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Abstract. Service-oriented architectures (SOAs) usually comprehend in-the-middle

entities such as proxies or service mediators that compose services abstracting

from the order in which they exchange messages. Although widely used, these

entities are usually implemented by means of ad-hoc solutions.

In this paper we generalise this composition mechanism by identifying the prim-

itive notion of aggregation. We formally define the semantics of aggregation in

terms of a process calculus. We also provide a reference implementation for this

primitive by extending the Jolie language, thus allowing for the experimentation

with real SOA scenarios.

1 Introduction

Service-Oriented Computing (SOC) is a programming paradigm for distributed systems

based upon the composition of services, autonomous computational entities which can

be dynamically discovered and invoked in order to form complex and loosely coupled

systems. Service-oriented systems are called Service-Oriented Architectures (SOAs).

Composition is the key aspect of SOC, and it is usually obtained through program-

ming methodologies that impose specific orders of interactions between services. Ex-

amples are orchestration and choreography, where the order of interactions is respec-

tively specified from the point of view of a single service or from that of the whole net-

work. We call this kind of composition flow-based, referring to its explicit programming

of the interaction flows. However, mechanisms based on constraining a specific order

of interactions are not the only possible approaches to composition [12]. In practice,

it is often the case that distributed networks are supported by entities such as proxies

and service buses, which can act as transparent intermediaries between services. These

entities are especially useful for handling the topology of an SOA, linking different

networks together, or for enacting some functionality that does not depend on the or-

der of interactions between the bridged services (e.g., logging). We call this kind of

composition flow-transparent.

Flow-based and flow-transparent compositions are represented by a multitude of

tools and specifications. For example, in Web Services, orchestration is usually achieved

by using WS-BPEL; choreography is addressed in terms of WS-CDL, YAWL, or BPMN.



On the other hand, many commercial platforms for SOC implement flow-transparent

composition through an Enterprise Service Bus (ESB) [6], a middleware that provides

an abstraction layer to integrate different services in a single SOA. The consumer ser-

vices communicate with the ESB which translates incoming messages by using a suit-

able protocol (e.g. REST , JNI, SOAP, etc.) and then routes their translated version to

the correct service. Flow-transparent composition comprehends also all the proxy ser-

vices used for specific tasks in network architectures, such as caching proxies, reverse

proxies, and load balancers. Even though flow-transparent composition is widely used,

there is no work, to the best of our knowledge, that studies its basic characteristics at

the foundational level of a programming model. In this paper we provide such a study,

presenting an interpretation in terms of a process calculus. We identify a basic mech-

anism called aggregation for programming flow-transparent composition. Aggregation

defines a proxy entity, called aggregator, which composes aggregated services in a

flow-transparent way. Aggregators can change the topology of an SOA by exposing the

interfaces (collections of operations and their types) of some aggregated services. They

can also implement custom functionalities through the specification of code that, by

construction, abstracts from the order in which communications are performed. These

enhanced aggregators, called smart aggregators, can for instance check the content of

a message for authorization credentials and then decide whether it must be forwarded

or rejected, or it can store some logging information.

We use our model to formalise some properties that we expect in flow-transparent

composition. For example, we show that for some aggregators flow-transparent com-

position does not interfere with the behaviour of flow-based composition, i.e. the order

of communications is always preserved. Moreover, we show that aggregators are trans-

parent to operations and interfaces allowing the design of a system that could be easily

maintained and adapted to small but also even structural changes.

We show how our study can be used in practice by presenting a reference implemen-

tation that extends Jolie [17], a full-fledged service-oriented programming language for

building SOAs which is based on the formal process calculus SOCK [8]. We introduce

smart aggregation in Jolie building on its support to interface-based composition and

structured data types [9, 15]. Our formal model is based on SOCK, ensuring that the

properties that we present are preserved in the implementation. It is worth noting that

even though Jolie was originally conceived for orchestrating services, its extension to

include flow-transparent composition is rather smooth since it exploits primitive Jolie

notions such as sessions and input/output operations. The rest of this article is struc-

tured as follows: in Section 2 we present some basic notions. In Section 3 we describe

the primitive for aggregation in terms of some simple examples while in section 4 we

provide its formalization in SOCK. Section 5 presents the implementation in the Jolie

language while Section 6 concludes, discussing some related work and indicating di-

rections for future research.

2 Network model

In this section we describe the basic notions that we need to define the deployment of

a network of services and, therefore, to define aggregation. A network consists of some



service definitions deployed at some locations and the structure of the connections be-

tween them. Our notion of connection depends on those of interfaces and communica-

tion points, which we define in the following.

