole sentence and once computed only in the text between the two drugs of the

potential interaction.

Table 3.12: Token and char level features.

Feature Description

Tokens Number of tokens.
Token #drug# Number of times the #drug# token appears.
Chars Number of chars.
Commas Number of commas.
Semicolons Number of semicolons.
Colons Number of semicolons.
Percentages Number of times the character % appears.
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3.7.5 Drug Level Features

With the features defined so far, we have not taken into account the two drugs

of the potential interaction. We believe this is important in order to have more

information when deciding whether they interact or not.

For each document, we calculated the main drug as the drug after which the

document was named, this is, the name of the article of the DrugBank database

where the text was extracted from. In the case of scientific articles, the main drug

would be calculated as the drug or drug names appearing in the title of the article,

if any. Also for each document, we calculated the most frequent drug as the token

labeled as drug that appeared more times in the document.

We noticed that, sometimes, drugs are referred to using their trade names. To

ensure good treatment of drugs in the drug level features, we replaced each trade

name with the original drug name12. Table 3.13 describes the drug level features.

Table 3.13: Drug level features for candidate interactions (CI).

Feature Description

Main drug True if one of the two drugs in the CI is the document
name.

Most frequent drug True if one of the two drugs in the CI is the most fre-
quent drug in the document.

Cross reference True if, at least, one of the two drugs in the CI is drug,
medication or medicine.

Alcohol True if, at least, one of the two drugs in the CI is al-
cohol or ethanol.

Is same drug True if both drugs in the CI are the same.

3.7.6 Classification Model

During preliminary research, we explored the performance of a wide range of

classification models, notably Support Vector Machines, Decision Trees and mul-

tiple ensemble classifiers such as Bagging, MetaCost and Random Forests (Breiman,

2001).

Our best choice was Random Forest. Random Forest has two parameters that

we needed to set. The number of iterations and the number of attributes that the

algorithm considers in each iteration.

12Trade names were extracted from the KEGG DRUG database, from the Kyoto Encyclopedia
of Genes and Genomes. Available at http://www.genome.jp/kegg/drug/
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For each each label, our model outputs a confidence value that represents the

probability of the pair of drugs to be interacting. In order to decide the label, we

define a confidence threshold above which the decision will be positive and below

which it will be negative.

3.7.7 Experiments

We performed experiments to evaluate the performance of our system for the test

dataset, with and without MFS. The number of iterations for Random Forest was

set to 100, and the number of attributes for each iteration was set to 100. After

some experiments, MFS were extracted using minlength = 2, maxlength = 7,

minfreq = 5 and gap = 0.

3.7.8 Results and Discussion

Figure 3.7 shows PR and F curves for both settings. The PR curves are convex,

which makes the decision of an optimum threshold much easier and less risky.

Table 3.14 shows Precision, Recall, F-Measure, AUC-PR, Precision at Recall 0.8

and Recall at Precision 0.8 for test with MFS.

As observed in Table 3.14, in the case of 10-fold cross-validation results are

above the rest. We must point out that the MFS extraction phase was run with the

whole training set without cross-validation. This means that some information

about the test samples of each cross-validation iteration is leaked to the training

phase. We still include these results since we think that with a sufficient big

corpus, the tendency should be the same.

Table 3.14: Performance measures for test with, and without MFS.

P R F AUC-PR P@R 0.8 R@P 0.8

Test 0.6122 0.5563 0.5829 0.6341 0.4309 0.3205
Test w/o MFS 0.6069 0.5563 0.5805 0.6142 0.4113 0.2808

Cross-validation 0.6235 0.6914 0.6453 0.6696 0.5167 0.3199

The submitted run obtained a Precision of 0.61, a Recall of 0.55 and a F-

measure of 0.58.

The competition classification was made based on the F-Measure scores. Even

though each participating team was allowed to submit up to five runs, we only

submitted one. Table 3.15 shows the confusion matrix of our submit.
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Figure 3.6: Precision-Recall curves for the results given by our system for the
test, with and without MFS.

Table 3.15: Confusion matrix.

