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1 Introduction

jRank is a decision support tool for solving multi-criteria choice and ranking problems. It is a command line Java
application, based on java Rough Set (jRS) library, which implements methods of data analysis provided by the
Dominance-based Rough Set Approach and Variable Consistency Dominance-based Rough Set Approaches. In
the following Section 2, we describe the methodology applied to choice and ranking problems. Section 3 describes
how to use jRank in general and for a particular multi-criteria ranking problem. Applications of DRSA can be
found in Section 4 and in the surveys [17, 18, 19, 37, 39].
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2 Basic Concepts of Dominance-based Rough Set Approach

Dominance-based Rough Set Approach (DRSA) is defined for problems with background knowledge about ordinal
evaluations of objects from a universe, and about monotonic relationships between these evaluations, e.g., “the
larger the mass and the smaller the distance, the larger the gravity” or “the greater the debt of a firm, the
greater its risk of failure”. Precisely, the monotonic relationships are assumed between evaluation of objects on
condition attributes and their evaluation on decision attribute. The monotonic relationships are also interpreted
as monotonicity constraints, because the better the evaluation of an object, the better should be the decision
class the object is assigned to. For this reason, classification problems of this kind are called ordinal classification
problems with monotonicity constraints. Many real-world classification problems fall into this category. Typical
examples are multiple criteria sorting and decision under uncertainty, where the order of value sets of attributes
corresponds to increasing or decreasing order of preference of a decision maker. In these decision problems, the
condition attributes are called criteria.

Although DRSA is a general methodology for reasoning about data describing ordinal classification problems
with monotonicity constraints, in this manual, we shall use the vocabulary typical for multiple criteria choice
and ranking problems [38].

2.1 Problem Setting

The data are given as an information table, where rows correspond to objects from a finite set A and columns
correspond to attributes from a finite set C. The value set of attribute qi ∈ C is denoted by Vqi . Among
attributes from C there has to be at least one criterion, i.e., an attribute with value set ordered according to
some domain knowledge. We distinguish cardinal criteria (with values expressed on some interval or ratio scale)
and ordinal criteria (with values expressed on some ordinal scale). The remaining attributes are called regular
attributes (with values on some nominal scale).

The goal is to rank objects from set A from the best to the worst (i.e., to create a weak order of objects), or
to choose the best objects.

Let us observe that the only objective information that can be used to compare objects is the dominance
relation. However it is often the case that the dominance relation leaves many objects incomparable. Therefore,
there is a need to acquire additional information that allows to compare considered objects pairwise. This
information might be, e.g., given by the Decision Maker (DM), who comprehensively compares chosen objects
from set A. We assume two possible forms of such preference information: a) pairwise comparisons of some
objects from A, b) ranking (weak order) on some AR ⊆ A. For example, let us consider the information table
presented as Table 1.

Table 1: Exemplary information table with evaluations of house locations

Location q1 – Distance q2 – Price q3 – Comfort
L1 – Poznan 3 60 Good
L2 – Kapalica 35 30 Good
L3 – Krakow 7 85 Medium
L4 – Warszawa 10 90 Basic
L5 – Wroclaw 5 60 Medium
L6 – Malbork 50 50 Medium
L7 – Gdansk 5 70 Medium

In this table, attributes Distance and Price are cardinal criteria (of cost type, i.e., the smaller the value, the
better), while attribute Comfort is an ordinal criterion.

The pairwise comparisons of the DM concern assignment of pairs of objects from A to preference relations.
We consider the simplest case, where there are two such relations: S – comprehensive outranking, and Sc –
comprehensive non-outranking. Thus, the preference information in the form L1 S L6, L2 S L4, and L7 S

c L1

(which is equivalent to (L1,L6) ∈ S, (L2,L4) ∈ S, and (L7,L1) ∈ Sc) is read as: location L1 is at least as good as
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location L6, location L2 is at least as good as location L4, and location L7 is NOT at least as good as location
L1.

The ranking given by the DM could be: L1, L7, L2 & L6, which boils down to the following pairwise
comparisons: L1 S L7, L1 S L2, L1 S L6, L7 S L2, L7 S L6, L2 S L6, L6 S L2, and L6 S

c L1, L6 S
c L7, L2 S

c L1,
L2 S

c L7, L7 S
c L1.

In the following, we will denote by B ⊆ A× A a set of pairs of objects for which the DM expressed his/her
preferences, i.e., which were assigned by the DM either to S or to Sc preference relation.

2.2 Pairwise Comparison Table (PCT)

Pairwise comparisons of objects from set A are the basis for creation of the Pairwise Comparison Table (PCT).
In order to built such a table, one calculates a difference of evaluations for each cardinal criterion. For ordinal
criteria, as well as for regular attributes, one considers ordered pairs of evaluations. For the information table
presented as Table 1 and for pairwise comparisons: L1 S L6, L2 S L4, and L7 S

c L1, one gets the following PCT:

Table 2: PCT for the house location problem

(X, Y ) Δq1 Δq2 (q3(X), q3(Y )) Relation
(L1, L6) -47 10 (Good,Medium) S
(L2, L4) 25 -60 (Good,Basic) S
(L7, L1) 2 10 (Medium,Good) Sc

Let us observe that attributes Δq1 and Δq2 from Table 2 are cost-type cardinal criteria since attributes q1
and q2 from Table 1 are cost-type cardinal criteria. Third attribute from Table 2 is no longer an ordinal criterion
and it requires special treatment to enable comparison of ordered pairs of evaluations. This shall be explained
in the following section.

Remark that the PCT is a decision table which includes examples of ordinal classification. The decision
classes are relations S and Sc. Among attributes of PCT we have a set of condition attributes and one decision
attribute d. Thus, this table constitutes an input preference information to be analyzed with the help of DRSA.

2.3 Rough Approximation of Preference Relations by Dominance Relation

Using DRSA, we want to represent (approximate) outranking and non-outranking relations in PCT by granules
of knowledge generated by attributes. These granules are dominance cones in the attribute values space.

Let us consider set P ⊆ C of attributes. Moreover, let us distinguish three subsets of P denoted by PN , PO,
and PR, composed of cardinal criteria, ordinal criteria, and regular attributes, respectively.

Pair of objects (x, y) dominates pair of objects (w, z) with respect to (w.r.t.) P ⊆ C (shortly, (x,y) P -
dominates (w,z); denotation (x, y)DP (w, z)) if and only if (iff):

(x, y)DPN (w, z) ⇔ ∀qi ∈ PN : Δi(x, y) ર Δi(w, z) ∧

(x, y)DPO (w, z) ⇔ ∀gi ∈ PO : gi(x) ર gi(w) ∧ gi(y) ⪯ gi(z) ∧

(x, y)IPR(w, z) ⇔ ∀gi ∈ PR : gi(x) = gi(w) ∧ gi(y) = gi(z),

where DPN , DPO , and IPR denotes dominance w.r.t. set PN , dominance w.r.t. set PO, and indiscernibility
w.r.t. set PR, respectively; ર and ⪯ denote weak preference relation and inverse weak preference relation,
respectively.