We consider the following disjoint sets: the set Var of variables ranged over by x, y;

the set Val of values ranged over by v; the set Loc of locations ranged over by l; the set

O of operation names ranged over by o. Finally, we use the bold notation k to denote a

vector 〈k0, k1, . . . , kn〉.
In SOC, an interface describes the operations exposed by a service. Here we use a

simple definition inspired by the WSDL standard [3].

Definition 1 (Interface). An interface I is a set of one-way (OW) and request-response

(RR) operations with different names.

An OW operation describes an invocation that does not wait for a response; it is denoted

by o(x), where o is the name of the operation and x are its arguments. An RR operation,

denoted by o(x)(y), describes an invocation that waits for a response, so together with

the name o of the operation and its arguments x here we have also the arguments y

that are received back by the invoker. We assume that an interface I cannot contain two

operations with the same name. We write o ∈ I to indicate that an interface I contains

an operation whose name is o, omitting the arguments.

Service aggregation is based on the creation of a service (the aggregator) with an

interface that incorporates other interfaces of existing services. Therefore we introduce

a specific operation for manipulating interfaces. In particular, we introduce argument

extension, which is captured by the (overloaded) function extend that takes an (OW or

RR) operation, a list of arguments names and returns a new operation:

extend(o(x),x′) = o(xx′) extend(o(x)(y),x′) = o(xx′)(y)

The extend function can be defined over interfaces in the natural way:

extend(I,x′) = {extend(o(x),x′) | o(x) ∈ I}∪{extend(o(x)(y),x′) | o(x)(y) ∈ I}

The deployment of a service S is defined in terms of its communication points.

Definition 2 (Communication point). A communication point is a pair (I, l), where I
is an interface and l is a location.

We distinguish between input and output communication points. An input communica-

tion point (I, l) defines the operations (those contained in the interface I) that a service

exposes at the location l. These are the functionalities that other services can invoke.

An output communication point (I, l), on the other hand, specifies the operations (those

in I) that a service will invoke on location l. These are the functionalities that the ser-

vice requires from a given location. Given a service S we denote with In(S) its input

communication points and with Out(S) its output communication points.

In order to define the deployment of a network we need to define how its services are

connected. Intuitively a connection between a service S and a service S ′ allows the first

to invoke the operations of the second: connections are directed. We call a connection

between different services external connection.



Definition 3 (External connection). Given services S and S ′, an external connection

is a pair of communication points (out , in) such that in = (I, l) ∈ In(S), out =
(I ′, l) ∈ Out(S ′) and I ⊆ I ′.

Next we enrich the communication capability of a service by introducing the notion

of internal connection, which consists of a link between an input and an output com-

munication point in the same service. This notion allows the programming of bridge

services that can forward messages received on an input communication point to an

output communication point (thus another service).

Definition 4 (Internal connection). Given a service S an internal connection is a pair

(in, out) where in = (I, l) ∈ In(S), out = (I ′, l′) ∈ Out(S) and there exists a list k

of names of arguments such that I = extend(I ′,k).

Observe that the interface of in ∈ In(S) can be an extension of the interface of out ∈
Out(S) because we want to be able to modify the interfaces of aggregated services.

We say that a service is directly linked to another when there exists an external

connection from the first to the second. More loosely, a service is linked to another,

and can therefore invoke it, if there exists a (directed) path consisting of external and

internal connections from the first to the second.

3 Some motivating examples

In order to highlight the key concepts and advantages of our primitives for service

aggregation we consider, as an example, the case of a printer service exposing its func-

tionalities to an intranet. The intranet is trusted, so no authentication is required for the

invokers that want to use the printer. When we extend the use of the printer service func-

tionalities to an untrusted network, say the Internet, we require that the invokers send an

authentication token together with the other data required for using the printer. We can

easily model this scenario by using a smart aggregator service that forwards calls from

the Internet to the printer service, which acts as an aggregated service. This aggregator,

for each message received from the Internet, checks the authentication token and, if it is

correct, it forwards the rest of the message to the printer service. Conversely, the mes-

sages coming from the intranet do not need any authentication, hence they are directly

sent to the printer. Note that we do not modify the printer service: the aggregator is an

external service, and the printer service is not aware of its existence.

