
Implementation and Evaluation of

a Binary Interchange System for

XML-Applications in a Cellar Phone

Kazunori Matsumoto Arei Kobayashi Naomi Inoue

{matsu,kobayasi,inoue}@kddilabs.jp

KDDI R&D Laboratories

2-1-15 Ohara Kamifukuoka-shi Saitama 356-8502 Japan

Table of Contents

� Introduction
– Promising XML-applications and technical obstacles

– Problems of conventional compression methods

– Proposal for a binary interchange system
(The general XML document encoding/decoding method "XEUS")

� Specification of XEUS
– Overview, Contents delivery model

– XEUS sheet, Coding model

� Implementation and Evaluation
– XEUS Encoder Server

– XEUS Decoder on Java (CLDC)

– XEUS Decoder on BREW (Binary Run Time Environment for Wireless)

� Conclusion

Introduction
- Promising XML-applications and technical obstacles -

Applications in a cellar phone are prevailing owing to middleware.
– Java VM

– BREW (Binary Runtime Environment for Wireless)

Following XML-applications in a cellar phone are promising.
– SVG map

Merits: zoom-in , zoom-out, rotation, standard format

– PIM data synchronization

Merits: interoperation with PCs, standard format

– etc.

XML-base applications in cellar phones are promising because
of interoperable format, if the following two technical obstacles
are avoided.
– Limited bandwidth for transmission

Raw XML documents are inefficient to transmit.

– Limited CPU power

Raw XML document requires much computation cost for parsing.

Introduction
- Problems of conventional compression methods -

1. Generic compression method (e.g. gzip)
Compressed contents are uncompressed by an application in a handset.

Thus, the computation cost of uncompressing and parsing is needed. It is
shown later that the parsing cost is fatal to applications.

2. XML-aware compression methods (e.g. XMill, xmlppm)
XMill [1] divides a document into three tables (1) element/attribute names,

(2) strings such as element/attribute value, (3) tree structure, and compress
each table with a generic compressor. xmlppm [2] compress tree structures
with a special technique called as “Prediction by Partial Match”. These
methods may reduce data size better than “gzip”. But fatal parsing cost is
also needed.

3. Namespace-dependent compression method (e.g. WBXML: WAP
Binary XML)

WBXML [3] is specified by WAP (Wireless Application Forum [4]), and is a
pre-parsed binary format for a specific application. WBXML may reduces the
parsing cost, but the encoding and decoding program is hard to re-use
because the format is designed for the specific application.

Proposal for a binary interchange system

for cellar phone applications

� The requirements (design goal) are as follows:
– To deal with a non-specific XML documents

(not restricted to a specific schema)

– Pre-parsed stream to reduce decoder’s computation cost

The proposal is ``schema-aware compression’’.

�Encode/decode process is based on schema information.

� Schema information includes:

�Syntax (vocabulary, tree structure, data type)

�Code dictionary (binary representation of name)

�Schema information is known to both a sender and a receiver.

The general XML document encoding/decoding method "XEUS“ is a complete

example of the proposal. I will explain XEUS in the following sections.

Overview of XEUS

Xml document Encoding with Universal Sheet

� XEUS is a coding system for a general (non-
specific) XML document.

� It encodes/decodes with the coding table called
“XEUS Sheet”, which depends on the
namespace of a target document.

If the optimal coding table is prepared for every

namespace of an XML document (XHTML, SVG,

etc.), the rate of compression can be improved.

Contents delivery models for XEUS

There are three contents delivery
models as follows:

(1) XML documents are
encoded in advance.
Encoded binaries are stored
in a server.

(2) XEUS encoder library is
embedded in the server
which generates XML
documents dynamically.
The server generates
encoded data dynamically.

(3) XML document server has
no encoding function. XML
documents are encoded in
“XEUS Encode Server”,
which works as a gateway.

XEUS Decoder

Application

XEUS Sheet

(2) XEUS Encode Library

XML Document

XEUS Sheet

(3) XEUS Encode Server
(Gateway)

XML Document

(1) XEUS data

XEUS data

Internet

Client

Overview of XEUS Sheet

XEUS sheet sample:

<xeus version="2.0" xmlns="#xeus-sample" >
<head>
<root name=”sample_elem0” bit=”8”/>

code=”00000000”/>
</head>
<body alignment-level="all" compress="none" >
<element name=”sample_elem0”>
<attlist>
<attr name=”elem0_attr0” type=”implied”>
<value>
<char encoding=”Shift_JIS” length=”implied”/>

</value>
</attr>

</attlist>
<children bit=”8”>
<child_element name=”sample_elem1”

code=”00000001”
type=”required”/>

</children>

<element name=”sample_elem1”>
<attlist>
<attr name=”elem1_attr0” type=”implied”>
<value>
<number bit=”8” data=”UI” qt=”1”/>

</value>
</attr>
<attr name=”elem1_attr1” type=”required”>
<value>
<choice bit=”8” qt=”1”>

<list code=”00000000”>sample_value0</list>

<list code=”00000001”>sample_value1</list>

</choice>

</value>
</attr>

</attlist>

</element>
</body>

</xeus>

data type code dictionary

schema

XEUS sheet defines schema information and strategies of

compression (byte aligned or not, what compression method is

applied after the first encoding stage)

Overview of Coding Model

XEUS encoder serializes a XML document to the following six parts
recursively:

1. Element start code: defines start of an element.

2. Length: specifies the code-length of a target element.

3. Element symbol: specifies the code of a target element. The
code value is defined in a XEUS sheet.

4. Attribute existence code: specifies the existence of attributes
in a target element. Existence of each attribute is assigned to 1
bit.

