

Project Number: GFP0802

Wonderland Task Viewer

A Major Qualifying Project Report:

submitted to the faculty of the

WORCESTER POLYTECHNIC INSTITUTE

in partial fulfillment of the requirements for the

Degree of Bachelor of Science

by:

Matthew Duval

James Johnson

Ryan Moak

Date: March 17, 2009

Approved:

Professor Gary F. Pollice, Major Advisor

i

Abstract

 Our objective for this project was to implement a productivity tool for a virtual

team project room using the Sun Microsystems Project Wonderland software. More

specifically, we created an application that would allow for teams using the Project

Wonderland software to discuss, manage and view task data from within Project

Wonderland itself. In order to do this we had to create a Graphical User Interface (GUI)

within Project Wonderland that a user could interact with, as well as implement a system

that could communicate with an external task management application such as

SourceForge®.

ii

Acknowledgements

First, we would like to thank Sun Microsystems for developing the Project

Wonderland Virtual Environment because without it we would have been unable to

undertake this project. In addition, we’d also like to acknowledge the work of the

developers of Pivotal Tracker who have created a free, feature-full online task

management application which was essential in implementing our application’s

repository backend. Finally, we would like to especially thank Professor Gary Pollice for

taking the time out of his schedule to advise our team and for consistently providing

relevant guidance and feedback throughout the life of our project.

iii

Table of Contents

 Abstract .. i

 Acknowledgements ... ii

 List of Illustrations ... iii

1. Introduction ...1

2. Background ...4

 Virtual Worlds ..4

 Task Management ...6

 Project Wonderland: How It Works ...9

3. Methodology ...13

 Design ...16

 Graphics ..17

 Controller ..18

 XML ..23

4. Results and Analysis ...25

5. Future Work and Conclusions ..28

 Known Issues ..29

 Design Decisions for Login ..31

 References ...34

iv

List of Illustrations

Project Wonderland Client-Server Cell Design – Pg. 9

Proxy Design Pattern – Pg. 10

Common and Client Packages – Pg. 15

Initial Design of Controller Package – Pg. 18

Final Design of Controller Package – Pg 19

1

1. Introduction

Productivity is a topic widely discussed in software development and in recent years,

productivity tools have grown tremendously in usefulness and popularity. One avenue

being explored is the idea of virtual environments as a tool for ease of communication as

well as a means of increasing productivity between team members located in different

regions around the world. As a result, many virtual environments have been created in

recent years such as the popular Second Life
®
 as well as the relatively unknown Project

Wonderland. Although, quite different in terms of their intended uses they do share

much in common as Virtual Worlds. This project will deal specifically with creating a

productivity tool to manage tasks for a software engineering team within Project

Wonderland.

The goal of this project was to create a productivity tool in the Project Wonderland

virtual world which would allow a user or users to maintain a list of projects and tasks.

Project Wonderland is an open source virtual environment developed by Sun

Microsystems that aims to provide an experience that is secure, flexible, and stable

enough to be used for real business
12

. Organizations would be able to design their own

worlds in Project Wonderland to suit their groups’ needs and would be able to import

tools easily from the Project Wonderland developers’ network.

The project we worked on was interesting for a couple of reasons. First, Virtual

Worlds have recently come under increased focus for their usefulness as virtual meeting

rooms. They enable people who are working on projects in different areas of the world to

take part in traditional conference room meetings. Although conference calling and

2

webcams do allow for interaction between remote parties these solutions require

additional technology to be purchased and are often unable to be customized to fit a

specific company’s needs. Virtual Environments on the other hand can allow participants

to simulate a real conference room which could potentially foster a greater feeling of

connectivity between users. Although this idea is unproven, it is one of the goals of

Project Wonderland to explore this possibility. Another benefit of Virtual Environments

is that the only technology required to attend a meeting is a computer and an Internet

connection which is often readily available in the modern workplace.

