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We derive a closed-form expression for the message collision probability in the

IEEE 802.3ah Ethernet Passive Optical Network (EPON) registration scheme.

The expression obtained, although based on an approximation, shows a good

match with simulation results. We use the results of our analysis to compute the

size of the most efficient contention window and the most efficient number of

nodes serviced by a given window size. © 2005 Optical Society of America

OCIS codes: 060.2330, 060.4250.

1. Motivation

Protocols for emerging access network technologies such as Data-Over-Cable Service In-

terface Specification (DOCSIS) [1], Ethernet Passive Optical Network (EPON) [2], and

some wireless technologies include a preliminary phase where the subscriber device must

register with a head end or base station residing at a central office. Since this is the first

communication between the head end and the subscriber device, no information about key

parameters, such as latency or timing, is available to either party. Subscriber devices may

be located at random distances unknown to the head end. As a result, most protocols rely

on some collision avoidance scheme to reduce contention in the use of the communication

channel. The recently adopted IEEE 802.3ah EPON standard prescribes the random delay

scheme for this purpose. In this scheme, the head end broadcasts the size of a contention

interval. The nodes, upon receiving this message, wait for a uniformly random interval

and then transmit their registration message. In this paper, we derive a closed-form expres-

sion for the probability of message collision in this scheme and validate our result through

simulation.

To our knowledge, this is the first attempt at computing the probability of collision for

the IEEE EPON registration scheme. Although previous work in this area [3, 4] serves as

an excellent general reference, its focus has primarily been on the stability and throughput

of multiaccess schemes. Moreover, most of the assumptions (Poisson arrivals, backlogged

nodes, etc.) are either not relevant to the IEEE EPON registration scheme or are out of

the scope of our current work. For example, before the average success probability in a

single registration cycle—the focus of our present work—is known, the multistep perfor-

mance of the scheme cannot be analyzed. Our own past work [5] focuses on the high load

performance characterization of the IEEE EPON registration scheme through simulations.

A more recent analysis [6] is restricted only to the simpler case of identically distanced

nodes. We propose a more generic model applicable to identically distanced as well as ran-

domly distributed nodes. Our model includes the random round-trip delay together with the

random contention window size. The model is parameterized by message size, contention

window size, and round-trip time and is therefore directly applicable to a practical analysis

of the IEEE EPON registration protocol.
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2. Modeling Registration of an IEEE EPON Device

Figure 1 illustrates the IEEE EPON registration scheme. In this paper, we will focus on

only the first step in the registration scheme: the transmission of the registration request.

Subsequent steps cannot occur until the first step is completed successfully. As per the

EPON protocol, the head end broadcasts a discovery message to signal the beginning of a

special interval reserved for new-node registration. A new node, upon receiving it, replies

with a registration request message transmitted after a random wait. If two such registration

messages, say of length k each, arrive at the head end overlapping in time, then there is a

collision. Thus, to model a collision we must calculate the arrival time of a message at the

head end. We observe that this arrival time is a sum of the one-way propagation time of the

broadcast message from the head end to the node, a random wait at the node, and another

one-way propagation time of the registration request message from the node to the head

end.
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Fig. 1. IEEE EPON registration scheme.

Due to technological constraints on the power and reach of a transmitted signal, the

IEEE EPON standard [2] fixes the maximum distance from the head end at which a node

may be located. We assume the maximum reach of our network to be such as to result

in a maximum one-way propagation time of p and the maximum random wait time to be

w (also fixed by the head end). Thus, the arrival time can vary between a minimum of

0 and a maximum of 2p + w as shown in Fig. 1. However, the IEEE EPON standard [2]

places no constraints on the contention window size w≥ 0. For convenience, we also define

M = max(2p,w) and m = min(2p,w). Thus, M ≥ m.