5. Attribute value: specifies the value of an attribute. The data
representation is defined in a XEUS sheet. Multiple values in a
single attribute are accepted.

6. Element value: specifies the value of an element. The data
representation is defined in a XEUS sheet. Multiple values are
accepted.

Decoder application can re-construct a tree structure from 1,2,3,6.

Implementation of XEUS system

� XEUS Encoder Server [5]

– This server receives a user’s http request and relays it to a XML-

document server. Downloaded document from the document server

is encoded with the XEUS sheet specified by user’s request.

� XEUS Decoder on Java [5]

– The decoder is described in Java (J2ME/CLDC), which is a

middleware of many cellar phone.

– Decoder’s API is an extension of XMLPull API. Application can

receive values of elements/attributes directly as raw data type, not as

a string. (This reduces data binding efforts of an application.)

� XEUS Decoder on BREW [6]

– The Namespace-dependent decoder program described in C

language is generated from a given XEUS sheet. The program is

executed on BREW phone.

– The decoder’s API can be decided in a program generation stage.

Either SAX-like API or DOM-like API is available. Data binding of

elements/attributes values is also supported.

Evaluation of XEUS Encoder
- Experiment Environment -

apache2.0httpd

RedHat Linux 7.2OS

XMark [8]

SVGTarget Data

Xerces C++ 2.2.0 [7]XML parser

Ethernet (10Mbps)Network

640MBMemory

Pentium III 1GHzCPU

Configuration of XEUS Encode Server

The rate of markup tag is higher in SVG

documents than in XMark documents.

XMark documents have many values

whose data type is a string.

Compression strategy describe in XEUS

sheet is as follows:

�Byte alignment

�Second level compression is “gzip”

Size of a document is 10K to 100K bytes.

Evaluation of XEUS Encoder
- Comparison of compressibility -

10 30 50 100 300 1000
Document Size[Kbyte]

compressibility

[%]

0

25

30

35

40

45

50

55

60

65

XEUS

XMill

gzip

XMark documents

10 30 50 100 300 1000

[Kbyte]

[%]

0

15

20

25

30

35

40

45

50

55

XEUS

XMill

gzip

SVG documents

Compressibility = Size of encoded data / Size of original document

When the markup rate of a document, such as a XMark documet, is low,

compressibility of XEUS is almost same as that of other conventional methods.

In case of SVG documents which have high markup rate, XEUS is obviously

better than other conventional compression methods.

Evaluation of XEUS Encoder
- Encoding Time-

276.644118,274323.294102,111

119.31747,811167.47650,479

93.26739,021134.78740,805

67.24327,233100.87330,664

25.2668,94772.27620,550

18.9385,83237.70510,385

Encoding

Time

[msec]

Document

Size

[Byte]

(XMark)

Encoding

Time

[msec]

Document

Size

[Byte]

(SVG)

When the first occurrence of new

namespace, this XEUS encoder has

to parse a XEUS sheet. Time to parse

the XEUS sheet of SVG is 78

milliseconds, and time to parse that of

XMark is 103 milliseconds. Please

note that the process parsing a XEUS

sheet is needed at the first occurrence.

From this table, the encoding time is

almost in proportion to the document

size.

XEUS encoder can encode a

100KB document in about 300

milliseconds. This result shows the

encoding time of this encoder is

enough feasible.

Document size and encoding time

Evaluation of XEUS Decoder on Java

- Experiment Environment -

To count the

occurrence of

element/attribute

values.

Performance

Test

specification

A3012CA (KDDI)

A5303H (KDDI)

P504is (DoComo)

Cellar

phones

Model Name

SVG (11,502 byte)

XEUS sheet (3,300

byte)

Test

document

MXP1 [8]

kXML2[9]

MinML [10]

NanoXML/Lite [11]

TinyXML [12]

Conventional

SAX-like

parsers to be

measured

Known XML-compressor such as

XMill can not be executed on a cellar

phone because the object size of their

program is too large for a handset

resource. Only SAX-like parsers can

be executed on it. Therefore, KDDI

measured the time such a light-weight

parsers parses a raw text, and

compared XEUS’s decoding time with

them.

Evaluation of XEUS Decoder on Java

- Decoding Time -
Average of Decoding time [msec]

XEUS MXP1 kXML2 MinML TinyXML NanoXML0

7000

6000

5000

4000

3000

2000

1000

2150

85
325

16775

950

2314

23146

1260

21669 44927 25818

3088

1380

2928

2580

5588

1620

3445

A3012CA A5303H P504iS
cellular phone model

XML Parser

XEUS decoder is about 9 times faster than MXP1 which is

supposed to be the fastest in SAX-like XML parsers.