Second, the program we designed is meant to be extensible which is very useful in the

modern software environment. Many applications exist to manage tasks, and as a result

we did not want our application to limit our users by forcing them to use a specific

repository or task management backend. This would allow people to use our program

without forcing them to recreate all the Projects and Tasks that they already have stored

in another repository. We designed an abstract backend to support this increased

flexibility.

Creating a productivity tool for a virtual team project room using the Project

Wonderland software was the project’s initial vision, but there are several parts to what

was intended in that vision. The concept of the application depended heavily upon an

abstracted backend for accessing an external task management system. This backend

would supply all functionality for controlling that system to the software, which would

allow for an easy transition to a different external task management system, if such a

transition were desired. The backend would also provide a generalized definition and

3

organization of a task, which would provide a concrete basis for how the UI would work

and flow.

Design for the user interface focused on three primary tasks: logging in and out of the

task management system, exploring a set of projects and the tasks within, and editing and

updating a task. These tasks would be accomplished by a series of panels which would be

controlled by a common cell application object. The cell application object is a part of the

Project Wonderland Application Programming Interface (API) and will be discussed in

greater detail later on in this paper. Java’s Swing and Abstract Windowing Tool (AWT)

libraries were used in the plans for how the UI would be accomplished.

The next sections of the paper go into more detail about the project. The background

section delves into the current state of the art in the areas of virtual worlds, task

management, and Project Wonderland. Methodology focuses on the design that we chose

to implement for our Task Manager. More specifically it discusses the package structure

of Project Wonderland, the design of the graphics and controller packages for the project,

and finally the Extensible Markup Language (XML) parsing software that was used. The

results and conclusion section discusses how the project turned out in comparison to our

original design, and also outlines future work that could be undertaken to improve our

application.

4

2. Background

Virtual Worlds

While Project Wonderland may be fairly new, the concept of virtual worlds has been

around for quite some time. In 1997, Active Worlds, Inc. released Active Worlds©, its

3d virtual reality platform that allows its users to explore and modify 3d virtual

environments. In 2003, Linden Research, Inc. released Second Life, a virtual world that

users interacted with through the Second Life Viewer, a free client program. All three of

these virtual worlds are very different, but they all have certain commonalities.

The virtual worlds that these programs reside in are very different from each other.

Active Worlds is designed for their users to pick from a huge list of worlds to become a

part of and modify. All of these worlds are different. Within these worlds, players can

claim a piece of land as their own. Second Life, on the other hand, has one massive

world in which everyone resides. Land must be “rented” in Second Life in order to

construct a building. Users of Project Wonderland do not own any of the world in which

they reside, and cannot modify it from within.

All three virtual worlds have some mechanism to allow users to create extensions for

the world. Active Worlds and Second life both do this with a tool inside the world, as

well as externally through a Software Development Kit (SDK). Project Wonderland, on

the other hand, can only be extended through a SDK. The extension tools for Active

Worlds and Second Life are similar, in that their in-world tool allows for creation of

simple 3D objects with simple scripts, and the SDK allows for more complicated

5

scripting
7
. The SDK for Project Wonderland, on the other hand, focuses more on

creating unique cell types, so that the user can add new functionality to their world.

In order for users in a virtual world to interact, they must have a way to

communicate. All three virtual worlds allow for communication between users, through

text and Voice over Internet Protocol (VoIP). In Project Wonderland, private

conversations can be initiated between two people, or conversation can be open. VoIP

volume is determined by distance from a person's avatar, so when having a conversation

in the virtual world, two avatars must be fairly close. This is similar to Active Worlds, in

which you can only see the chat of people within 200 meters of your avatar. Second Life

does not have this problem, instituting a global chat.

Project Wonderland differs from the other virtual worlds in its target audience. Both

Second Life and Active Worlds advertise their product to both the entertainment and to

the business sector. For example, a study was done to determine the feasibility of Active

Worlds for distance learning
3
. By teaching a 3D modeling course in Active Worlds, they

showed that it worked well as a teaching tool because the teacher is able to modify the

environment of their classroom to tailor it to their needs. The teacher was also able to

show the students the actual models from different angles.