Actual classification
Positive Negative

Predicted classification
Positive 420 266
Negative 335 6005

Our team13 obtained 6th position in the final classification ranking, according

to F-Measure. The best performing run had an F-measure of 0.65, 0.07 points

apart from our 0.58. The team following us, obtained an F-measure of 0.47, 0.11

points away from us. Therefore, we are closer to the first classified team than to

the one following us. Our system is in the 5th position according to Accuracy,

0.006 points away from the first one. Note that the accuracy values are consider-

ably high due to the fact that it also takes into account the non-interaction, which

13Our team was BNB_NLEL, named after Bitsnbrains S.L. http://bitsnbrains.net
and Natural Language Engineering Lab http://www.dsic.upv.es/grupos/nle.
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Figure 3.7: F-measure curves for the results given by our system for the test, with
and without MFS.

are the vast majority and therefore are much easier to guess right.

MFS improve moderately the performance of the system, increasing about

0.02 in AUC-PR. Even though we expected more influence of MFS, adding MFS

does detect new interactions that were not detected before.

Following, we will discuss some cases when the system with MFS detects

DDIs that are not detected without them. In each sample sentence, the tokens

tagged as drugs in the corpus are underlined.

For example, the sentence:

Drugs that induce hepatic enzymes such as phenobarbital, phenytoin

and rifampin may increase the clearance of corticosteroids and may

require increases in corticosteroid dose to achieve the desired re-

sponse.

The interaction between rifampin and corticostedoids is only detected when
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adding MFS.

Another example is shown in Table 3.16 where we can see that all the inter-

actions in the sentence where detected with MFS and none without them.

Drugs such as troleandomycin and ketoconazole may inhibit the metabolism

of corticosteroids and thus decrease their clearance.

Solution With MFS Without MFS

Drugs troleandomycin 0 0 0
Drugs ketoconazole 0 0 0
Drugs corticosteroids 1 1 0
troleandomycin ketoconazole 0 0 0
troleandomycin corticosteroids 1 1 0
ketoconazole corticosteroids 1 1 0

Table 3.16: Comparison of solution and prediction with and without MFS for a
sample sentence.

But, sometimes MFS do the inverse effect, tagging as DDI pairs of drugs that

are not interacting. For example, in the sentence:

Other: Neither fosinopril sodium nor its metabolites have been found

to interact with food.

In this case, the classifier that contains MFS does classify the interaction as

true, and the classifier without MFS does not. In this case, therefore, it works

better without MFS.

There are inaccuracies in the corpus that affect the training and prediction of

the DDI. For example, the in sentence:

In patients who have received muscle relaxants, doxapram may tem-

porarily mask the residual effects of muscle relaxant drugs.

The fact that the last drug tagged comprehends only the text "drugs" and not

"muscle relaxant drugs" as it should be, makes the sentence to not contain a MFS

that would detect the interaction because of the gap restriction. Due to this tagging

mistake, the token #drug# is two positions displaced. This also means that our

current approximation for the MFS in this task is very sensitive to errors in the

named entity recognition step.

Another sample is the following sentence:
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Administration of doxapram to patients who are receiving sympathomimetic

or monoamine oxidase inhibiting drugs may result in an additive pressor effect.

Entity e3 ="additive pressor effect" is incorrectly tagged as a drug. Therefore,

the only interacting drugs are e0 =doxapram with e1 =sympathomimetic and

e0 =doxapram with e2 =monoamine oxidase. In this case, without MFS the

answer is right, it detects only those two interaction. However, with MFS the

system not only detects those two interactions, but it also detects an interaction

between e0 and e3, which is probably due to the fact that e3 is incorrectly tagged

as a drug.

In the sentence:

Acetazolamide may prevent the urinary antiseptic effect of methenamine.

The token prevent is tagged as drug. Since prevent will be replaced by the

token #drug#, we will loose information about the verb between the two actual

drugs, missing any pattern that contains the word prevent. This would have been

mitigated if we also considered patterns without the substitution of drugs with the

token #drug#.

3.8 System Improvements

After the competition, we performed further experiments in order to improve our

results. The first experiment consisted in changing the number of trees and num-

ber of attributes considered in each iteration for Random Forest. We found that

better results were obtained when setting the number of iterations to 5,000, and

the number of attributes considered in each iteration to the default value: logm+1,

with m = total number of attributes.