The dominance relation is reflexive and transitive, i.e., it is a partial preorder.
Given a set of attributes P ⊆ C and pair (x, y) ∈ A× A, the granules of knowledge used for approximation

in DRSA are:

∙ a set of pairs of objects dominating (x, y), called P -dominating set,
D+

P (x, y)={(w, z) ∈ A×A: (w, z)DP (x, y)},
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∙ a set of pairs of objects dominated by (x, y), called P -dominated set,
D−

P (x, y)={(w, z) ∈ A×A: (x, y)DP (w, z)}.

Let us recall that the dominance principle requires that a pair of objects (x, y) dominating pair (w, z) should
also dominate (w, z) on the decision (i.e., (x, y) should be assigned to at least as good decision class as (w, z)).
Pairs of objects satisfying the dominance principle are called consistent, and those which violate this principle
are called inconsistent. Thus, inconsistency w.r.t. the dominance principle is observed when pair of objects
(x, y) ∈ Sc dominates pair of objects (w, z) ∈ S.

The P -lower approximation of S, denoted by P (S), and the P -lower approximation of Sc, denoted by P (Sc),
are defined as follows:

P (S) = {(x, y) ∈ B : D+
P (x, y) ⊆ S},

P (Sc) = {(x, y) ∈ B : D−
P (x, y) ⊆ Sc}. (1)

The P -upper approximation of S, denoted by P (S), and the P -upper approximation of Sc, denoted by P (Sc),
are defined as follows:

P (S) =
∪

(x,y)∈S

D+
P (x, y),

P (Sc) =
∪

(x,y)∈Sc

D−
P (x, y). (2)

The P -boundary of S, denoted by BnP (S), and the P -boundary of Sc, denoted by BnP (S
c), are defined as

follows:

BnP (S) = P (S)− P (S),

BnP (S
c) = P (Sc)− P (Sc). (3)

The P -lower and P -upper approximations so defined satisfy the following inclusion property, for all P ⊆ C:

P (S) ⊆ S ⊆ P (S)

P (Sc) ⊆ Sc ⊆ P (Sc)

The P -lower and P -upper approximations of S and Sc have an important complementarity property, according
to which:

P (S) = A–P (Sc) and P (S) = A–P (Sc),

P (Sc) = A–P (S) and P (Sc) = A–P (S).

Due to the above complementarity property, BnP (S) = BnP (S
c).

2.4 Quality of Approximation

For every P ⊆ C, the quality of approximation of the classification Cl={Sc, S} by set of attributes P is defined
as the ratio of the number of pairs of objects P -consistent with the dominance principle and the number of all the
pairs of objects in B. Since the P -consistent pairs of objects are those which do not belong to the P -boundary
BnP (S) = BnP (S

c), the quality of approximation of the ordinal classification Cl by set of attributes P can be
written as:

P (Cl) =

∣∣∣P (S) ∪ P (Sc)
∣∣∣

∣B∣
.

In particular, C(Cl) can be seen as a degree of consistency of the pairs of objects from B.
Moreover, for every P ⊆ C, the accuracy of approximation of relation S or Sc by set of attributes P is

defined as the ratio of the number of pairs of objects belonging to the P -lower approximation and the P -upper
approximation of a given relation. Accuracy of approximation �P (S), �P (S

c) can be written as:

�P (S) =

∣∣∣P (S)
∣∣∣

∣P (S)∣
, �P (S

c) =

∣∣∣P (Sc)
∣∣∣

∣P (Sc)∣
.
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2.5 Induction of Decision Rules

The dominance-based rough approximations of outranking and non-outranking relations can serve to induce a
generalized description of pairs of objects from PCT in terms of “if . . . , then . . . ” decision rules. The decision
rules induced under a hypothesis that pairs of objects belonging to P (S) (or P (Sc)) are positive examples,
and all the others are negative ones, suggest a certain outranking relation (or certain non-outranking relation,
respectively). On the other hand, the rules induced under a hypothesis that pairs of objects belonging to P (S)
(or P (Sc)) are positive examples, and all the others are negative ones, suggest a possible outranking relation (or
possible non-outranking relation, respectively). Finally, rules induced under a hypothesis that pairs of objects
belonging to boundary BnP (S) = BnP (S

c) are positive examples, and all the others are negative ones, are
inconclusive, since they suggest an assignment to either S or Sc.

Let us consider set P ⊆ C of attributes. Let P = PN ∪ PO ∪ PR, as in section 2.3. Moreover, let
P = {qi1, . . . , qiz}, PN = {qi1, . . . , qie}, PO = {qie+1, . . . , qip}, and PR = {qip+1, . . . , qiz}, ri1, . . . , riz ∈ ℜ,
sie+1, . . . , siz ∈ ℜ. It is meaningful to consider the following five types of decision rules:

1) certain D≥-decision rules, providing lower profile descriptions for objects belonging to P (S):
if qi1(x)− qi1(y) ર ri1 and . . . and qie(x)− qie(y) ર rie and qie+1(x) ર rie+1 and qie+1(y) ⪯ sie+1 and . . .
and qip(x) ર rip and qip(y) ⪯ sip and qip+1(x) = rip+1 and qip+1(y) = sip+1 and . . . and qiz(x) = riz and
qiz(y) = siz, then xSy;

2) possible D≥-decision rules, providing lower profile descriptions for objects belonging to P (S):
if qi1(x)− qi1(y) ર ri1 and . . . and qie(x)− qie(y) ર rie and qie+1(x) ર rie+1 and qie+1(y) ⪯ sie+1 and . . .
and qip(x) ર rip and qip(y) ⪯ sip and qip+1(x) = rip+1 and qip+1(y) = sip+1 and . . . and qiz(x) = riz and
qiz(y) = siz, then possibly xSy;

3) certain D≤-decision rules, providing upper profile descriptions for objects belonging to P (Sc):
if qi1(x)− qi1(y) ⪯ ri1 and . . . and qie(x)− qie(y) ⪯ rie and qie+1(x) ⪯ rie+1 and qie+1(y) ર sie+1 and . . .
and qip(x) ⪯ rip and qip(y) ર sip and qip+1(x) = rip+1 and qip+1(y) = sip+1 and . . . and qiz(x) = riz and
qiz(y) = siz, then xScy;