Let X , Y , and Z be random variables. Let X and Y be independent and have a uniform

distribution with X ∈ Uniform [0,M] and Y ∈ Uniform [0,m], where M ≥ m ≥ 0. Depending

on the magnitudes of p and w, X and Y will each model the two-way propagation time or

the random wait. To simplify the exposition, we first consider m > 0 and add m = 0 as

a separate case later. Let fX and fY denote the probability mass functions of X and Y ,

respectively. Thus, fX (x) = M−1 and fY (y) = m−1. Let Z = X +Y . Thus, Z models the

arrival time of a message from a node at the head end as shown in Fig. 1. Since X and Y

are independent, their joint density is fXY (x,y) = (Mm)−1
. Let FZ (z) = P(Z ≤ z) denote

the cumulative distribution function (CDF) of Z. We compute the CDF of Z by integrating

X +Y = Z with respect to z [7]. Our main derivation involves the computation of many
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such integrals and we omit the details of these calculations due to space constraints. The

limits used for each integral are specified in the accompanying figures and should aid the

reader in computing the integrals, if desired. Thus, we have

FZ (z) =























0 if z < 0

z2/2Mm if z ≤ m

(2z−m)/2M if m < z ≤ M
(

2zM +2zm−m2 − z2 −M2
)

/2mM if M < z ≤ M +m

1 if z > M +m

. (1)

To find the probability mass function fZ (z), we differentiate with respect to z to get

fZ (z) =























0 if z < 0

f1 (z) = z/mM if z ≤ m

f2 (z) = 1/M if m < z ≤ m

f3 (z) = (m+M− z)/mM if M < z ≤ M +m

0 if z > M +m

. (2)

3. Formulating the Collision Event

Let n denote the total number of devices attempting to send their respective registration

request messages. Let Zi denote the arrival time of the message from the device 1 ≤ i ≤ n

at the head end. (We will use Zi to refer to the device i as well as the random variable,

depending on the context.) Since all the devices behave identically, any result for a single

device will be true for any device. Fix Z1 as the device under observation. Then, a successful

transmission by Z1 can be expressed as the event

n
∩

i=2
[| Z1 −Zi |> k] =

n
∩

i=2
[(Z1 −Zi > k)∪ (Z1 −Zi < −k)]

=
n
∩

i=2
[(Zi < Z1 − k)∪ (Zi > Zi + k)] .

(3)

Suppose Z1 = t, where 0 ≤ t ≤ M + m; i.e., the transmission from device 1 arrives at the

head end at some time t. Under this condition, a successful transmission event for Z1 can

be expressed as

n
∩

i=2
[| Z1 −Zi |> k | Z1 = t ] =

n
∩

i=2
[(Zi < t − k)∪ (Zi > t + k)] . (4)

Since all the devices follow the same registration protocol and transmit registration mes-

sages independently of each other, the Zi are all independent and identically distributed

with densities described by Eq. (1). Therefore, the probability of a successful transmission

by Z1 can be expressed as

P

(

n
∩

i=2
[| Z1 −Zi |> k | Z1 = t]

)

=
n

∏
i=2

P [(Zi < t − k)∪ (Zi > t + k)]

= P[(Z2 < t − k)∪ (Z2 > t + k)]n−1,

(5)

where we use Z2 to represent any other single device. Since

P [(t − k) < Z2 < (t + k)] = FZ2
(t + k)−FZ2

(t − k) ,

the remaining probability in the tails can be expressed as

P[(Z2 < t − k)∪ (Z2 > t + k)](n−1) = {1− [FZ2
(t + k)−FZ2

(t − k)]}(n−1). (6)
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Hence, the probability of a successful transmission by Z1 given that Z1 = t is

P

(

n
∩

i=2
[| Z1 −Zi |> k | Z1 = t]

)

= {1− [FZ2
(t + k)−FZ2

(t − k)]}(n−1). (7)

Finally, applying the law of total probability,

P

(

n
∩

i=2
[| Z1 −Zi |> k]

)

=
∫ ∞

−∞
P

(

n
∩

i=2
[| Z1 −Zi |> k | Z1 = t]

)

P(Z1 = t)dt

=
∫ ∞

−∞
[1−FZ2

(t + k)+FZ2
(t − k)](n−1)

fZ2
(t)dt.

(8)

FZ2
(z) and fZ2

(z) are available from Eqs. (1) and (2). Figure 2 shows the probability mass

function fZi
(z) of any device Zi along with an illustration of the condition Z1 = t. From Fig.

2, we can see that due to the piecewise structure of fZi
(z), the limits for integrating with

respect to Z = t will depend heavily on the relative magnitudes of k, m, and M. Moreover,

the limits will also depend on the position of t relative to k, m, and M. For example, consider

the simplest case where m = 0, M > 0, and 0 < k ≤ M − k. For this one permutation of

parameters, we must again split the calculation of Eq. (8) for various relative positions of

t with respect to the remaining intervals shown in Fig. 2. Thus, we would have to consider

separately t < 0, 0 ≤ t < k, k ≤ t < M − k, M − k ≤ t < M, and M ≤ t < M + k. Note that

these subintervals are specific to the single simple case above. For the other more complex

cases, the description of subintervals to be considered will be different and their number

will be larger.
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(z)

1

M

Zi

m M M + m
t − k

t

M + m − k
t + k M − k M + k
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Fig. 2. Probability mass function fZi
(z) with the condition Z1 = t.

