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Abstract

Good alias analysis is essential in order to achieve high performance on modern processors, yet interproce-

dural analysis does not scale well. We present a source code annotation, #pragma independent, which

is a more flexible, intuitive and useful way for the programmer to provide pointer aliasing information than

the current C99 restrict keyword. We describe a tool which highlights the most important and most

likely correct locations at which a programmer can insert the pragmas. We show that such annotations can

be used effectively in compilers to achieve speedups of up to 1.2x.
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1 Introduction

Alias analysis, the identification of pointers which point to the same memory space, is an important part

of any optimizing compiler. While static alias analysis techniques exist (see [10] for a review), any static,

intra-procedural analysis will be limited by its lack of knowledge of whole program behavior. However, it is

possible for the programmer to provide this whole program knowledge by annotating the program suitably.

An example of such an annotation is the restrict type qualifier that was introduced in the ANSI C99

standard [2]. In this paper, we propose an alternative annotation that is simultaneously more powerful,

flexible, and intuitive than the restrict keyword. Section 3 describes the semantics of and motivation

for our new #pragma independent annotation. Section 4 compares our pragma to the ANSI C99

restrict keyword.

In Section 5 we present a semi-automated system for assisting programmers in appropriately annotating

their source code. In this system, the compiler highlights pointer pairs whose aliasing relationship cannot

be statically determined by an intra-procedural analysis, but whose non-aliasing would enable other opti-

mizations, and instruments the executable with run-time checks for aliasing. The executable is then run on

a sample input. The pointer pairs which did not exhibit run-time aliasing are then ranked using both static,

compile-time information and dynamic, run-time information. This ranking focuses the attention of the pro-

grammer on those pointer pairs which, with high likelihood, can be correctly labeled independent with the

greatest impact upon performance. The implementation details are described in Section 6.

In order to show the efficacy of the pragma and our tool, we present performance numbers in Section 7.

We compile using a conventional compiler, gcc, targeting both a simulated in-order single issue proces-

sor and the EPIC Intel Itanium processor. We also use an experimental compiler, CASH [3], to target a

reconfigurable architecture.

The true power of the pragma is hard to judge because of a chicken-and-egg problem: in order to eval-

uate the effectiveness of alias information, optimizations which take full advantage of such information are

needed. However, such optimizations are only implemented in a compiler that already provides substantial

alias information. For example, gcc does not have very sophisticated alias analysis and consequently does

not fully implement optimizations such as register promotion which would benefit greatly from improved

alias information. Therefore, it is not too surprising that for many benchmarks gcc cannot produce a sig-

nificant performance improvement using the information provided by the annotations while a more modern

compiler can. Even given these limitations, the use of independence pragmas can result in more than 20%

improvement for some benchmarks.

2 Related Work

Pointer analysis is an important part in any optimizing or parallelizing compiler as potentially aliasing

memory references can introduce false dependencies which inhibit optimizations and thread creation. While

much work has been done to improve the precision and efficiency of pointer analysis [10], an intra-procedural

static pointer analysis can not take advantage of whole program, dynamic information. Inter-procedural

pointer analysis performs a whole program analysis, but fails to scale well as program size increases [11, 22]

and is complicated by separate compilation and the use of library functions. In our method, the program-

mer provides pointer independence information which the compiler uses directly, just as it would use the

results of a complex and expensive alias analysis. The overhead in the compiler of supporting our method

is therefore virtually nonexistent.

Previous systems have used programmer annotations to provide memory aliasing information to the

compiler or to analysis tools. In these systems the annotation is a type qualifier and the purpose is to aid

in program understanding [1], program checking and verification [6, 8], or supporting type-safety [9]. In



void example(int *a, int *b, int *c)

{

#pragma independent a b

#pragma independent a c

(*b)++;

*a = *b;

*a = *a + *c;

}

Figure 1: An example where restrict can not be used, but code generation benefits from the use of the indepen-

dence pragma.

contrast, our annotation is not a type, but a precise statement of pointer independence. The compiler has

no obligation to ensure the correctness of the annotations and the purpose of the annotations is simply to

increase optimization opportunities and application performance. The ANSI C99 restrict type qualifier

was designed to promote optimization [2], but has shortcomings which are addressed more fully in Section 4.