Project Wonderland's target audience is specifically the professional one. Their goal

is to create an environment stable and robust enough to conduct real business in it
12

.

Through use of collaboration tools through Project Wonderland, a team should be able to

work together on a project in the virtual world without need to actually meet.

6

Task Management

Today software is ubiquitous. Cellular phones, automobiles, and even some everyday

household appliances often contain a computer chip and millions of lines of code. As a

result of this, software and Information Technology (IT) projects have become one of the

most heavily budgeted areas in many businesses. Unfortunately what should be a

profitable business can also have disastrous financial repercussions if not planned

accordingly. The Institute of Electrical and Electronic Engineers (IEEE) reports that 5 –

15% of software related projects will be abandoned before or shortly after delivery
2
. In

addition, most projects that do end up being completed often come in way over schedule

and end up costing the sponsoring company millions as a result. In response to the rising

costs and repercussions of failed software projects, many new development styles have

been created in order to attempt to ensure project success. One of the most popular today

is the Agile approach. Agile is a very broad term that focuses on the customer’s ability to

direct the project and for the team to respond rapidly to change while delivering value to

the customer.

Extreme Programming (XP) is an example of the Agile approach. By dividing the

customers’ expectations into a series of software user stories, it becomes possible to then

create various software implementation tasks based on exactly what the customer is

asking for. The idea behind extreme programming is to tackle the most important tasks

in the eyes of the customer in order to create periodic functional releases that can then be

reviewed to make sure they meet the requirements of the project. If they do then you

continue, if something doesn't work the way the customer wants then revisions are made

until it does. By keeping the customer involved in the project, the most important

7

features should be able to be delivered on time whilst the less important ones will be left

off until the end or even not included.

The popularity of XP has led to the rise of a number of project management software

applications that allow a project leader to store functional requirements, assign them to

members of their team, and monitor the progress of the project as a whole. It was these

types of applications such as SourceForge, Jira, Bugzilla, and so on that provided the

basis for our project.

Task management is a crucial aspect of project planning and lies at the heart of all

project management styles. Often the discussion of tasks and functional requirements is a

central point to focus on during software development meetings in XP. In these meetings

it is important to be able to access the tasks of a given project for a number of reasons.

Viewing tasks allows you to see what work is left on a project, seeing how often tasks are

completed is useful in gauging the progress of a team, and being able to modify the data

stored in those tasks allows for the flexibility required by customers of XP. Although

many software solutions exist that allow a group to manage a repository of tasks for a

project there are a couple of specific concerns that arise.

First, many software projects these days are grandiose in scope and are often worked

on simultaneously by different people, potentially in different areas of the world. In a

global development environment such as this, a white-board or locally installed

application to keep track of tasks will not suffice the majority of the time. Thankfully,

there are Web applications that provide the same functionality and allow remote users to

all have access to the same wealth of data. This allows everyone to access the same data

8

but since every web application is not synchronized, people could potentially not all be

viewing the same data. This can cause much confusion in software meetings and leads to

the second issue.

The second problem with current task management practices that can be remedied by

using a virtual world is the issue of concurrency. In these modern remote meetings often

conference calling software, webcams, and chat rooms are utilized to discuss the current

projects iteration. This requires interfacing with many different technologies at once in

order to just attend the meeting which can be cumbersome. This difficulty is

compounded once the meeting actually begins, since everyone is split up. In addition,

project members who are attending the meeting via these remote methods could

potentially miss important information and therefore might not be on the same page as

other members. As a result, the important part of the meeting, i.e. the discussion of the

project and current tasks, could potentially fall to the wayside.