Evaluation of XEUS Decoder on Java

- Object Size (jar size) -

9.8KB6.8KB13.6KB11.3KB17.8KB8.9KB

TinyXMLNanoXML

/Lite

MinMLkXML2MXP1XEUS

Comparison of object size (jar size)

Object size of XEUS decoder is almost even in these light-

weight parses. From the point of object size, XEUS decoder

written in Java is a feasible solution for cellar phones.

Evaluation of XEUS Decoder on BREW

- Experiment Environment -

To count the occurrence

of element/attribute

values.

Performance

Test

specification

A5304T (KDDI)Cellar phones

Model Name

SVG (11,469 to 115986

byte)

XEUS sheet (3,300 byte)

Test

document

�gunzip + SAX2

�Generated XEUS

decoder (SAX API)

�Generated XEUS

decoder (DOM API)

�Man-made XEUS

decoder (SAX API)

Measured

item �Processing time of gunzip and

SAX2 are measured respectively.

�Commercial SAX2 parser for

BREW is provided by Reaxion [13].

�Man-Made XEUS decoder was

developed before the XEUS

decoder generator is available.

Man-Made XEUS decoder works

for a small subset of SVG

namespace.

Evaluation of XEUS Decoder on BREW

- Decoding Time -

2.75425.8902.76036.126

(0.582)

115,986

0.9342.3200.93810.683

(0.215)

39,709

0.3320.7550.3115.060

(0.070)

13,556

0.2950.5100.2704.171

(0.015)

11,469

Man-

Made

XEUS

XEUS

(DOM)

XEUS

(SAX)

gunzip+

SAX2

(gunzip)

Doc.

Size

Decoding Time [sec]

0

10

20

30

40

0 20 40 60 80 100 120
Document Size [Kbyte]

[sec]

� Generated XEUS decoder (SAX) is about 14 times faster than

gunzip+SAX2.

� Generated XEUS decoder (SAX) is even to Man-made decoder.

� Although gunzip is fast, parsing time for a raw text is very slow.

Evaluation of XEUS Decoder on BREW

- Object Size -

50,61626,64424,59622,012

Man-made

XEUS (SAX)

XEUS (DOM)XEUS (SAX)SAX2 [13]

Comparison of object size (byte)

As the memory space for BREW applications is about 150KB in

KDDI’s 5304T handset, object size of XEUS decoder is feasible

enough. Note that the object size of generated XEUS decoder is

much smaller than that of man-made XEUS decoder, although man-

made decoder has some limitations in the decode process.

Summary and Consideration

� Schema-aware compression is proposed. Schema-aware means
namespace-dependent. XEUS is a complete example of such a
compression method. KDDI implemented XEUS and evaluated it.
– Encoder: better compressibility than conventional methods, feasible

encoding time

– Decoder: feasible decoding time and object size are measured on
commercial cellar phones with different middleware (Java and BREW)

� Design goal is to reduce decoder’s computation cost. This implies
the reduction of transmission bandwidth.

� As applications in a cellar phone are assumed, document size is
10KB to 100KB.

� XEUS sheet is described in “yet another” schema language. But the
authors suppose current well-known schema language is NOT
enough to describe a code dictionary for transmission.

� Encoded binary by XEUS is not supposed to be used for random
access in a document, dynamic update and streaming. The
optimized binary format for such applications is much different to
current XEUS.

Bibliography

[1] H.Liefke and D.Suciu. Xmill: an efficient compressor for XML data, In Proceedings of
the 2000 ACM SIGMOD, pp.153-164,2000

[2] James Cheney, Compressing XML with Multiplexed Hierarchical Models, in Proc. of
the 2001 IEEE Data Compression Conference, pp. 163-172

[3] Bruce Martin and Bashar Jano: http://www.w3.org/TR/wbxml/

[4] Wireless Application Protocol Forum, Binary XML Content Format Specification Ver.
1.3, 2001

[5] Arei Kobayashi, kazunori Matsumoto and Naomi Inoue: Performance evaluation of
XML document Encoding with Universal Sheet, in Proc. of 2003 Forum on
Information Technology (FIT) (will be appered, in Japanese)

[6] Kazunori Matsumoto, Arei Kobayashi and Naomi Inoue: Generation of XML-Aware
Decoder for Mobile Phones, in Proc. of 2003 IPSJ Spring Conference, (in
Japanese)

[7] http://xml.apache.org/xerces-c/index.html

[8] A. Schmidt, F. Wass, M. Kersten, D. Florescu, M. Carey, I. Manolescu, R. Busse: Why
And How To Benchmark XML Database, SIGMOD record 30(3): 27-32(2001)

[8] http://www.extreme.indiana.edu/xgws/xsoap/xpp/mxp1/

[9] http://www.kxml.org/

[10] http://www.wilson.co.uk/xml/minml.htm

[11] http://nanoxml.n3.net

[12] http://www.grinninglizard.com/tinyxml/

[13] http://www.reaxion.com/