Another solution to the problem of overly conservative alias information is doing dynamic disambigua-

tion at run-time. This can either be done completely in the compiler by generating instructions to check

addresses [16] or by a combination of compiler and hardware support [17, 14]. Hardware support allows the

compiler to speculatively execute instructions under the assumption that memory references do not alias. If

the assumption proves false, potentially expensive fix-up code must be executed. A hardware based solution

has the added advantage over both traditional pointer analyses and our approach in being able to successfully

optimize cases where pointers do alias, but only infrequently. On the other hand, our proposal requires no

special hardware and the final executable contains no extra instructions to check for aliasing.

3 #pragma independent

We propose a pragma which allows the programmer to provide the compiler with precise and useful pointer

independence information. The pragma has the syntax:

#pragma independent ptr1 ptr2

This pragma can be inserted anywhere in the program where ptr1 and ptr2 are both in scope. The pragma

guarantees to the compiler that, within the intersection of the scopes of ptr1 and ptr2, any memory object

accessed using ptr1 will be distinct from any memory object that is accessed using ptr2 and vice versa.

We also allow the use of the pragma with n arguments, where n > 2; this implies pairwise indepen-

dence between all pointer pairs from the argument list. Since the multiple-argument form does not provide

increased expressive power (except reducing the number of annotations required), it will not be discussed

further.

As an example, consider the C code in Figure 1; pairwise independence exists between the pairs (a,b)

and (a,c) but nothing can be said about the relationship between b and c. We have modified a recent

version of gcc targeting the Itanium architecture to understand and take advantage of the independence

pragma. The assembly code generated from this example is shown in Figure 2. Using the additional pointer

independence information, the compiler can successfully remove an unnecessary store to a.

The independence pragma is easy to use and reason about, since the programmer only has to take into

account the behavior of two pointers. Contrast this to the restrict keyword, which implies a relationship
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Without pragma With pragma

ld4 r14 = [r33] // r14 = *b; ld4 r14 = [r33] // r14 = *b;

;; ;;

adds r14 = 1, r14 // r14++; adds r14 = 1, r14 // r14++;

;; ;;

st4 [r33] = r14 // *b = r14; st4 [r33] = r14 // *b = r14;

st4 [r32] = r14 // *a = r14;

ld4 r15 = [r34] // r15 = *c; ld4 r15 = [r34] // r15 = *c;

;; ;;

add r14 = r14, r15 // r14 += r15; add r14 = r14, r15 // r14 += r15;

;; ;;

st4 [r32] = r14 // *a = r14; st4 [r32] = r14 // *a = r14;

br.ret.sptk.many b0 br.ret.sptk.many b0

Figure 2: The generated Itanium assembly code for the source in Figure 1. Using the information from the indepen-

dence pragma, the compiler can remove a store instruction. On the Itanium processor, this avoids a split issue in the

third instruction group, reducing the cycle time of the function.

between one pointer and all other pointers within the same scope (see the next section). Furthermore, this

type of information is exactly what an optimizing compiler needs when performing code motion optimiza-

tions such as partial redundancy elimination (PRE) and instruction scheduling.

4 Comparison to restrict

The formal definition of restrict takes up a full page of the C99 specification, not including another

page of usage examples. A simplified, but more rigorous and lengthy definition is given in [7]. Within gcc

the definition is interpreted to mean that no two restricted pointers can alias, but a restricted pointer and

an unrestricted pointer may alias. To correctly annotate a pointer declaration p with the restrict type

qualifier, it is necessary for the programmer to ensure that p does not alias with all other restricted pointer

declarations that are visible in the current scope. Unless restrict is only used sparsely, it becomes a

significant burden to the programmer to correctly reason about its correct application. Using #pragma

independent correctly, with its weaker but more precise semantics, requires the programmer to only

reason about a single pair of pointers. In addition, the pragma is capable of representing pointer relationships

that are not representable by restrict. For example, the pairwise independence of two pairs of pointers

as in Figure 1.

Besides convenience to the programmer, the independence pragma is also easier to use by the compiler.

The information provided by restrict does not directly map to the way conventional compilers use

pointer alias information. Within an optimizing compiler, pointer analysis is mostly useful to determine

that two pointers do not alias each other. While restrict can provide such pairwise information (if both

pointers are restricted) it can only be used if both pointers also exhibit the much more restrictive property

of not aliasing all restricted pointers. The independence pragma, by contrast, exactly maps to the internal

application of pointer independence information within the compiler. Indeed, the semantics of the pragma

were originally motivated by the needs of some optimizations of our CASH compiler.