Graphically a scenario where two printers exposing the same interface are aggre-

gated is depicted in the following way:

codeExample 1

C

print(doc, key)

inA

A print(doc)

outP2

A

outP1

A

print(doc)
inP1

P1

inP2

P2



Now a scenario that constraints the printer at location loc1 to accept requests

only from internet users knowing the key “0000” while the printer at location loc2

can be used only by users providing the key “1111” can be implemented allowing

the aggregator service to execute the following code at every operation invocation.

if key == ”0000” then

forward loc1

else if key == ”1111” then

forward loc2

It is worth noting that aggregating services could also enhance the behavior of the

services since the aggregator could also provide new functionalities on its own. For

example, the aggregator service A in the printing setting could provide a new operation

get key(user id)(key) that, given an identifier of the client, returns the key that could

be used to exploit the printing facilities. In this scenario the client should first try to get

the key from the service A through the invocation of the operation get key and then,

by using the obtained key, it could proceed by invoking the print operation.

IP
code1

code2

Example 2

C

get key(user id)(key)

print(doc, key)

inA1

inA2

print(doc)

outA

inP

A

P

The new functionalities added by the aggregating services can be extremely useful in

practice. In the previous case, for instance, the operation get key could be exploited

for dynamically balancing the workload of the two printers.

4 The formal model

SOCK [8] is a process calculus for Service-Oriented Computing, featuring request-

response invocations as a native primitive. It provides the theoretical basis for the im-

plementation of the Jolie language [17]. In this section we extend SOCK with aggrega-

tion. We will omit some details that do not influence our presentation. Full definitions

can be found in [7].

First we introduce the notion of courier session, which specifies the code that has

to be executed by the aggregator before forwarding the message to the final recipient.

Next we introduce in the calculus the notion of communication points, which provide

an explicit specification of the deployment of services. This allows us to model internal

and external connections, and therefore communication among services which are not

directly linked (see the terminology introduced at the end of Section 2).



P ::= 0 null process

ǭ output

Σiǫi;Pi external choice

x := e assignment

if e then P else Q if then else

P ;P sequence

P |P parallel

Wait(c,y) wait after solicit

Exec(c, o,y, P ) exec after request

output ǭ :: = o(x)@out notification

o(x)(y)@out solicit

input ǫ ::= o(x) reception

o(x)(y){P} request

Table 1: Process Syntax

4.1 Session

A service in SOCK is a process that can instantiate multiple inner processes equipped

with a local state, called sessions. Sessions can send/receive messages and perform

computations. Session behaviours P,Q, . . . define the actions to be performed by ses-

sions. A selection of their syntax is reported in Table 1. We denote with P the set of

possible session behaviours. 0 is the null process; ǭ is an output, while ǫ is an input;

Σiǫi;Pi is a standard input-guarded choice; x := e assigns the evaluation of expres-

sion e to variable x. We leave the syntax for expressions undefined, assuming that they

are first-order expressions including variables and values in Val . if ethenP elseQ
is an if-then-else choice; P ;P and P |P represent, respectively, sequential and parallel

composition. Exec(c, o,y, P ) and Wait(c,y) are runtime terms that are only used in

the semantics. Exec(c, o,y, P ) represents a server-side running request-response: P
is the process computing the answer, o the name of the operation, y the vector of vari-

ables to be used for the answer, and c the private channel to use to send back the answer.

Symmetrically, Wait(c,y) is the process waiting for the response on client-side: c is

the channel used for receiving the answer and y the vector of variables to be used for

storing the answer. An input ǫ can either be a one-way (OW) o(x) or a request-response

(RR) o(x)(y){P}, where o is the name of the operation, x is the vector of variables

where to store the received information, and P is the process that has to be executed

before sending the information contained in y. An output ǭ can either be the invocation

of an OW operation o(x)@out (called notification) or of an RR operation o(x)(y)@out

(called solicit-response), where o is the operation name, x is the vector of variables con-

taining the information to send, y the vector of variables to store the response, and out

specifies the output communication to invoke. An output o(x)@out (or o(x)(y)@out)

is well formed if o is contained in the interface of the used output communication point,

namely out = (I, l) implies o ∈ I .

Let σ : Var → Val be a memory map that associates values to variables and let M

denote the set of possible memory maps.

Definition 5 (Service session). A service session T is a pair (P, σ). We denote with

P = P×M the set of possible service sessions.