4) possible D≤-decision rules, providing upper profile descriptions for objects belonging to P (Sc):
if qi1(x)− qi1(y) ⪯ ri1 and . . . and qie(x)− qie(y) ⪯ rie and qie+1(x) ⪯ rie+1 and qie+1(y) ર sie+1 and . . .
and qip(x) ⪯ rip and qip(y) ર sip and qip+1(x) = rip+1 and qip+1(y) = sip+1 and . . . and qiz(x) = riz and
qiz(y) = siz, then possibly xScy;

5) approximate D≥≤-decision rules, providing simultaneously lower and upper profile descriptions for objects
belonging to BnP (S) = BnP (S

c):
if qi1(x) − qi1(y) ર ri1 and . . . and qic(x) − qic(y) ર ric and qic+1(x) − qic+1(y) ⪯ ric+1 and . . . and
qie(x) − qie(y) ⪯ rie and qie+1(x) ર rie+1 and qie+1(y) ⪯ sie+1 and . . . and qik(x) ર rik and qik(y) ⪯ sik
and qik+1(x) ⪯ rik+1 and qik+1(y) ર sik+1 and . . . and qip(x) ⪯ rip and qip(y) ર sip and qip+1(x) = rip+1

and qip+1(y) = sip+1 and . . . and qiz(x) = riz and qiz(y) = siz, tℎen xSy or xScy,
where N ′ = {qi1, . . . , qic} ⊆ PN , N ′′ = {qic+1, . . . , qie} ⊆ PN , N ′ and N ′′ are not necessarily disjoint,
O′ = {qie+1, . . . , qik}, O′′ = {qik+1, . . . , qip}, O′ and O′′ are not necessarily disjoint.

As can be seen from above, a decision rule consists of a conjunction of elementary conditions and a decision.
Since a decision rule is a kind of implication, a minimal rule is understood as an implication such that there

is no other implication with the premise of at least the same weakness (in other words, a rule using a subset
of elementary conditions and/or weaker elementary conditions) and the same conclusion. We shall consider
minimal decision rules only.

Rule r covers a pair of objects (x, y) ∈ A×A iff this pair satisfies all elementary conditions of r. Moreover,
rule r is supported by a pair of objects (x, y) ∈ B iff this pair satisfies all elementary conditions of r and belongs
to the relation suggested by r.

The rules of type 1) and 3) represent certain knowledge extracted from data, while the rules of type 2) and
4) represent possible knowledge; the rules of type 5) represent doubtful knowledge, because they are supported
by inconsistent pairs of objects only.

One can consider the following basic characteristics of decision rule r:
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∙ support, denoted by supp(r), and defined as the number of pairs in B that support r,

∙ strength, denoted by �(r), and defined as �(r) = supp(r)/∣B∣,

∙ confidence (also called certainty factor), denoted by conf(r), and defined as the ratio of supp(r) and the
number of pairs of objects that satisfy all elementary conditions of r,

∙ coverage factor, denoted by cf(r), and defined as the ratio of supp(r) and the number of pairs of objects
that belong to the relation suggested by r.

Apart from the above basic characteristics, one might consider some Bayesian confirmation measures which
reflect the attractiveness of a rule [26].

Let us consider, e.g., a rule of type 1). A pair of object (x, y) ∈ B supporting decision rule r is a base of
this rule if qi1(x)− qi1(y) = ri1 and . . . and qie(x)− qie(y) = rie and qie+1(x) = rie+1 and qie+1(y) = sie+1 and
. . . and qip(x) = rip and qip(y) = sip and qip+1(x) = rip+1 and qip+1(y) = sip+1 and . . . and qiz(x) = riz and
qiz(y) = siz. Similar definitions hold for other types of rules. A decision rule having at least one base is called
robust. Identification of supporting objects and bases of robust rules is important for interpretation of the rules
in multiple criteria decision analysis.

A certain (possible) decision rule suggesting assignment to relation S, or to relation Sc, is discriminant
if it covers only pairs of objects from the lower (upper) approximation of the respective relation. A rule is
non-redundant if removing any of its conditions causes that it is no more discriminant.

Set of certain (possible) rules suggesting assignment to relation S, or to relation Sc, is complete iff each pair
of objects (x, y) belonging to P (S), or to P (Sc), (P (S), or to P (Sc),) is covered by at least one rule from this
set. A set of decision rules is minimal if it is complete and non-redundant, i.e., exclusion of any rule from this
set makes it incomplete.

Note that the syntax of decision rules induced from rough approximations defined using dominance cones, is
using consistently this type of granules. Each condition profile defines a dominance cone in multi-dimensional
evaluation space. The cones are positive for D≥-rules and negative for D≤-rules.

Let us also remark that dominance cones corresponding to condition profiles can originate in any point of
evaluation space, without the risk of being too specific. Thus, contrary to traditional granular computing, the
evaluation space need not to be discretized.

Induction of rules from dominance-based rough approximations is performed with the VC-DomLEM algo-
rithm, proposed in [5, 6]. This is a sequential covering algorithm that induces a minimal set of rules.

Alternatively, one can consider an exhaustive set of rules. However, it is computationally hard to generate
such set of rules. Therefore, we adapted the idea described in [8] in order to use implicit (virtual) exhaustive set
of rules. For example, in order to verify if there exists at least one certain rule for relation S that covers pair
(e1, e2) ∈ A× A, it is enough to check if there exists at least one pair of objects (x, y) ∈ P (S) that contributes
to assign pair (e1, e2) to S. Let R = {qi ∈ P : (e1, e2)D{qi}(x, y)}, where P ⊆ C (set of compatible attributes).
Then, pair (x, y) ∈ P (S) contributes to assign pair (e1, e2) to S ⇔ ∀(w, z) /∈ P (S) : (w, z) /∈ D+

R(x, y).

2.6 Application of Decision Rules and Exploitation of Preference Graphs

In jRank it is possible to use both explicit minimal set of rules as well as implicit exhaustive set of rules. In
both cases, one can apply certain or possible rules on A× A to construct a preference graph. It is also possible
to perform application of rules on some other set of pairs, say T × T , where objects from set T are described
by the same attributes as those of A. However, for the sake of simplicity, in the following, we assume that the
application of rules concerns set A×A.