Overall, the independence pragma is a more flexible, more intuitive, and more useful means of annotat-

ing source code to communicate pointer aliasing information to the compiler than restrict.
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void summer(int *arr1, int *arr2, int n, int *result)

{

#pragma independent arr1 result /* score: 15 */

#pragma independent arr2 result /* score: 12 */

#pragma independent arr1 arr2 /* score: 1100 */

int i, sum = 0;

for(i = 0; i < n; i++)

{

*arr1 += *arr2;

sum += *arr2;

}

*result = sum;

}

Figure 3: Sample code with pragma annotations and scores as produced by our tool-flow.

5 Automated Annotation

Figure 3 shows a code snippet which has been automatically annotated with candidate independence pointer

pairs. The scores heuristically estimate the effect that making the pair independent will have on improving

program performance. These scores, as described below, summarize both information about the static code

structure and execution frequencies. The pair (arr1,arr2) has a much higher score than the other two

pairs since these pointers are both accessed within the loop body. Knowing that they are independent allows

the compiler to load the values of *arr1 and *arr2 into registers for the whole loop execution (perform

register promotion). The pair (arr1,result) has a higher score than the pair (arr2,result), reflecting

the fact that there is an opportunity to schedule the stores to arr1 and result in parallel after register

promotion.

The above code fragment was automatically annotated by using the tool-flow depicted in Figure 4. Of

course, nothing prevents summer from being called with pointers that point to overlapping memory regions

as the arguments arg1 and arg2. Although the tool-flow checks whether this ever occurs for the profiling

input sets, this is, of course, no guarantee of the code correctness. It is the responsibility of the programmer

to verify the correctness of the annotations by inspecting all the call sites of summer. The annotation scores

serve as a heuristic to the programmer, focusing the attention on the pairs which are most likely to bring

performance benefits. As we show in Section 7, the scores closely track the 90-10 rule of program hot-spots:

there are very few hot annotations. Programmer effort is thus minimized.

The code instrumentation is performed with a modified version of gcc. gcc associates with each pair of

pointers a static score which estimates the effect on optimizations of declaring that pointer pair as indepen-

dent. Within gcc, pointer independence information is most useful for CSE/PRE and instruction scheduling

operations. Unfortunately, gcc does not have a very robust register promotion optimization pass, which has

been shown to benefit significantly from improved pointer independence information [15, 18]. Although

there are many possible ways to compute a relevant score using only static information for a given pointer

pair, our current implementation uses the simple, but effective, heuristic of counting the number of times

gcc’s optimization passes query for independence information between the two pointers.

Since pairs are aggressively generated without using inter-procedural analysis, some pairs will alias

at run-time and therefore should not be annotated as independent. Thus, gcc also instruments the program

executable to collect run-time information: for each pointer pair, before every use of a pointer of the pair that

is reachable by definitions of both pointers in the pair, gcc inserts both an aliasing check and a frequency
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Figure 4: Tool-flow for independence pragma source annotation. Notice that the programmer is in the loop,

certifying the correctness of the suggested annotations.

counter. When the executable is run, the check records any pointer pairs which alias, and thus are not

independent. The frequency counter is used to determine pointers dereferenced in frequently-executed code.

The compile-time and run-time information are combined by a script, which weeds out the pairs which

were discovered to alias and computes an overall score using both the static score and the frequencies

counts for each pair (currently by multiplying them). The script sorts the annotations by the overall score,

and can optionally annotate the original source code with the annotations whose scores are above a certain

programmer-selected threshold; this is how the code in Figure 3 was produced. The programmer’s effort can

then be focused on analyzing the source code having pairs with high overall scores. We show in Section 7

that the number of relevant annotations tends to be small even for large programs.

6 Implementation

We have added support for the independence pragma to both gcc and CASH. Within gcc, we have modified

the front-end to parse #pragma independent and, for each pointer variable declaration, maintain a

list of pointer variables which have been declared as independent of that pointer. Within the alias analysis

initialization phase of the gcc back-end, we then propagate this information to compiler temporaries. Since

independent pointers must point to completely independent memory objects, we also propagate the indepen-

dence information through address calculations. For example, p and p+3 are assumed to point within the

same “object”, and thus the independence information valid for p is assumed to be valid for p+3 as well.

Also, if p is assigned to q, we propagate whatever independence information we have from p to q as well.

Finally, when gcc’s optimization passes query for pairwise pointer independence, we use the independence

information if possible. Overall, relatively little code is needed to add full support for the independence

pragma to a conventional compiler.
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Within CASH, the processing of the pragma in the front-end follows the same flow as within gcc: the

SUIF [21] front-end parses #pragma independent and applies it as an annotation to the correspond-

ing variable declarations. We then run a dataflow analysis that propagates the independence information

through compiler temporaries and pointer expressions. In CASH may-dependencies between memory oper-

ations are first-class objects, represented by token edges [4]. A pointer disambiguation pass removes token

edges between memory references that it can prove do not alias; the disambiguator was modified to query

independence pragma information. The compiler can then aggressively take advantage of the increased

parallelism in the dependency graph since compiling to a reconfigurable fabric allows us to fully exploit

parallelism.