The semantics of a (service) session is specified by a labelled transition system (lts):

(P,LabelsP,→P). LabelsP is ranged over by α which is defined as follows:



RECEPTION: (o(x), σ)
o(v)
−−−→P (0, σ[v/x])

NOTIFICATION: (o(x)@out , σ)
o(σ(x))@out

−−−−−−−−→P (0, σ)

SOLICIT: (o(x)(y)@out , σ)
↑o(σ(x)) 7→νc@out

−−−−−−−−−−−→P (Wait(c,y), σ)

SRESP: (Wait(c,y), σ)
↓c7→o(v)
−−−−−→P (0, σ[v/y])

REQUEST: (o(x)(y){P}, σ)
↑c 7→o(v)
−−−−−→P (Exec(c, o,y, P ), σ[v/x])

REXE:
(P, σ)

α
−→P (P ′, σ′)

(Exec(c, o,y, P ), σ)
α
−→P (Exec(c, o,y, P ′), σ′)

RRESP: (Exec(c, o,y,0), σ)
↓o(σ(y))@c
−−−−−−−→P (0, σ)

CHOICE:
(ǫi,σ)

α
−→P(Qi,σ

′)

(Σiǫi;Pi,σ)
α
−→P(Qi;Pi,σ′)

ASSIGNMENT:
[[e]]σ=v

(x:=e,σ)
τ
−→P(0,σ[v/x])

Table 2: Session semantics

α ::= τ Silent Action ↑ o(v) 7→ νc@(I, l) Solicit

o(v)@(I, l) Notification ↓ c 7→ o(v) SResponse

o(v) Reception ↑ c 7→ o(v) Request

↓ o(v)@c RResponse

τ is an internal action. o(v)@(I, l) and o(v) model respectively the delivery and the

reception of an OW operation. Label ↑ o(v) 7→ νc@(I, l) models the invocation of an

RR operation to the output communication point (I, l), where νc denotes the new pri-

vate channel c created for receiving the response later, while label ↑ c 7→ o(v) models

the reception of an RR operation on the private channel c. RR invocations are closed

by labels ↓ c 7→ o(v) and ↓ o(v)@c, which denote respectively the reception and the

delivery of the response. The transition relation →P is the least relation that satisfies

the rules in Table 2 (we report only a selection) and that is closed up to structural equiv-

alence ≡ (namely the least congruence relation satisfying the axioms P |Q ≡ Q|P ;

P |(Q|R) ≡ (P |Q)|R; P |0 ≡ P ; 0;P ≡ P ). We briefly describe the rules in Table 2.

Rules RECEPTION and NOTIFICATION model the reception and deliver of the one-way

operation o(x). Rule SOLICIT says that when a service sends a RR operation o(x)(y)
it establishes a fresh channel c on which it then waits for the answer. Once the answer

is received the results are stored in variables y as described by rule SRESP. Rule RE-

QUEST models the reception of a request for the RR operation o(x)(y){P} on channel

c: the received values are stored in variables x and then process P is executed. The ex-

ecution of process P is modeled by rule REXE. Once process P terminates the values

contained in variables y are sent back to the invoking service on channel c, as modeled

by rule RRESP. In ASSIGNMENT, [[e]]σ denotes the evaluation of expression e on σ.

The rule CHOICE is standard.

4.2 Services

We define now the semantics of a service, building on that of a service session. A ser-

vice is responsible for the creation and management of its sessions that, like threads in



processes, are the entities actually implementing the functionalities required by the in-

vokers. We introduce aggregation at the service level with the primitive agg(List). This

primitive specifies the internal connections of the aggregator service and the courier

process. A courier C has the syntax:

C ::= o(xz) ❀ P̂ | o(xz)(y) ❀ P̂

where o(xz) and o(xz)(y) are the input operations that should be forwarded and P̂
is the process to be executed. The courier process P̂ differs from a standard session

process P in the fact that it cannot receive inputs, meaning that the term Σiǫi;Pi can

not appear in P̂ , and in the fact that it can contain the new term forward(out) that

forwards the message that has activated the courier session to the output communication

point out. We denote by C the set of possible couriers ranged over by C, and by ∆ the

parallel composition of couriers, that is: ∆ = C | C|∆. We assume that two couriers

in a ∆ never start with a same operation o. We write C ∈ ∆ for saying that C is in

∆. The idea is that when an input o(xz) (resp. o(xz)(y)) arrives to the service the

corresponding courier o(xz) ❀ P̂ (resp. o(xz)(y) ❀ P̂ ) is considered and a new

session that we call courier session is created. The process of this courier session is

obtained by replacing every occurrence of the term forward(out) in P̂ by the term

o(x)@out (resp. o(x)(y)@out). We denote this substitution by P̂ [o(x)] when the input

message is an OW operation, and by P̂ [o(x)(y)] when the input is an RR operation.