Clearly, the present approach will lead to a large number of subintervals over which

the calculation of Eq. (8) will have to be performed—a tedious process. Notice that, out

of all the cases, those introduced due to the relative magnitudes of our parameters k, m,

and M are unavoidable. However, the subcases due to the conditional Z1 = t have been

introduced only because the events in Eq. (3) are not independent. If an assumption were

made as to the independence of those events, then a number of subcases would be avoided.

Specifically, all the subintervals introduced due to the conditional Z1 = t could be avoided

at the expense of introducing some error into the calculation. In Section 4, we explore this

approach and obtain an approximation that shows a good match with values obtained from

simulations.

4. Derivation of an Approximating Expression

Consider again, two independent identically distributed random variables Z1 and Z2 with

probability mass functions fZ1
(z1) and fZ2

(z2) as derived in Eq. (2). Consider their joint
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density. Due to the piecewise structure of fZ (z), the joint density of Z1 and Z2 will comprise

nine regions defined by the three cases each for Z1 and Z2 as illustrated in Fig. 3. Figure

3 (right) shows the joint density of Z1 and Z2 for examples M = 10 µs and m = 5 µs. As

is clear from Eq. (2), the joint density will plateau for m ≤ Z1 and Z2 ≤ M when m <
M. The shaded area in Fig. 3 (left) shows the region where | Z1 − Z2 |≤ k. Let P be the

event | Z1 − Z2 |≤ k. To find the probability of event P, as mentioned earlier, we must

consider several cases arising from the magnitudes of the parameters k, m, and M relative

to each other. In each case, we also need to consider whether m,M ≤ k or m,M > k. Finally,

M+m < k or m = 0 are other special cases. Together, all the situations result in a function of

the form expressed in Fig. 4. Due to the absence of the conditional, the number of cases to

be considered is significantly reduced. Note that, were the conditional present, each branch

of the tree in Fig. 4 would result in many more branches. Due to our assumption about the

independence of events in Eq. (3), we are able to prune the tree much earlier.
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Fig. 3. Computing the probability of | Z1 −Z2 |≤ k (left). Joint density of Z1 and Z2 (in

µs) with M = 10 and m = 5 (right).
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Fig. 4. P(| Z1 −Z2 |≤ k).

Figures 5, 6, 7, 8, 9, 10, 11 illustrate each of the Pi in Fig. 4. Using these figures, we

calculate the probability contained in the shaded region for each Pi. Integrating piecewise

within the limits assigned to the shaded region in each figure, we obtain the following
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expressions for each of the Pi in Fig. 4:

P1 =
k
(

k3 −4m3 −4mk2 +12Mm2
)

6m2M2
, (9)

P2 =

(

12Mk−m2 −6k2
)

6M2
, (10)

P3 =

(

12Mkm2 +12mkM2 −12mk2M +6m2M2 +m4 +3k4 −4km3

12m2M2

+
6k2m2 −4mk3 −4kM3 +6k2M2 −4Mk3 +M4

12m2M2
−

4mM3 +4Mm3

12m2M2

)

,

(11)

P4 =

(

6m2M2 −4mM3 +12mM2k−12mMk2 +4mk3 −m4

12m2M2

+
12Mkm2 −4M3k +6M2k2 −4Mk3 +4km3 −4Mm3

12m2M2
+

k4 +M4 −6k2m2

12m2M2

)

,

(12)

P5 =

(

12km2M +12kmM2 −12k2mM +6m2M2 − k4 −4m3M−4mM3

12m2M2

+
4mk3 +4Mk3 −M4 −m4 +4km3 +4kM3 −6k2m2 −6k2M2

12m2M2

)

,

(13)

P6 = 1, (14)

If m = 0, then Y ∈ Uniform [0,0] and hence Z = X . Therefore, fZ = fX , and

P7 =
k (2M− k)

M2
. (15)

Figure 12 shows the probability of collision for two nodes participating in the IEEE

EPON registration scheme with a total message length of 316 bytes (64 byte actual message

with additional overhead [6]) as specified in the IEEE EPON standard (equivalent to k =
2.528 µs). Although the value for the parameter p is also specified in the standard as 100 µs

(equivalent to 20 km), the range of values for p in the figure allows us to use the same model

to compute the probabilities for clustered nodes or nodes situated at an identical distance.