7 Results

7.1 Evaluation

We have evaluated the effectiveness of our automated annotation system and the ability of the modified

compilers to take advantage of the independence information on three very different machine models: (1)

We used our modified version of gcc to compile to the MIPS-like SimpleScalar [5] architecture which we

then simulated running on an in-order, single issue processor. (2) We used the same gcc version to compile

for a 733Mhz EPIC Intel Itanium processor [12]. Programs were compiled using the optimization flags -O2

-funroll-loops. (3) Finally, we used our CASH compiler to target a simulated reconfigurable fabric

connected to a realistic, bandwidth-limited memory system. Our results are obtained from the programs in

Mediabench [13], Spec95 [19], and Spec2000 [20]. When possible we ran the annotation tool on the training

sets and collected performance results from the reference sets.

Our two simulators provide cycle-accurate measurements, but are about three orders of magnitude

slower than native execution. The measurements on the real Itanium system are plagued by variability

from low-resolution timers and system activity. We have thus used different input sets for the simulated and

real system (short ones on simulators, large ones on the real system).1

The source code of all benchmarks has been annotated with independence pragmas using the our auto-

mated system. When possible, the alias checking phase of the annotation is performed using an input set

that is different from the input set used to evaluate performance. We do not manually inspect each individual

pragma that the system produces. However, all benchmarks produce the correct output when run with the

annotations.

7.2 Speed-ups

The execution speed-up for annotated code on the in-order, single issue simulated processor is shown in Fig-

ure 5. The effect of the independence pragmas is mostly negligible. This is not surprising as this architecture

is incapable of taking advantage of additional memory parallelism. Furthermore, the gcc SimpleScalar PISA

back-end is somewhat rudimentary. Few target specific optimizations are performed and the underlying ma-

chine model does not accurately or precisely describe the actual machine model. Even so, 124.m88ksim

demonstrates a 1.13 speed-up using the pragmas. Most of the remaining benchmarks either show little or no

improvement. A couple of benchmarks, mpeg2 e and gsm e exhibit small slowdowns. The reason for the

slowdowns is the fact that gcc’s scheduler uses a simplistic and inaccurate machine model.

The execution speed-up for annotated code on the Itanium is shown in Figure 6. As expected, the highly

parallel Itanium processor does better than the in-order SimpleScalar processor. 124.m88ksim show a

1Since the Mediabench benchmarks do not have large input sets, the real system measurements were too noisy to be included

in this paper; we are currently upgrading the kernel on our Itanium machine to obtain access to high-resolution hardware timers,

which will enable us to collect data for all benchmarks on all systems.
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Figure 5: Speed-up using #pragma independent annotated code compiled with gcc for a simulated

in-order, single issue processor.

Figure 6: Speed-up using #pragma independent annotated code compiled with gcc for an Intel Ita-

nium processor.

speed-up of 1.27, 177.mesa a speed-up of 1.08, and 132.ijpeg a speed-up of 1.02. The remaining

benchmarks either did not show a significant speed-up, or had too short a running time to be measured

precisely.

The execution speed-up for annotated code compiled for a reconfigurable fabric is shown in Figure 7.

Most benchmarks demonstrate meaningful speed-ups with the most significant being speed-ups of 1.28,

1.25, and 1.19 for 132.ijpeg, adpcm e, and epic d respectively. These speed-ups are conservative:
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Figure 7: Speed-up using #pragma independent annotated code compiled with the CASH compiler

for a simulated reconfigurable fabric. Speed-ups using just the few highest ranking independence pragmas

are also shown.

Figure 8: Score histogram for 132.ijpeg.

a 2x speed-up can be achieved for adpcm d (shown as adpcm d hand) when independence pragmas are

added by hand. The pragmas necessary to achieve this speed-up were not found by our automated system,

which is based on gcc, since the independence information would have not helped gcc optimize the code. To

verify, this, we compiled the hand annotated source using gcc and observed no performance improvement.
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Figure 9: Speed-Up for 132.ijpeg run on a simulated reconfigurable fabric as more high ranking pragmas

are added.