Thus, when a service receives an input o(v) that matches the courier o(xz) ❀ P̂
the service creates a courier session (P̂ [o(x)], σ⊥[v/xz]) where σ⊥ denotes a fresh

memory map. If instead the input o(v)(y) that matches the courier o(xz)(y) ❀ P̂ is

received, the service creates a courier session (Exec(c, o,y, P̂ [o(x)(y)]), σ⊥[v/xz])
where c is the channel to be used to send the reply.

Observe that the input operation that activates a courier session and the output op-

eration performed by the forward term are related by the extension function, indeed

o(xz) = extend(o(x), z) and o(xz)(y) = extend(o(x)(y), z). This models the fact

that the newly created session executes the process P̂ that consumes part of the input

(namely z) and then forwards the remaining information 4.

Note also that the term courier session just indicates a session that is created from

a courier process P̂ , once such a session has been created there is no difference with a

standard session.

In this paper we abstract from how a service can route an incoming message to the

right internal running session, since it is an orthogonal aspect to our presentation. The

interested reader may consult [16]. Here we simply assume that messages are delivered

to the right session. The sessions in execution at a given instant of time are specified

by the execution environment E . We will denote by ε the empty execution environment

and by T1| . . . |Tn the environment having T1, . . . , Tn (n ≥ 1) as session. Operator | is

commutative. We can now define the primitive for aggregation presented in Section 3.

The syntax is agg(I) where I is a list of tuples of the form 〈in, {out1, . . . , outn}, ∆〉
and:

4 In the actual implementation the output communication point in a forward primitive can be

omitted if it can be unambiguosly determined by looking at the deployment information of the

service.



START:
(P, σ⊥)

α
−→P (P ′, σ)

〈In,Out〉P ⊕ agg(I)[[E ]]
α
−→S 〈In,Out〉P ⊕ agg(I)[[E|(P ′, σ′)]]

COUR1:
α = o(v) |v| = |xz| 〈(extend(I, z), l), {out1, . . . , outn}, ∆〉 ∈ I o ∈ I o(xz) ❀ P̂ ∈ ∆

〈In,Out〉P ⊕ agg(I)[[E ]]
α
−→S 〈In,Out〉P ⊕ agg(I)[[E|(P̂ [o(x)], σ⊥[v/xz])]]

COUR2:
α =↑ c 7→ o(v) |v| = |xz| 〈(extend(I, z), l), {out1, . . . , outn}, ∆〉 ∈ I o ∈ I o(xz)(y) ❀ P̂ ∈ ∆

〈In,Out〉P ⊕ agg(I)[[E ]]
α
−→S 〈In,Out〉P ⊕ agg(I)[[E|(Exec(c, o,y, P̂ [o(x)(y)]), σ⊥[v/xz])]]

EXE:
(Q, σ)

α
−→P (Q′, σ′)

〈In,Out〉P ⊕ agg(I)[[E|(Q, σ)]]
α
−→S 〈In,Out〉P ⊕ agg(I)[[E|(Q′, σ′)]]

Table 3: Service semantics

– in = (extend(I,x), l) is an input communication point, where x denotes the array

of additional arguments that the incoming messages of interface I should provide;

– {out1, . . . , outn} = {(I, l1), . . . , (I, ln)} is a nonempty set of output communica-

tion points, sharing the same interface;

– ∆ denotes the courier behaviour related to the operations of I , such that for ev-

ery forward(out) contained in the courier processes in ∆ we have that out ∈
{out1, . . . , outn}.

We can finally formally define a service. We use S to denote a service and S to denote

the set of all possible services.

Definition 6 (Service). A service S is defined as:

S ::= 〈In,Out〉P ⊕ agg(I)[[E ]]

where In and Out are the set of input and output communication points of the service;

P specifies the behaviour of the service sessions; agg(I) specifies the aggregating be-

haviour of the service; E is the environment of the executing sessions.

Observe that the internal connections of a service engine is specified by I. For every

element 〈in, {out1, . . . , outn}, ∆〉 in the list I we have a corresponding set of internal

connections {(in, out i) | 1 ≤ i ≤ n}. Thus, as expected, we have an internal connec-

tion every time that we perform aggregation in a service.