MFSs were extracted with the following parameters: minfreq = 5, minlength =

2, maxlength = 7 and with gap = 0 and gap = 1. Also, we run the experiments

without clustering, in order to see if we could skip that step and still get good

results.

In the case of gap = 0 without clustering, we had 2,409 MFS. In the case of

gap = 1 without clustering, we obtained over 13,000 MFSs, and this made our

model’s training inviable. Therefore, we needed to somehow reduce the number
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of MFS. For doing so, we detected groups of MFSs of the same length that ap-

peared in the exact same set of sentences. Out of each group, we kept only one of

the MFSs. With this co-occurrence pruning, we reduced the number of MFSs to

7,913.

Figure 3.8 shows Precision over Recall for each configuration of the system.

Figure 3.9 shows F-Measure for different confidence threshold values. Table 3.17

presents a numerical description of results were we can see, for each configuration

Precision and Recall for the best F-Measure value, AUC-PR, Precision at Recall

0.80 and Recall at Precision 0.80.
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Figure 3.8: Precision-Recall curves for the results given by our system for the
test, for different configurations: without MFS, MFS with gap = 0 and clustering,
MFS with gap = 0 without clustering and MFS with gap = 1 with co-occurrence
pruning (*) and without clustering.
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Figure 3.9: F-measure curves for the results given by our system for the test, for
different configurations: without MFS, MFS with gap = 0 and clustering, MFS
with gap = 0 without clustering and MFS with gap = 1 without clustering and
with co-occurrence pruning (*).

Table 3.17: Performance measures for test with, for different configurations of
the system: without MFS, MFS with gap = 0 and clustering, MFS with gap = 0
without clustering and MFS with gap = 1 without clustering.

P R F AUC-PR P@R 0.8 R@P 0.8

Without MFS 0.5828 0.6207 0.6012 0.6253 0.4569 0.2546
MFS gap = 0 (clust.) 0.5365 0.6817 0.6005 0.6323 0.4415 0.2971

MFS gap = 0 0.6415 0.5623 0.5993 0.6323 0.4441 0.0145
MFS gap = 1 0.2303 0.6830 0.3445 0.2503 0.2139 0.0053
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As we can see, performance of MFS with gap = 1 and co-occurrence pruning

is extremely low. This is probably because there were still too many attributes to

train the model correctly.

As with respect to clustering, we can observe that given a big number of iter-

ations, in this case 5,000, adding the clustering step does not improve the results.

In fact, using clustering produced a model with much better Recall, but with an

equivalent loss of Precision. Therefore, for the sake of simplicity, we discarded

the clustering step.

MFS with gap = 0 produced a slight improvement according to AUC-PR,

with respect to the system without using MFS. We think this can be caused by the

fact that there are thrice as many attributes with MFS gap = 0. That leads to the

next section, were we try to mitigate this problem with the use of MFDS.

3.9 Applying MFDS

As explained in Section 2.5, it is not crucial to find the maximal sequences, but

the most relevant. For this reason, we extracted Maximal Frequent Discriminative

Sequences from the document collection. The discriminative power criterion used

was Information Gain. With this technique, we extracted a total of 1,190 MFDS

for gap = 0 and 2,335 MFDS for gap = 1 which is a significant reduction

compared to MFS. Figure 3.10 plots Precision over Recall. As we can observe,

in some points of the curve, the configuration with MFS and gap = 0 goes over

the other configurations, but in general, the value of AUC-PR shows that MFDS

with gap = 1 outperforms the rest.

Figure 3.11 shows F-Measure for different confidence threshold values.

Table 3.18: Performance measures for test with, for different configurations of
the system: without MFS, MFS with gap = 0 and clustering, MFS with gap = 0
without clustering and MFS with gap = 1 without clustering.

P R F AUC-PR P@R 0.8 R@P 0.8

Without MFS 0.5828 0.6207 0.6012 0.6253 0.4569 0.2546
MFS gap = 0 0.6415 0.5623 0.5993 0.6323 0.4441 0.0145

MFDS gap = 0 0.5210 0.7069 0.5999 0.6214 0.4383 0.2759
MFDS gap = 1 0.5124 0.7109 0.5956 0.6347 0.4495 0.3395

Table 3.18 presents a numerical description of results.
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Figure 3.10: Precision-Recall curves for the results given by our system for the
test, for different settings: MFDS with gap = 0 and MFDS with gap = 1, com-
pared to without MFDS nor MFS and the best performing setting for MFS that
was with gap = 0.