The vertices of constructed preference graph G =< V,A > correspond to objects, while arcs correspond to
S and Sc preference relations between the objects. Thus, G contains an S-arc (Sc-arc) between object x and y
iff pair of objects (x, y) ∈ A×A is covered by a decision rule suggesting assignment to relation S (Sc). It is also
possible to label the arcs by weights that represent satisfaction degrees of the preference relations. For instance,
if a single possible rule suggesting assignment to relation S, with confidence equal to 0.9, covers pair (x, y), then
the S-arc between x and y may be given weight 0.9. Moreover, in case of many covering rules, the respective arc
may be given a weight which somehow aggregates confidence of these covering rules, e.g., by taking maximum
confidence.
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The preference graph resulting from application of decision rules is exploited by a ranking method in order
to obtain final ranking (weak order) on A. This ranking is a solution to a ranking problem. In the case of a
choice problem, the solution is the set of objects which share the first place in the final ranking.

We consider six ranking methods that can be applied to the preference graph. They yield a weak order of
objects from set A. These methods are: Net Flow Score (NFS), Repeated Net Flow Score (RNFS), and four
variants of the former two [7, 43]. We denote the methods by:

1. NFS(S, Sc),

2. RNFS(S, Sc),

3. NFS(S∗, Sc∗),

4. RNFS(S∗, Sc∗),

5. NFS(P ∗, P−1∗),

6. RNFS(P ∗, P−1∗).

In fact, the four variants of the basic methods are obtained by preprocessing the preference graph, either by
calculating transitive closure of S and Sc relations (methods 3 and 4) or by first taking the asymmetric part
of S and Sc, and only then calculating the transitive closure of both relations (methods 5 and 6). In case of
relation S, calculation of the asymmetric part boils down to the following rule: if (x, y) ∈ S and (y, x) ∈ S, then
remove both arcs from the graph. In case of relation Sc, calculation of the asymmetric part boils down to the
following rule: if (x, y) ∈ Sc and (y, x) ∈ Sc, then remove both arcs from the graph.

During calculation of the net flow score it is possible to consider weights of S and Sc-arcs [10].
According to [25], the first ranking method appears to be the only one that is neutral, strictly monotonic

and independent of circuits. It is also faithful [7], which means that it preserves a weak order. The properties
of the remaining ranking methods still need to be verified.

2.7 Variable Consistency Dominance-based Rough Set Approaches

In DRSA, lower approximation of relation S or Sc contains only consistent pairs of objects. Such a lower
approximation is defined as a sum of dominance cones that are subsets of the approximated relation. In practical
applications, however, such a strong requirement may result in relatively small lower approximations. Therefore,
several extensions of DRSA have been proposed. These extensions relax the condition for inclusion to the lower
approximation. Variable Consistency Dominance-based Rough Set Approaches (VC-DRSA) include to lower
approximations pairs of objects which are sufficiently consistent. Different measures of consistency may be
applied in VC-DRSA. Given a user-defined threshold value, extended lower approximation of considered relation
is defined as a set of pairs of objects for which the consistency measure satisfies that threshold.

Several definitions of VC-DRSA have been considered in the literature so far. In the first papers concerning
VC-DRSA [15, 24], consistency (of objects) have been calculated using rough membership measure [31, 45].
Then, in order to ensure monotonicity of lower approximation with respect to the dominance relation, the idea
of the first papers have been extended in the work [1]. Recently, it has been pointed out that it is reasonable
to require that the consistency measure used in the definition of lower approximation satisfies some properties
of monotonicity [4]. Resulting variable consistency approaches, employing monotonic consistency measures, are
called Monotonic Variable Consistency Dominance-based Rough Set Approaches [2, 3, 4].

In jRank, four different consistency measures can be applied to calculate extended lower approximations that
serve as a basis for induction of decision rules. These are: rough membership measure �, measure �, measure �∗,
and measure �′ [4]. Each weight (satisfaction degree) of an S-arc (or Sc-arc) in the preference graph (resulting
from the application of induced decision rules) can be calculated by taking maximum strength of the rules that
cover corresponding pair of objects and suggest assignment to relation S (or, respectively, Sc). Let T ∈ {S, Sc}.
Moreover, let consider application of consistency measure � when calculating extended lower approximations.
Then, the strength of a single induced rule r suggesting assignment to relation T can be calculated as 1− �̂T (r)
or as (1 − �̂T (r))cf(r), where �̂T (r) is the value of the rule consistency measure �̂T defined in [42] and cf(r)
denotes coverage factor of rule r defined as the ratio of the number of pairs of objects supporting r and the
cardinality of relation T .
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3 How to Use jRank

3.1 Running jRank

jRank can be downloaded from http://www.cs.put.poznan.pl/mszelag/Software/jRank/jRank.html. It is a
highly configurable command-line application written in Java programming language, distributed as ZIP archive.
After unpacking the archive, one should get the following structure:

∙ experiments – storage directory for settings, input and output files for different experiments,

∙ lib – contains Java Rough Set (jRS) library (JAR archive),

∙ jRank.info – file containing a list of all jRank parameters,

∙ readme.txt – file containing useful information concerning the jRank software.

jRank works in a per-experiment mode. This means that in order to run calculations, one should first create
an experiment configuration file called experiment.properties and prepare input data – ISF file(s) containing
the information table(s) to be processed. The flow of an experiment is as follows:

1. learning information table is read from a given “learning data file”,

2. on the basis of pairwise comparisons or ranking given in the experiment configuration file, PCT is created;
PCT is written to a given ISF file,

3. approximations of relation S and Sc are calculated for the PCT; they are written to a given *.apx file,

4. in case when explicit minimal set of decision rules is used, certain/possible decision rules are induced from
the lower/upper approximations of S and Sc; these rules are written to a given *.rules file,

5. test information table is read from a given “test data file” (if “test data file” is different than “learning data
file”); objects from the test information table have to be evaluated by the same attributes as those of the
learning information table,

6. decision rules are applied to all pairs of objects from the test information table; resulting preference graph
is written to a given *.graph file,

7. chosen ranking method is applied to the preference graph and the final ranking (weak order) is written to
a given *.ranking file,

8. a report concerning ranking errors is written to a *.txt file.

Assume that current path is jRank main directory and we want to create and run experiment called “my-
Experiment”. To achieve this goal, we need to perform the following steps (in parentheses, we give respective
Windows command-line commands):

1. open experiments directory (cd experiments),

2. create myExperiment subdirectory (mkdir myExperiment),

3. open myExperiment subdirectory (cd myExperiment),

4. place ISF file with learning information table in myExperiment directory,

5. if used, place ISF file with test information table in myExperiment directory,

6. create experiment configuration file in myExperiment directory; it has to be called experiment.properties,

7. edit experiment.properties file according to our preferences,

8. return to experiments directory (cd ..),

9. run our experiment, using its name (jRank myExperiment).
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To ease configuration of an experiment, not all parameters need to be defined in the experiment.properties
file. Many of the parameters have reasonable or even recommended default values, as can be seen in
default.properties master configuration file. This file is always read by jRank before user-defined exper-
iment configuration file. Such an order has two goals. First, the user does not have to give values for the
parameters with default values. Second, it is possible to override default value of any parameter by assigning to
it a new value.