A service is well-formed if for every input communication point in = (I, l) in In

we have that for every operation o ∈ I exactly one of the following holds:

– P can receive in input the operation o;

– o is aggregated, namely there exists at least one tuple 〈in, {out1, . . . , outn}, ∆〉 ∈
I such that in = (I, l) ∈ In , {out1, . . . , outn} ⊆ Out , and o ∈ I .

This means that every operation declared by an input communication point of a service

engine is either implemented by the service itself or aggregated.

From the above definition we can observe that a service consists of two main com-

ponents: P and agg(I). The first one specifies the behaviour of its internally imple-

mented sessions, while the second one specifies which interfaces the service aggregates



NOT/REC:
S1

o(v)@(I,l)
−−−−−−→SS′

1 S2

o(v)
−−−→SS2 (I,l)∈Out(S1) (I,l)∈In(S2) o∈I

S1|S2

µ(o(v))
−−−−−→N S′

1|S
′
2

SOL/REQ:
S1

↑o(v) 7→νc@(I,l)
−−−−−−−−−−→SS′

1 S2

↑c 7→o(v)
−−−−−→SS′

2 (I,l)∈Out(S1) (I,l)∈In(S2) o∈I

S1|S2

µ(↑o(v))
−−−−−→N S′

1|S
′
2

RES:
S1

↓c 7→o(v)
−−−−−→SS′

1 S2

↓o(v)@c
−−−−−→SS′

2

S1|S2

µ(↓o(v))
−−−−−→N S′

1|S
′
2

S-EXE: S
τ
−→S′

S|N
τ
−→NS′|N

Table 4: Network semantics

and how the service manipulates the incoming messages before forwarding them to the

aggregated communication points. Observe that a simple form of aggregation where

messages are only forwarded, as in Example 2 of Section 3, can be seen as a special

case of the more general notion of smart aggregation where messages are elaborated by

the courier process. In fact, in the first case the courier is only composed by the forward

primitive (P̂ = forward(out)). Hence, without loss of generality, we can assume that

a courier is defined for every aggregated operation.

The semantics of the service engine is specified by an LTS (S,LabelsP,→S) where

→S⊆ S × LabelsP × S is the least relation that satisfies the rules in Table 3, where

σ⊥ denotes a fresh memory map, and its main features are the following. Rules START,

COUR1, and COUR2 model the creation of sessions and courier sessions. Rule START

is standard: when an operation implemented by the service is invoked a new session is

created that will handle the request. Rules COUR1 and COUR2 are structurally similar:

they create a session to handle the arrival of an aggregated operation. These sessions

run a courier code where all the forward primitives are replaced by an output primitive.

The last rule, EXE, models the execution of an existing session.

4.3 Network

Definition 7 (Network). A network N is a parallel composition of service engines:

N ::= S | N|S .

As argued above, the different services in a network can communicate when they are

connected through their input and output communication points. Table. 4 reports the

transition rules for a network of services. The first three rules model the communi-

cation between services in a network, while the rule S-EXE models the internal evo-

lution of a service in a network, namely the execution of service actions that do not

involve input/output operations. Rule NOT/REC models the one-way communication

between two services, while request-response communications are modeled through the

two rules SOL/REQ and RES which represents, respectively, the delivery and reception

of an RR operation and the delivery and reception of the answer to an RR operation. The

communication rules describe both direct communication between directly connected

services, and aggregated communication between services connected by a sequence of

external and internal connections.

4.4 Properties

We are now going to show the adequacy of our model by formalizing some proprieties

that the flow-transparent mechanism of aggregation preserves, namely flow-based neu-



trality, operation transparency, and interface transparency. In the following 〈β1, . . . , βn〉
(〈β1, . . . , 〉) denotes a finite (infinite) trace. The set [[N]] of maximal finite and infinite

traces of a network N are defined as follows:

[[N1]] = {〈β1, . . . , βn〉|∃N2, . . . ,Nn+1 ∀i Ni
βi
−→N Ni+1 ∧ for any β Nn+1 6

β
−→N} ∪

{〈β1, β2, . . . 〉|∀i > 1 ∃Ni Ni−1

βi−1
−−−→N Ni}

The flow-based neutrality propriety states that the behaviour of a system of services

does not change when the messages are rerouted through an aggregator. This is guar-

anteed by the fact that a simple aggregator, i.e. an aggregator that only forwards the

messages, does not alter the flow between the invoker and the callee as stated by the

following.