We observe a considerable Recall improvement as we would expect using

gap = 1. This can be seen in the 8% improvement of Recall in the optimal point

for F-Measure, as well as the 8.5% improvement in Recall for 80% Precision. We

can also see a reduction in Precision, nevertheless the overall performance is still

better according to AUC-PR.

MFDS have made possible the use of sequences of gap = 1 by producing a

reduced and more relevant set of sequences.
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Figure 3.11: F-measure curves for the results given by our system for the test, for
different settings: without MFS, with MFS gap = 0, with MFDS gap = 0 and
MFDS gap = 1.

3.10 Conclusions

In this chapter, we have proposed two solutions to identify DDI. The first solution

determines whether or not a sentence included a drug-drug interaction description.

The second solution performs DDI extraction, and determines whether or not two

given drugs in a sentence interact.

In Section 3.5 we described a system to determine whether or not a sentence

contained a drug-drug interaction. Maximal frequent sequences obtained moder-

ately good results, reaching a Precision of 0.68 with a Recall of 0.41, and Preci-
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sion of 0.46 with 0.95 Recall. These results are promising for a first approxima-

tion taking into account that they can be improved with further preprocessing of

the sentences, such as POS-tagging or stemming.

In Section 3.7 we presented a system for DDI extraction based on machine

learning with bag-of-words, maximal frequent sequences and other features. This

was developed for the DDIExtraction2011 competition. Our submission obtained

a F-Measure of 0.5829 and a AUC-PR of 0.6341 for the test corpus, obtaining the

6th position in the participants ranking. Our system can be set up to reach Recall

of 0.3205 with a Precision of 0.8, or Precision of 0.4309 and a Recall 0.8. The

use of maximal frequent sequences increased AUC-PR by 0.02.

One of the main problems we have encountered during the research was the

complexity of the language structures used in biomedical literature. Most of the

sentence contained appositions, coordinators, etc. Therefore, it was very difficult

to reflect those structures using maximal frequent sequences. The reduced size of

the corpus was also a serious limitation for our approach.

MFS could be an useful tool for representing such type of information, how-

ever, as we relax MFS constraints, we obtain an unmanageable amount of at-

tributes. We approached this problem using clusters of MFS, which produced a

considerable Recall increase, but the overall performance considering Precision

did not produce better results. Also, the fact that MFS extraction is performed

without knowledge of corpus annotations causes that a high amount of the ex-

tracted patterns are irrelevant for classification.

In order to solve the limitations of MFS for classification, we introduced the

concept of MFDS where our MFS extraction algorithm was extended to consider

a discriminative criterion. In our case, we used Information Gain. This produced

a list of more relevant patterns, and a manageable total amount of them. MFDS

made practical the use sequences with gap = 1, which produced an 8% improve-

ment of Recall. Also, with MFDS training the model is much faster due to the

reduced number of features. These results suggest that a further relaxation of

MFDS constraints, i.e., gap > 1, as well as more sophisticated pruning strategies

should be the next steps.

Our system should be improved by complementing it with other state of the

art techniques used in the Protein-Protein Interaction field that have not been ex-

plored yet during our research, such as character n-grams and co-occurrences.

Also, we could find patterns in the paths of the dependency trees.
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Conclusions and Further Work

4.1 Conclusions

A drug-drug interaction occurs when the effects of a drug are modified by the

presence of other drugs. DDIs can decrease therapeutic benefit or efficacy of

treatments and this could have very harmful consequences in the patient’s health

that could even cause the patient’s death. Knowing the interactions between pre-

scribed drugs is of great clinical importance, therefore it is very important to keep

databases up-to-date with respect to new DDI.