Experiment configuration file is composed of any number of lines, each containing one key = value en-
try, and optional comment after # sign. In case when a given key appears both in master configuration file
default.properties and in experiment configuration file experiment.properties, the value from the latter
overrides the value from the former (i.e., the default value).

Tables 3, 4, and 5 contain description of all jRank parameters. In case when a parameter value is a disk path,
directories have to be separated by / or \ sign. At least learningDataFile has to be given. Other disk paths
can be set automatically using learningDataFile. Disk paths can be absolute or relative to the experiment’s
directory.

Table 3: jRank parameters

Parameter Default
value

Remarks

learningDataFile – disk path to the learning ISF data file
testDataFile – disk path to the test ISF data file; if not given, then assumed

to be equal to learningDataFile

pctFile – disk path to the ISF file where PCT created using given pref-
erence information will be saved

pctApxFile – disk path to the file where approximations of S and Sc rela-
tions in PCT will be saved

pctRulesFile – disk path to the file where rules for PCT will be saved
preferenceGraphFile – disk path to the file where preference graph resulting from

application of rules to all pairs of objects from the test data
file will be saved

rankingFile – disk path to the file where ranking of all objects from the test
data file will be saved

referenceRanking – comma-separated list of places; at each place there can be
just one or many objects’ numbers, separated by white spaces
(objects’ numbers start from 1); if this parameter is defined,
then pairs are ignored

pairs – comma-separated list of compared pairs; each entry consists
of a pair of examples (comma-separated, in {}) and S/Sc flag
indicating the result of comparison, e.g., {1, 2} S, {2, 4} Sc

consistencyMeasure epsilon indicator of consistency measure [4] used to calculate lower
approximations of S and Sc relations; has to belong to set
{epsilon, epsilon*, epsilon’, rough-membership}, where
subsequently listed values encode measures: �, �∗, �′, and �

consistencyMeasureThreshold 0.0 threshold for consistency measure; floating-point value from
interval [0,1] for consistency measures epsilon, epsilon*,
and rough-membership, or from interval [0,X] for consistency
measure epsilon’, where X can be greater than 1
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Table 4: jRank parameters

Parameter Default value Remarks
typeOfRules certain type of considered decision rules – either

certain or possible; possible rules may
only be used for such value of consistency
measure threshold, which for used consis-
tency measure implies classical DRSA

consideredSetOfRules minimal used set of decision rules – either minimal

(explicit minimal set of rules induced by VC-
DomLEM algorithm) or exhaustive (virtual
exhaustive set of rules)

satisfactionDegreesInPreferenceGraph fuzzy type of satisfaction degrees (weights) in the
preference graph – either fuzzy (i.e., from
interval [0,1]) or crisp (i.e., from set {0,1});
fuzzy satisfaction degrees cannot be used for
DRSA + exhaustive set of possible rules +
rough membership

fuzzySatisfactionDegreeCalculationMethod max-credibility method of calculating fuzzy satisfaction
degrees in preference graphs, if such satis-
faction degrees are used; for a given pair
of objects, can be maximum of credibility
over covering rules (max-credibility)
or maximum product of credibility
and coverage factor over covering rules
(max-credibility-x-coverage-factor)

rankingProcedure nfs ranking method used for exploitation
of the preference graph; has to be-
long to set {nfs, rnfs, nfs-*, rnfs-*,
nfs-p-*, rnfs-p-*}, where subsequently
listed values encode ranking methods:
NFS(S, Sc), RNFS(S, Sc), NFS(S∗, Sc∗),
RNFS(S∗, Sc∗), NFS(P ∗, P−1∗),
RNFS(P ∗, P−1∗)

dominance pareto dominance relation used to calculate approx-
imations of S and Sc relations in PCT –
either pareto or lorenz; safe option is to
choose Pareto dominance since for Lorenz
dominance [36] the data must meet special
requirements

dominanceForPairsOfOrdinalValues classic indicator of the considered definition of dom-
inance for pairs of ordinal values in PCT –
either classic (recommended) or strict

negativeExamplesTreatmentForVCDRSA only-inconsistent strategy of covering negative examples
by rules in case of VC-DRSA [5]; can
be only-inconsistent (recommended),
only-inconsistent-and-boundary, or any

ruleConditionsSelectionMethodInVCDomLEM mix strategy of rule conditions selection in VC-
DomLEM algorithm – either mix (denotes
that each rule can employ elementary condi-
tions built using evaluations of different pairs
of objects) or base (denotes that each rule
has to have a base, i.e., it can employ only
elementary conditions built using evaluations
of a single pair of objects)
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Table 5: jRank parameters

Parameter Default value Remarks
allowEmptyRulesInVCDomLEM true tells if VC-DomLEM algorithm is allowed to in-

duce rules with empty condition part if their con-
sistency is good enough – either true or false

useEdgeRegionsInVCDomLEM false tells if only pairs of objects from EDGE region [5]
or rather all (sufficiently consistent) pairs of ob-
jects from considered lower/upper approximation
should be used when creating rule’s conditions in
VC-DomLEM algorithm – either true or false

optimizeRuleConsistencyInVCDomLEMWrt approximation set of pairs of objects with respect to which value
of rule consistency measure optimized in VC-
DomLEM algorithm is calculated; can be lower
(or upper) approximation of the preference rela-
tion for which a certain (or possible, respectively)
rule is generated or entire preference relation (for
certain rules only) – either approximation or set

writeDominationInformation true tells if sections [P-dominating sets] and [P-
dominated sets] should be present in generated
*.apx file – either true or false

writeRulesStatistics true tells if rules’ statistics should be present in gener-
ated *.rules file – either true or false

writeLearningPositiveExamples true tells if learning positive examples of each rule
should be listed inside [RULESINFO] section of
generated *.rules file – either true or false; works
only when writeRulesStatistics is true

precision -1 integer value; denotes precision of floating-point
numbers; set -1 in order to print floating-point
numbers as they are, without rounding

12



3.2 Illustrative Example

Suppose that a Belgian citizen is willing to buy a house in Poland. He wants to rank 11 alternatives described
by three criteria: distance from the nearest airport (in km), price (in thousands of EUR) and comfort. The
alternatives (objects) are gathered in the learning information table presented as Table 6.