The range of values for the wait period w is unspecified by the standard and is open to

various implementation schemes.

We now extend our two-node model to n nodes. Let Ps (k) and Pc (k) denote the proba-

bility of successful and unsuccessful transmission (i.e., collision), respectively, for a node

in the presence of k−1 other nodes. The probability of successful transmission in the two-

node case is thus Ps (2) = 1−Pc (2). We already derived Pc (2) earlier in this section, since

Pc (2) = P(| Z1 −Z2 |≤ k), which is available from Fig. 4 and Eqs. (9)–(15). A successful

transmission by a node in the presence of n−1 other nodes implies that its transmission did

not collide with any of the other n−1 nodes. If we assume independence of each pairwise

collision event of Eq. (8), we can write

Ps (n) = Ps(2)n−1. (16)
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This key assumption allows us to sidestep calculation of Eq. (8) over the many subintervals.

Our calculations are now restricted to only the different cases introduced by the parameters

k, m, and M. Figure 13 (left) shows the probability of successful transmissions for 1 to

200 nodes for a range of waiting times. The propagation time p is set to 100 µs(20 km).
We can also formulate the situation where all the nodes are at an identical distance by

setting p = 0. Figure 13 (right) shows the performance of the scheme for 1 to 200 nodes

located at identical distances. Figures 14 and 15 compare the results from simulation plotted

with those from our closed-form expression. Our model matches the simulation precisely

except for a small range of window sizes in the uniformly random case when the number of

devices is large. This error results from our assumption of the independence of two or more

collision events. Our simulations show that the error introduced is negligible and is present

for only a small range of window sizes. For window sizes larger than those appearing in

Fig. 15, we have verified that the error diminishes rapidly.
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Fig. 13. Probability of successful transmission with n randomly distanced (left) and n
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5. Efficiency of the Contention Window

In the IEEE EPON registration scheme, the head end must reserve the communication

link every time it needs to allow new nodes to register. Thus, a valuable portion of the

available bandwidth is used at every such discovery cycle. The head end must reserve the

channel for a duration of 2p + w (as is clear from Fig. 1), where p = 100 µs (20 km) as

specified by the IEEE standard. It is desirable to minimize this duration when the channel

is exclusively used for discovering new devices—regular traffic cannot be transmitted. To

take this criterion into account, we can define a measure for the efficiency of a particular

contention window size as the ratio of the average number of successful registrations to the

size of the duration of the reservation [6]. Thus, the efficiency is

ρ =
nPs (n)

2pmax +w
. (17)

We use our n-node model to relate efficiency to window size and node number. Figure 16

shows the variation of efficiency with the window size and node number for the identically

distanced (left) and the uniformly randomly distanced (right) cases. For the identically dis-

tanced case, Table 1 shows the most efficient window size for a given number of nodes, i.e.,

the smallest window size that maximizes the success probability. Due to the shape of the

surface in Fig. 16 (right) equivalent maxima cannot be obtained for the uniformly random

case. However, Fig. 17 shows the most efficient number of nodes that can be serviced by a

contention window of a given size.

6. Summary and Future Work

We derived the probability of message collision in the 802.3ah EPON registration scheme.

We derived an approximating closed-form expression for the probability of message col-

lision in the 802.3ah EPON registration scheme. We compared the probability computed

by the expression with simulation results and obtained a reasonably precise match. Further,
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Table 1. Most Efficient Contention Window Size For Identically Distanced Nodes

Number of Devices (p = 0) Most EfficientWindow Size (µs)

2 35.82

4 64.63

8 105.20

10 122.39

16 168.43

32 273.77

50 380.49

64 459.65

100 655.74

200 1179.31

we used our model to compute the most efficient contention window sizes for identically

and randomly distributed nodes.

We are currently working on an exact solution of Eq. (8). Approximate collision proba-

bilities for smaller clusters of nodes and other distributions of nodes can be computed using

the current model by setting the appropriate value for parameter p. However, multiple clus-

ters cannot be modeled with the current setup. Now that the average number of successful

registrations is known, the model can be extended to evaluate the multistep performance of

the registration scheme. Specifically, we can now model our scheme proposed in Ref. [5]

and evaluate its efficacy.
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