Maximal frequent sequences are an iteresting tool since they can represent

the most important parts of texts. Given a text collection, the fact that there are

sequences that are repeated in some of the texts shows how relevant is the in-

formation that those MFS describe. MFS have a wide applicability since the

technique is domain and language independent. The fact that they are sequences

and not strings, i.e., they allow gap between words, makes them more flexible and

therefore they can capture higher level patterns.

In this thesis we have presented a new algorithm for MFS extraction inspired

in the GSP algorithm (Agrawal et al., 1996). Our algorithm allows gaps between

the items of the sequences, making the MFS more flexible and therefore enabling

them to capture common sentence patterns rather than just repeated sentences.

We have further modified the algorithm to handle continuous events, where each

item has a timestamp instead of a position. This is, going from items distributed

in a discrete way to items distributed continuously with possible overlaps.

During the development of this work we have also analized some of the limi-

59
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tations of MFS. When looking for Maximal Frequent Sequences, it is difficult to

balance the minimum frequency threshold, and sometimes the MFS extracted are

more restrictive than we would like them to be. When using MFS as input for a

predictive model, it is not crucial to find the maximal sequences, but the most rel-

evant ones. In this case, frequency by itself is not a good criterion to stop looking

into longer sequences. For these reasons, we modified the algorithm in order to

introduce a discriminative power criterion, that will determine whether or not the

growth of a sequence should continue. This algorithm retrieves the sequences that

have more discriminative power respect to the corpus they are extracted from. We

name Maximal Frequent Discriminative Sequences the patterns that are extracted

using this process. In order to calculate the discriminative power of a frequent se-

quence we have used Information Gain; nevertheless other discriminative criteria,

such as Information Gain Ratio, should be explored.

With the help of MFS we have developed two systems to solve two common

problems in the field of DDI:

1) DDI Sentence Identification This problem consists in determining whether

or not a sentence incudes a drug-drug interaction description.

2) DDI Extraction This problem consists in determining whether or not two

given drugs in a sentence interact.

MFS are able to capture complex patterns such as multi-word terms, or gram-

matical patterns. Our hypothesis held that we can model these patterns as com-

mon subsequences with high probability of either describing DDI or not describ-

ing it. We have developed both systems based on MFS.

The first system, to approach the DDI Sentence Identification problem, was

completely based on MFS. For this approximation we generated three different

versions of the corpus. The first one consisted in replacing all drugs by their type

(e.g. phsu, antb, clnd, . . .). We named this version of the corpus 6drugs. The

second version of the corpus consisted in replacing all drugs by the token #drug#

and we named it #drug#. The third version of the corpus was the original version,

i.e., each drug was with its original name, and we named this version norm.

We obtained moderately good results, reaching a Precision of 0.68 with a Re-

call of 0.41 with the MFS extracted from the norm version of the corpus, and

Precision of 0.46 with 0.95 Recall with the MFS extracted from the #drug# ver-

sion of the corpus.
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We believe these results could be further improved by building a classifier that

takes into account the MFS extracted from each different version of the corpus,

since the norm version obtains a high Recall and the #drug# version of the corpus

obtains high Precision.

The second system presented in this thesis, to approach DDI Extraction, was

based on machine learnnig. The system had different features, namely bag of

words, word categories, MFS, token and char level features, as well as drug level

features. The classifier we used was a Random Forest. We participated with this

system at the First DDI Challenge 2011 competition and obtained 6th position,

with 0.6122 Precision, 0.5563 Recall and 0.5829 F-Measure and 0.6341 AUC-PR.

The system was tested with and without MFS in order to determine the influ-

ence MFS had. It obtained an increase of 0.02 in AUC-PR with MFS. However,

MFS were able to capture structures of the sentences that bag of words were not

able to describe.

Further improvements of the DDI Extraction system were made by replacing

the MFS extracted with MFDS. This produced a list of more relevant patterns,

and a manageable total amount of them. MFDS made practical the use sequences

with gap = 1, which produced an 8% improvement of Recall. Also, with MFDS

training the model was much faster.

We could either balance Precision and Recall or improve one at the expense

of the other. Depending on the kind of application that we are developing, we

can be more interested in one or the other. For example, if we are building an

autonomous application, without human supervision, to automatically tag sen-

tences containing drug-drug interactions, we might want to have a high precision.