Table 6: Information table for the house location problem

Location q1 – Distance q2 – Price q3 – Comfort
L1 – Poznan 3 60 Good
L2 – Kapalica 35 30 Good
L3 – Krakow 7 85 Medium
L4 – Warszawa 10 90 Basic
L5 – Wroclaw 5 60 Medium
L6 – Malbork 50 50 Medium
L7 – Gdansk 5 70 Medium
L8 – Kornik 50 40 Medium
L9 – Rogalin 15 50 Basic
L10 – Lublin 8 60 Good
L11 – Torun 100 50 Medium

Obviously, Distance and Price are cost-type cardinal criteria. Comfort is a gain-type ordinal criterion with
the following order in the domain: Good ≻ Medium ≻ Basic, where ≻ denotes a strict preference relation.

3.2.1 Data File(s)

As the first step you should create an ISF file containing data from the considered learning information table.
For this purpose, you may use any plain text editor in order to type the text shown below.

∗∗ATTRIBUTES
+ l o c a t i o n : ( nominal ) d e s c r i p t i o n
+ d i s t anc e : ( i n t e g e r )
+ p r i c e : ( i n t e g e r )
+ comfort : [ Basic , Medium , Good ]

∗∗PREFERENCES
d i s t ance : co s t
p r i c e : co s t
comfort : ga in

∗∗EXAMPLES
Poznan 3 60 Good
Kapal ica 35 30 Good
Krakow 7 85 Medium
Warszawa 10 90 Bas ic
Wroclaw 5 60 Medium
Malbork 50 50 Medium
Gdansk 5 70 Medium
Kornik 50 40 Medium
Rogal in 15 50 Bas ic
Lubl in 8 60 Good
Torun 100 50 Medium

∗∗END
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Remark that + sign in front of an attribute name is an indicator of activity (in turn, - means that the
attribute should not be taken into account).

Now, save the file as Houses11.isf in experiments/Houses11 directory. For this example, we are going to
apply decision rules to the set of all pairs of objects from Table 6. Therefore, the test information table is the
same as the learning information table. However, if needed, ISF file containing data from the considered test
information table can be created just in the same way.

3.2.2 Preference Information

Assume that the decision maker has compared pairwise locations L1 – L7 in the way presented in Fig. 1.

Figure 1: Preference information for the house location problem

An arc between two locations denotes preference relation S. Moreover, we assume that the given preference
information is symmetric, i.e., (x, y) ∈ S ⇔ (y, x) ∈ Sc.

3.2.3 Experiment Configuration File

Now, you need to create experiment configuration file. For this purpose, you may again use any plain text editor
in order to type the text shown below.

l e a rn ingDataF i l e = Houses11 . i s f

p a i r s = {1 ,2} S , {1 ,3} S , {1 ,4} S , {1 ,6} S , {1 ,7} S , {2 ,3} S , {2 ,4} S , {2 ,6} S ,
{3 ,4} S , {5 ,4} S , {7 ,5} S , {7 ,6} S , {2 ,1} Sc , {3 ,1} Sc , {4 ,1} Sc , {6 ,1} Sc ,
{7 ,1} Sc , {3 ,2} Sc , {4 ,2} Sc , {6 ,2} Sc , {4 ,3} Sc , {4 ,5} Sc , {5 ,7} Sc , {6 ,7}
Sc

Make sure that all pairwise comparisons are on the same line and save the file as experiment.properties

in experiments/Houses11 directory.
Let us observe that it the considered example, the content of experiment.properties file is very

much simplified (only two parameters defined). Remaining parameters are assigned default values from
experiments/default.properties master configuration file.

3.2.4 Running jRank for the Illustrative Example

Once configuration file is ready, it is now possible to run our experiment. While in the experiments directory,
in the available command-line type the command jRank Houses11. In the command line you should be able to
see output information of jRank. Assuming that jRank is installed in directory C:\jRank, the output should be:
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C:\ jRank\ experiments>jRank Houses11
C:\ jRank\ experiments>REM pass experiment name as a parameter
C: \ jRank\ experiments>cd "Houses11"
C:\ jRank\ exper iments \Houses11>java −cp . . / . . / l i b /jRS . j a r p l . poznan . put . c s . i d s s .

j r s . wrappers . JRank " . . / d e f au l t . p r op e r t i e s " " experiment . p r op e r t i e s "

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
[INFO] 11 p r op e r t i e s read from . . / d e f au l t . p r op e r t i e s f i l e .
[ INFO] 2 p r op e r t i e s read from experiment . p r op e r t i e s f i l e .
[ INFO] Value o f t e s tDataF i l e parameter i s not g iven . Assuming value ’ Houses11 .

i s f ’ .
[ INFO] Value o f p c tF i l e parameter i s not g iven . Assuming value ’

Houses11_partialPCT . i s f ’ .
[ INFO] Value o f pctApxFile parameter i s not g iven . Assuming value ’

Houses11_partialPCT . apx ’ .
[ INFO] Value o f pc tRu l e sF i l e parameter i s not g iven . Assuming value ’

Houses11_partialPCT . ru l e s ’ .
[ INFO] Value o f pre f e r enceGraphFi l e parameter i s not g iven . Assuming value ’

Houses11 . graph ’ .
[ INFO] Value o f r ank ingF i l e parameter i s not g iven . Assuming value ’ Houses11 .

ranking ’ .
[ INFO] Value o f cons i s tencyMeasure parameter i s not g iven . Prese rv ing

de f au l t v a l u e ’ ep s i l on ’ .
[ INFO] Value o f cons i s tencyMeasureThreshold parameter i s not g iven . Prese rv ing

d e f au l t va lue ’ 0 . 0 ’ .
[ INFO] Value o f typeOfRules parameter i s not g iven . Prese rv ing d e f au l t va lue ’

c e r ta in ’ .
[ INFO] Value o f cons ideredSetOfRules parameter i s not g iven . Prese rv ing d e f au l t

va lue ’ minimal ’ .
[ INFO] Value o f s a t i s f a c t i onDegr e e s InPre f e r enceGraph parameter i s not g iven .