Proposition 1 (Flow-based neutrality). If S1 is a service having output communica-

tion point (I, l), S2 is a service having input communication point (I, l), A aggre-

gates the interface I of S2, and S ′
1 is the service obtained from S1 by replacing all

the locations l with the locations of the A aggregator, then 〈β1, β2, . . . 〉 ∈ [[S1|S2]] iff

〈β′
1, β

′
2, . . . 〉 ∈ [[S ′

1|A|S2]] where β′
i = βi, βi if βi is a label involving an operation in

I , β′
i = βi otherwise. Analogously for the finite traces.

The property of operation transparency states that the forwarding of the messages

to aggregated services does not depend on the names of the aggregated functionalities.

This property is guaranteed by the forward(out) construct. In fact, by definition,

this construct does not depend on the name of the single operations in the aggregated

interface, but it redirects all the operations in the interface to the corresponding output

communication point.

Interface transparency means that it is possible to reuse aggregators definitions

whenever the interfaces of the aggregated services are modified. Since addition or dele-

tion of operations to an interface can be seen as merge or partition of interfaces, the

interface transparency property is guaranteed by the fact that it is possible to merge

two or more aggregators providing different functionalities into one aggregator without

modifying the courier code. In the following, we denote with AI,S the aggregator that

aggregates the interface I of the service S .

Proposition 2 (Interface transparency). Assume that I1, I2 are interfaces, C, S are

services and S has input communication point (I1 ∪ I2, l). Then [[S|C|AI1,S |AI2,S ]] =
[[S|C|AI1∪I2,S ]].

We argue that these three properties are the basic ones that a language allowing flow-

transparent composition should observe. Indeed the programmer thanks to the flow-

based neutrality could reuse existing orchestrators, and thanks to operation and interface

transparency can forget about low level, repetitive and usually error prone details. The

combination of these three proprieties allows the development of a modular system

that can be easily and quickly modified to accommodate the need of a fast changing

environment.



5 Implementation in Jolie

In this section we substantiate our approach by showing the use of the new aggregation

primitives that have been included in the Jolie language. Here we will just outline the

use of this new primitives for the implementation of the examples introduced in Section

3, for a detail description please see [7] instead.

In order to define the aggregator of Example 1 we need to extend the interface of

the printer by adding a new argument. The operation that allows us to extend every OW

operation of an interface with an additional argument of type KeyType can be defined

by using the (new) keyword interface extender as follows:

interface extender AuthIntExtender { OneWay: *(KeyType) }

Exploiting this new construct we can now define the new input communication point of

the aggregator in the following way

inputPort AggregatorPort {
Location: "socket://localhost:8000"

Protocol: soap

Aggregates: { Printer1Port, Printer2Port } with AuthIntExtender

}

Here the keyword Aggregates that we introduce allows us to specify which services

are aggregated. This is obtained by declaring that the output ports Printer1Port and

Printer2Port (defining the output communication points to invoke the printer services)

are aggregated in the input port AggregatorPort that defines the input communication

point of the aggregator service. The input port specifies that messages are accepted on

the port 8000 using the socket mechanism and the SOAP protocol.

The primitive Aggregates is used here to aggregate the two printers by using the

extended interface obtained through the AuthIntExtender operator.

To complete the definition of the aggregator we just need to specify the courier ses-

sion code. If IP is the interface of the printers this can be done using the new keyword

courier as follows:

courier AggregatorPort {
[ interface IP( request ) ] {

if ( request.key == "0000" ) {
forward Printer1Port( request )

} else if ( request.key == "1111" ) {
forward Printer2Port( request ) } } }

The reading of the previous code should be immediate.

Finally, we use Example 2 to show how functionalities can be added to an aggrega-

tor service. Here the goal is to have an aggregator that, besides forwarding the messages

to the printer, is also able to provide the user with the key needed for accessing the

printer service. Such a key can be obtained by invoking the get key(user id)(key)
operation, which is included in the new interface defined as follows

interface AggregatorInterface

{ RequestResponse: get key(string)(string) }



Suppose that the behaviour of the aggregator service that we want to model is the fol-

lowing: whenever it receives the get key(user id)(key) operation it returns the key

”0000” unless the name of the user is John, in which case it returns the key ”1010”.

This can be implemented as follows:

main {
get key( username )( key ) {
if ( username == "John" ) { key = "1010" }
else { key = "0000" } } }

Now, in order to completely define the aggregator of Example 2, we just need to modify

the input port of the aggregator in the following way.

inputPort AggregatorPort {
Location: "socket://localhost:8000"

Protocol: sodep

Interfaces: AggregatorInterface

Aggregates: Printer1Port with AuthIntExtender

}

Notice that now the input port has a new field Interfaces that specifies the additional op-

eration that the aggregator provides on its own, in addition to those that are aggregated

by using the construct Aggregates.