Bench total checked conflict useful

124.m88ksim 119 57 2 12

129.compress 3 3 0 6

130.li 56 21 3 6

132.ijpeg 490 142 8 22

134.perl 744 267 42 22

175.vpr 188 39 4 12

181.mcf 132 60 7 14

adpcm d 12 3 0 6

adpcm e 12 3 0 6

epic d 41 11 7 11

epic e 32 22 3 13

g721 d 0 0 0 0

g721 e 0 0 0 0

gsm d 36 10 1 9

gsm e 36 21 4 11

jpeg d 418 90 2 12

jpeg e 453 68 9 10

Bench total checked conflict useful

mesa 979 107 9 25

mpeg2 d 94 64 0 3

mpeg2 e 72 21 4 9

pegwit d 34 24 3 11

pegwit e 34 25 4 14

176.gcc 3470 2406 504 44

197.parser 159 144 38 12

256.bzip2 40 36 34 3

300.twolf 451 173 52 27

168.wupwise 3 3 0 3

171.swim 0 0 0 0

172.mgrid 7 7 1 5

173.applu 2 2 2 0

177.mesa 950 94 8 37

183.equake 30 13 2 6

188.ammp 252 82 11 11

301.apsi 463 362 3 14

Table 1: The columns represent: benchmark name, total pointer pairs instrumented, pointer pairs with non-

zero run-time checks, pointer pairs found to alias at run-time, number of most likely useful pointer pairs

(knee of histogram curve).

We expect that if the annotation system used the CASH compiler to find candidate pointer pairs, we would

see a significant performance improvement over our current results.

7.3 Scoring

One goal of our tool is to give the programmer a way to pass information to the compiler without increasing

the programming burden. We are thus evaluating the effectiveness of our tools in guiding the programmer

effort toward the most profitable code regions.

We have plotted the pragma score histograms for all programs. The plots look surprisingly similar to

each other; we are showing a representative one for 132.ijpeg in Figure 8. We are showing both static

and overall scores. The x axis is the normalized score of an annotation, binned in 20 equal intervals. The

y axis represents the number of annotations which have a score within 5% of the x value. For example, the

5% bar labeled “dynamic”, with a value of 3, shows that 3 annotations have a score between 5% and 10% of

the maximum score found. Both distributions have a sharp knee, which suggests a cut-off point for useful
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annotations. For this example, only 12 dynamic (the sum of the labels between 5% and 100%) annotations

have scores in the interval 5%-100% from the maximum score. These are the most likely to require the

attention of the programmer.

In Table 1 we give the pragma counts found by our automatic instrumentation system. The first three

columns show the total number of pragmas inserted, the number of pointer pairs which were executed at

least once for the given input set, and the number of pairs which were found to alias, thus whose annotations

are incorrect. The fourth column shows how many of the correct annotations are below the “knee” of the

curve (these were manually estimated by looking at the score distribution).

In order to verify that the high scoring annotations are indeed the most important we have carried out

two experiments. We annotate each program with only a small number of annotations, the ones with the

highest scores. Figure 9 shows how performance of 132.ijpeg improves as we add more pairs, in order

of decreasing score. Although 490 pairs were flagged as candidates by the tool, fewer than 30 of the highest

ranking pointer pairs are necessary to achieve nearly the same speed-up as using all the pairs.

Figure 7 presents results for all benchmarks, comparing the impact of using all annotations with the

impact of using only up to 10 (we use fewer annotations for the smaller programs). 132.ijpeg is the only

program which requires more than 10 annotations to attain the full benefit; in all other cases nearly the full

benefit of the annotations can be realized using just a few of the highest ranking pointer pairs.

8 Conclusion

Uncertainty about pointer relationships and the inability to perform whole program analysis frequently hand-

icap the compiler optimizations, particularly for languages like C. However, it is frequently the case that the

programmer has knowledge about pointers which could help the optimizer, but the language provides no

mechanism for expressing this type of information. In this paper we have presented a mechanism which

enables the programmer to specify to the compiler that certain pointers access disjoint memory regions

and quantified the benefits that can be derived from exploiting this mechanism. We have also presented

a tool-chain which uses the compiler optimizer and run-time information to suggest to the programmer

a small number of pointer pairs whose known non-aliasing could have a big impact on the program per-

formance. Allowing programmers to provide pointer independence information can result in meaningful

increases in performance. Of course, the programmer must verify that such annotations are safe. We con-

clude that programmer specified pointer independence is a scalable, effective alternative to inter-procedural

pointer analysis. Our modified version of gcc and the scripts to annotate source code can be found at

http://www.cs.cmu.edu/˜phoenix/independence.
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