Prese rv ing d e f au l t va lue ’ fuzzy ’ .
[ INFO] Value o f fuzzySat i s f ac t i onDegreeCa lcu la t i onMethod parameter i s not g iven

. Prese rv ing d e f au l t va lue ’max−c r e d i b i l i t y ’ .
[ INFO] Value o f rankingProcedure parameter i s not g iven . Prese rv ing d e f au l t

va lue ’ nfs ’ .
[ INFO] "Houses11 . i s f " f i l e read − 4 a t t r i bu t e s , 11 examples .
[ INFO] Test data are the same as l e a rn i ng data .
[ INFO] S ta r t i ng va l i d a t i o n o f parameters .
[ INFO] F in i sh ing va l i d a t i o n o f parameters .
[ INFO] S ta r t i ng c a l c u l a t i o n s .
[ INFO] S ta r t i ng induct i on o f r u l e s (CERTAIN, AT_LEAST) .
[ INFO] F in i sh ing induct i on o f r u l e s (CERTAIN, AT_LEAST) .
[ INFO] S ta r t i ng induct i on o f r u l e s (CERTAIN, AT_MOST) .
[ INFO] F in i sh ing induct i on o f r u l e s (CERTAIN, AT_MOST) .
[ INFO] F in i sh ing c a l c u l a t i o n s .
[ INFO] "Houses11_partialPCT . i s f " f i l e wr i t t en − 5 a t t r i bu t e s , 24 examples .
[ INFO] Approximations wr i t t en to Houses11_partialPCT . apx f i l e .
[ INFO] Rules wr i t t en to f i l e Houses11_partialPCT . r u l e s
[ INFO] Pre f e r ence graph wr i t t en to f i l e Houses11 . graph
[ INFO] Ranking wr i t t en to f i l e Houses11 . ranking
[ INFO] Report wr i t t en to f i l e Houses11_report . txt

<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<

C:\ jRank\ exper iments \Houses11>cd . .
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C:\ jRank\ experiments>

Lack of [WARNING] or [ERROR] entries in the above log suggests that jRank was able to perform required
calculations. As a result, in the Houses11 directory there should appear the following new text files:

∙ Houses11_partialPCT.isf – contains PCT created for a given set of pairwise comparisons,

∙ Houses11_partialPCT.apx – contains approximations of relations S and Sc in PCT,

∙ Houses11_partialPCT.rules – contains decision rules generated by VC-DomLEM algorithm,

∙ Houses11.graph – contains preference graph in a format accepted by Gvedit and dotty from Graphviz,

∙ Houses11.ranking – contains final ranking (weak order) of house locations,

∙ Houses11_report.txt – contains information about ranking errors.

Since the names of the created files had not been specified during creation of an experiment configuration
file, they were set automatically. The suffix _partialPCT is used to indicate that we deal with a “partial” PCT,
i.e., a PCT that is created for just some, not all possible, pairs of objects from the learning information table.

In the following, we discuss how to interpret the results. In the files generated by jRank, objects are identified
by the number of row from learning/test information table, and pairs of objects are identified by the number
of row from PCT. Thus, numbers present in *.isf file with PCT correspond to rows of the learning information
table. Numbers present in *.graph and *.ranking files correspond to rows of the test information table. Numbers
present in *.apx and *.rules files correspond to rows of PCT. All the numbers start from one.

3.2.5 Pairwise Comparison Table (PCT)

The content of the ISF file with the created PCT is rather self-explanatory. We should just notice the presence
of two “extra” attributes:

∙ Pair_of_examples – used to store pair of numbers; these numbers reflect objects from the learning infor-
mation table,

∙ Comprehensive_preference_grade – used to store comprehensive preference relation; relation S is encoded
by value 0.0, while relation Sc is encoded by value −1.0.

3.2.6 Approximations of Preference Relations

In jRS, the syntax of *.apx files is common for different applications of DRSA. Since the primary purpose of the
*.apx file format was to store approximations of unions of ordered decision classes [15], some used keywords does
not fit well in our context, where there are only two decision classes (i.e., the preference relations). However, for
the sake of compatibility, we decided not to change these keywords. Therefore, At least 0.0 should be read as
outranking relation S, while At most -1.0 should be read as non-outranking relation Sc.

At the beginning of the *.apx file there are two sections: [P-dominating sets] and [P-dominated sets].
In these sections, for each pair of objects, one may find pairs of objects that belong to its dominating and
dominated set.

In the [Approximations] section, one may find lists of pairs of objects that belong to lower approximation,
upper approximation, and boundary of each preference relation.

In the [Accuracy of approximation] section there are given four values for each relation: the accuracy of
approximation of the relation by the considered set of attributes, the number of pairs in the relation, the number
of pairs in the lower approximation of the relation, and the number of pairs in the upper approximation of the
relation.

Finally, last section [Quality of sorting] contains the value of the quality of approximation of the classi-
fication Cl={Sc, S} by the considered set of attributes.

16

http://www.graphviz.org


3.2.7 Induced Decision Rules

Rules induced by VC-DomLEM algorithm are written to a *.rules file. In this file, the most important sections
are [RULES] and [RULESINFO]. The former contains a list of induces rules, the latter contains statistics of the
rules. In case of the house location problem, [RULES] section is the following:

[RULES]
#Certa in at l e a s t r u l e s
1 : {PAIR( Evaluations_on_comfort ) D (Good ,Medium) } => (

Comprehensive_preference_grade >= 0 . 0 ) |CERTAIN, AT_LEAST, 0 . 0 |
2 : {PAIR( Evaluations_on_comfort ) D (Medium , Bas ic ) } => (

Comprehensive_preference_grade >= 0 . 0 ) |CERTAIN, AT_LEAST, 0 . 0 |
3 : [DIFF( Evaluat ions_di f f e rence_on_distance ) <= −32] => (

Comprehensive_preference_grade >= 0 . 0 ) |CERTAIN, AT_LEAST, 0 . 0 |
#Certa in at most r u l e s
4 : {(Medium , Good) D PAIR( Evaluations_on_comfort ) } => (

Comprehensive_preference_grade <= −1.0) |CERTAIN, AT_MOST, −1.0|
5 : {( Basic ,Medium) D PAIR( Evaluations_on_comfort ) } => (

Comprehensive_preference_grade <= −1.0) |CERTAIN, AT_MOST, −1.0|
6 : [DIFF( Evaluat ions_di f f e rence_on_distance ) >= 32 ] => (

Comprehensive_preference_grade <= −1.0) |CERTAIN, AT_MOST, −1.0|

Obviously, # sign starts a comment. As can be seen above, there are three certain rules for each preference
relation. For instance, the first rule should be decoded as: if Comfort(x) ર Good and Comfort(y) ⪯ Medium
then xSy; the sixth rule should be read as: if Distance(x) - Distance(y) ≥ 32 then xScy.