However, if we can not afford losing sentences with drug-drug interaction, even

if we retrieve also sentences that do not contain them, then we should go for the

parameters that give high recall but less precision.

In general, we believe that MFDS are able to capture high level patterns re-

peated in the sentences and therefore are a good tool not only for DDI Sentence

Identification and DDI Extraction, but also in other applications where patterns

can be described with item sequences. We also believe that MFDS is the natu-

ral extension of the MFS concept when applied to classification tasks, and that it

should be our main track for further research.
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4.2 Further Work

Further work for the algorithm to extract MFDS:

1) The algorithm is in its early stage. Other discriminative power criteria, such

as Information Gain Ratio, must be tested.

2) In the version of the algorithm presented, in order to merge two candidate

sequences, the new generated candidate sequence must have a higher dis-

criminative power. Candidate sequences are merged until the discrimina-

tive power does not increase anymore. It could be the case that, even if

the discriminative power does not increase in iteration k, it could increase

in further iterations. We believe an interesting experiment would be to not

stop merging when the discriminative value decreases, but trying for a few

more iterations if the discriminative value increases. If it does not, then go

back to the highest discriminative value found.

3) In our current approach, when a merged k-length sequence has no higher In-

formation Gain than their (k − 1)-length subsequences, both subsequence

are kept. This leads to redundant patterns. New strategies to prune these

sequence should be explored.

Further work for the preprocessing of the corpus:

1) Each word of a sentence can be replaced by its POS tag. This way, we would

be able to extract, with the MFS algorithm, structures of sentences that are

repeated in a grammatical way.

2) The preprocessing of the corpus could be integrated in the MFS/MFDS ex-

traction algorithm in the form of taxonomies, as used in the GSP algorithm.

This would enable the patterns to mix tokens with different levels of prepro-

cessing, for example a word, a POS tag and a #drug# token. Nevertheless,

this would be a challenge when it comes to algorithm time complexity.

Further work for experimentation:

1) All the experiments in this thesis have been tested with a closed test dataset.

More comprehensive experimentation should be performed, with 10-fold



4.2. Further Work 63

cross-validation, in order to see a more accurate results for each configura-

tion. This way, we would be able to do a better and more informed decision

when selecting the best configuration of the systems.

2) With cross-validation, perform an exhaustive search of the best parameters

for the algorithm, i.e., number of iterations for Random Forest and number

of attributes to consider in each iteration. It would be specially useful to

investigate the relation between number of attributes, iterations and perfor-

mance.

3) When performing DDI Sentence Identification, we modified the corpus in or-

der to obtain three different versions: norm, #drug#, 6drugs. We obtained a

high Recall with the norm version of the corpus and high Precision with the

#drug# version. Building a classifier that takes into account the MFS ex-

tracted from each different version of the corpus could improve the overall

results.

4) We think an interesting experiment would be to merge the two approaches into

one DDI Extraction approach. The first system could be used to retrieve the

potential sentences that describe DDI and use those sentences to extract the

DDI with the help of the second system.

5) Even thought the algorithm adapted to continuous events has already been

used internally at Bitsnbrains S.L. with a private corpus, we would like to

apply it to public corpora to be able to analyze its performance and compare

it with approximations of other authors.

6) Our results suggest that a further relaxation of MFDS constraints, i.e., gap >

1, as well as more sophisticated pruning strategies should be the next steps.

7) Our system should be improved by complementing it with other state of the

art techniques used in the Protein-Protein Interaction field that have not

been explored yet during our research, such as character n-grams and co-

occurrences. Also, we could find patterns in the paths of the dependency

trees.
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Further work about the DrugDDI corpus:

Generating a corpus of these characteristics was a big contribution of Segura-

Bedmar (2010). The corpus was annotated by one experienced pharmacist. Nev-

ertheless, as we have seen, the corpus has some inaccuracies that can affect the

performance of the system, both in the training phase and in the evaluation phase.

We would like to set up a comprehensive review of the corpus by reviewing every

tagged drug and the tagged interactions. Each possible DDI should be tagged by

at least 3 annotators with 2/3 agreement on each sample. Such a set up would

allow us to 1) improve and/or guarantee the quality of the tags; 2) measure the

difficulty of the task.
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