The Jolie code encoding the examples of Section 3 can be retrieved at [1].

6 Related work and conclusions

In this work we studied the foundational aspects of flow-transparent composition of

services in the context of SOA. We identified a basic mechanism, called aggregation,

that allows programmers to join service functionalities in a loosely coupled, interface

based, and behavioural transparent way. We formally defined aggregation in terms of a

process calculus and we provided a reference implementation in terms of an extension

of the Jolie language. Despite the simplicity of the examples that we provided, it should

be clear that aggregation can be used to build, in a rather easy way, large applications

along the Enterprise Integration Patterns guidelines.

To the best of our knowledge, this work is the first attempt to bring primitives for

the aggregation of services at the same level of the language that is used to define the

behavior of a service. Indeed, existing approaches provide tools that define aggrega-

tion by mixing different existing solutions. Our work goes in the opposite direction: we

englobe into a unique language, with a precise semantics, all the features needed to de-

fine services and their aggregation. This facilitates the development of correct software,

since the aggregating primitive enforces syntactic and semantic checks which allows

to easily prove relevant properties, as previously shown. This advantage is particularly

relevant when considering practical, commercial tools for services integration and com-

position: in this context often the Enterprise Application Integration (EAI) framework

[20] is used, which is usually composed by a collection of technologies and services.

On the market one can find several EAI mature technologies developed by leading IT



companies such as IBM, Oracle and Microsoft. Usually these are implemented by en-

hancing standard middleware products, often using an Enterprise Service Bus (ESB)

[6]. Differently from our approach, all these tools need to operate on top of several

existing languages and primitives: for instance, it is not usually possible [24] to im-

plement Enterprise Integration Patterns (EIPs) [10] relying solely on BPEL constructs.

This complicates the life of programmers and facilitates the introduction of errors.

Our aggregation mechanism could resemble inheritance in object-oriented languages.

However, while inheritance allows the reuse of the code of methods, in aggregation

what is reused is the executing service itself, since the computation for an aggregated

operation invocation is delegated to the aggregated service. We see this as a natural

difference, given the fact that aggregation operates in a distributed setting and, as such,

locality plays an important role. WSDL [3] is a description language for Web Services

that features communication ports. WSDL 2.0 features interface inheritance, allowing

an interface to be extended with other operations. This recalls our mechanism of extend-

ing an interface using the aggregation primitive. However, in WSDL one can not extend

the data type of an operation when using interface inheritance, but only add new opera-

tions. The literature reports several attempts of using work-flow techniques [5, 19], AIP

planning [23, 4], theorem provers [18, 22] to compose service in an automatic way. Usu-

ally these approaches are computationally difficult (often these problems are NP-hard),

they make a lot of strong assumptions (like the presence of a common ontology to de-

scribe the service functionalities) and they do not scale up to larger systems. In our work

we focus on a simpler form of composition with less ambitious goals. Our aggregation

mechanism is strongly based on interfaces. There exist other models that exploit types

for describing service composition, such as those based on session types [11]. These

models, however, are mainly behavioural since they focus on aspects such as the or-

der of message exchanges used in the composed services. The aggregation mechanism,

instead, focuses on the structure of a service-oriented network and set of operations

offered by the composed services. Aggregation and typed behavioral composition play

two different, complementary, roles and as future work we plan to add behavioral types

to our framework. We also plan to introduce a type system for communication points

and connections in order to check the absence of “dangling” output communication

points. Moreover we believe that flow-transparent composition facilitates the design of

a SOA, since some architectural design decisions may be taken rather early, demanding

to the implementation of the (code in the) courier sessions some details.

As another line of future work we are investigating the introduction of dynamic ag-

gregation of services. We would like to extend the current form of static aggregation

in order to support dynamic changes of the network topology, thus allowing dynamic

creation and deletion of communication points and connections. This could be impor-

tant for the development of adaptable systems. In this context Jolie could represent

an advantage for supporting session stickyness, i.e. the support to track session refer-

ences in aggregators such as load balancers, since Jolie statically defines the structure

of session references (correlation sets) along with service interfaces [16]. Finally our

aggregate primitive could be included also in other service-oriented languages based

on Web Services, such as WS-BPEL [2], or in other models that are used to formalise

service-oriented programming such as those in [14, 13, 21].
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