Now, let us consider the statistics of the first rule. The [RULESINFO] section contains the following entry for
this rule:

1 : {PAIR( Evaluations_on_comfort ) D (Good ,Medium) } => (
Comprehensive_preference_grade >= 0 . 0 ) |CERTAIN, AT_LEAST, 0 . 0 |

LearningPos it iveExamples : 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 12
Support : 7
SupportingExamples : 2 , 3 , 4 , 5 , 6 , 7 , 8
Strength : 0.2916666666666667
Conf idence : 1 . 0
CoverageFactor : 0 .5833333333333334
Coverage : 7
CoveredExamples : 2 , 3 , 4 , 5 , 6 , 7 , 8
NegativeCoverage : 0
NegativeCoveredExamples :
Incons i s tencyMeasure : 0 . 0
EpsilonPrimMeasure : 0 . 0

Most of the statistics are self-explanatory. InconsistencyMeasure denotes value of � consistency measure,
while EpsilonPrimMeasure denotes value of �′ consistency measure [4]. Both values are calculated for the
dominance cone corresponding to the conjunction of rule’s conditions. Since the first rule is a certain one,
LearningPositiveExamples contains a list of pairs of objects from the lower approximation of relation S. This
tag is present since the default value of parameter writeLearningPositiveExamples is true.

3.2.8 Preference Graph

Preference graph resulting from application of induced rules to all pairs of objects from Table 6 is written to
a *.graph file. This file has a format understood by Gvedit and dotty from Graphviz package. In order to
view the preference graph visually, you should install Graphviz on your system, run GVedit, open *.graph file,
and choose Run option. In the dialog that appears, you should choose Layout Engine and Output File Type.
Recommended values for this two parameters are circo and jpg or png, respectively, as shown in Fig. 2.
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Figure 2: GVedit settings for the house location problem

After acceptation of the settings, GVedit generates visual representation of the preference graph. In case of
the house location problem, it should resemble this of Fig. 3.

Green arcs denote outranking relation S; red arcs denote non-outranking relation Sc.

3.2.9 Final Ranking

Final ranking of considered objects (weak order) is written to a *.ranking file. It is obtained by applying to the
preference graph chosen ranking method. In our example, we applied a default method, i.e., the Net Flow Score.
The resulting ranking is the following:

1 : 1 18 .0
2 : 10 16 .0
3 : 2 14 .0
4 : 3 , 5 , 7 4 . 0
5 : 6 , 8 −10.0
6 : 4 , 9 −12.0
7 : 11 −16.0

As can be seen above, the ranking consists of seven ranks, ordered according to the net flow score (the last
value in each row). The best house location is the first one, i.e., Poznan. The worst one is Torun. There are
three ties – at fourth, fifth, and sixth place. For instance, fourth place is shared by locations 3, 5, and 7, i.e., by
Krakow, Wroclaw, and Gdansk.

One can easily observe the correspondence between the final ranking and the preference graph from Fig. 3.
House location no. 1 has nine S-arcs going out and nine Sc-arcs going in, and therefore its score is equal to 18.

3.2.10 Ranking Errors

Ranking errors are written to a *.txt file. These errors, which are values of Kendal’s � measure, result from the
comparison of the preference information (i.e., reference ranking or pairwise comparisons) with the final ranking.
Moreover, if the test information table contains a decision criterion, the ranking errors are also calculated w.r.t.
the so-called true global ranking, i.e., the weak order of all objects from the test information table determined
by the order of decision classes.

18



Figure 3: Preference graph for the house location problem

4 Exemplary Applications of Dominance-based Rough Set Approach

There are many possibilities of applying DRSA to real life problems. The non-exhaustive list of potential
applications includes:

∙ decision support in medicine: in this area there are already many interesting applications (see, e.g., [32,
27, 28, 44]), however, they exploit the classical rough set approach; applications requiring DRSA, which
handle ordered value sets of medical signs, as well as monotonic relationships between the values of signs
and the degree of a disease, are in progress;

∙ customer satisfaction survey: theoretical foundations for application of DRSA in this field are available in
[20], however, a fully documented application is still missing;

∙ bankruptcy risk evaluation: this is a field of many potential applications, as can be seen from promising
results reported, e.g., in [40, 41, 12], however, a wider comparative study involving real data sets is needed;

∙ operational research problems, such as location, routing, scheduling or inventory management: these are
problems formulated either in terms of classification of feasible solutions (see, e.g., [11]), or in terms of
interactive multiobjective optimization, for which there is a suitable IMO-DRSA [22] procedure;

∙ finance: this is a domain where DRSA for decision under uncertainty has to be combined with interactive
multiobjective optimization using IMO-DRSA; some promising results in this direction have been presented
in [21];

∙ ecology: assessment of the impact of human activity on the ecosystem is a challenging problem for which
the presented methodology is suitable; the up to date applications are based on the classical rough set
concept (see, e.g., [9, 34]), however, it seems that DRSA handling ordinal data has a greater potential in
this field.
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5 Glossary

Multiple attribute (or multiple criteria) decision support aims at giving the decision maker (DM) a recommen-
dation concerning a set of objects A (also called alternatives, actions, acts, solutions, options, candidates,...)
evaluated from multiple points of view called attributes (also called features, variables, criteria,...).

Main categories of multiple attribute (or multiple criteria) decision problems are:

∙ classification, when the decision aims at assigning objects to predefined classes,

∙ choice, when the decision aims at selecting the best object(s),

∙ ranking, when the decision aims at ordering objects from the best to the worst.

Two kinds of classification problems are distinguished:

∙ taxonomy, when the value sets of attributes and the predefined classes are not preference ordered,

∙ ordinal classification with monotonicity constraints (also called multiple criteria sorting), when the value
sets of attributes and the predefined classes are preference ordered, and there exists a monotonic relation-
ship between evaluations of objects and their assignment to ordered decision classes.

Two kinds of choice problems are distinguished:

∙ discrete choice, when the set of objects is finite and reasonably small to be listed,

∙ multiple objective optimization, when the set of objects is infinite and defined by constraints of a mathe-
matical program.

If value sets of attributes are preference-ordered, they are called criteria or objectives, otherwise they are
called regular attributes.

Criterion is a real-valued function qi defined on A, reflecting a worth of objects from a particular point of
view, such that in order to compare any two objects x, y ∈ A from this point of view it is sufficient to compare
two values: qi(x) and qi(y).

Dominance: object x is non-dominated in set A (Pareto-optimal) if and only if there is no other object y in
A such that y is not worse than x on all considered criteria, and strictly better on at least one criterion.

Preference model is a representation of a value system of the decision maker on the considered set of objects.
Rough set in universe A is an approximation of a set based on available information about objects of A.

The rough approximation is composed of two ordinary sets, called lower and upper approximation. Lower
approximation is a maximal subset of objects which, according to the available information, certainly belong to
the approximated set, and upper approximation is a minimal subset of objects which, according to the available
information, possibly belong to the approximated set. The difference between upper and lower approximation
is called boundary.

Decision rule is a logical statement of the type “if..., then...”, where the premise (condition part) specifies
values assumed by one or more condition attributes and the conclusion (decision part) specifies an overall
judgment.
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