Our goal in creating a virtual meeting environment with an embedded task manager

is to allow everyone to view the same data concurrently and also create the illusion that

they are all meeting in the same room. By creating a synchronous task manager that

could interface with Sun's Project Wonderland Virtual Meeting Room it would be

possible to discuss current functional requirements with all the members of your team

regardless of location, whilst also ensuring that everyone is viewing the same information

at the same time. In addition, the goal of our project was to have our task manager

application be extensible enough that any project management software with an API

could be used as the backend of our program. That way regardless of a project's current

9

choice for task management, it would still be feasible to integrate it into our application

and does not limit our software's users to a single flavor of project management software.

Project Wonderland: How It Works

Project Wonderland is a server-client program for displaying 3-Dimensional

“volumes”, or cells. The project is broken down into a server package, a client package,

and a common package. Servers are created with the server application, and client

applications can access it via networking. The common package contains the

functionality for communication between client and server, which works through a

messaging system. An instance of the Project Wonderland application is comprised of

many cells working together.

Illustration 1: Project Wonderland Client-Server Cell Design

A cell in Project Wonderland, defined as a “3D volume,” is actually composed of

two cells. The server cell contains the data and data-accessing controls, which

communicates with the client cell, which accesses and uses the data. The server cell

resides in the server package and the client cell resides in the client package, the two

becoming a part of the server and client applications respectively.

10

Cell messages are created for communication between specific cells, and those are

kept in the common package, as both client and server cells need to create and use them.

The messaging system for each cell follows a design similar to the proxy pattern, which

involves an object sending messages through a medium to a proxy, which tells another

object to act on the first. The first object in this case being the client cell, which utilizes

the common package to send messages to the server package, which holds the proxy that

reads the messages and tells the server what to do. The server in turn sends messages to

the client.

Illustration 2: The Proxy Design Pattern

When the Project Wonderland application is launched, the base cell of a server is

accessed when a user logs in. The contents of that base cell are composed of cells from

the Project Wonderland Modules Project, which is an Ant project composed of many

various cell projects. Ant is a build tool for java-based applications
1. It’s very similar to

Makefiles for creating a C or C++ application, except that it allows for more of a

freeform project because of Java’s portability. Each module cell project is integrated into

11

the Wonderland Project when it is compiled, and launched at runtime when the base cell

is being accessed and viewed.

Extending Project Wonderland, which is one of the main goals of this MQP, is done

by creating a new extended cell project in the Wonderland Modules Project. An extended

cell project utilizes the same structure as Project Wonderland, server/common/client, as

the cell project will be integrated into the whole project when compiled. To create a 3D

application, which runs within Wonderland, a server side cell i.e. a

StationaryCellGLO or StationaryCellAppGLO is required. Corresponding to

the server side cell, a client side cell needs to be written, which is composed of a

StationaryCellApp and a SharedApp2DImageCell. Each user who logs into

Project Wonderland will have a client cell generated for each server cell contained in the

base server cell. Code is written for a user interface within the client cell, and data control

within the server cell. Messages are created within the common package that both cells

use. In addition, a derived instance of CellSetup is created which the cell framework

is designed to utilize during the creation of the client and server cells.

Adding a cell to the base cell in a server is done by adding it to a specific file system

of XML files that get accessed when building the cell. These XML files will tell the base

cell what cells from the Wonderland Modules Project to create within itself. After adding

the extended cell to the XML and putting it in the appropriate place, you should be able

to run a server application with that cell running and access it from a client application.

Building the server and client applications is done through running Ant build files.

The Wonderland Project and Wonderland Modules Project are both Java projects that use

Ant build files, which allows for Project Wonderland’s cell-based architecture to build

12

the Wonderland Project with specific cell projects from the Wonderland Modules Project

integrated into it. This is important to testing for this project because we can test to see if

an error is generated from within our code or Project Wonderland by selecting a build

path that does not include our code and compare it to one that does.

13

3. Methodology

As it was created by Sun Microsystems, Project Wonderland is designed to be

developed in the NetBeans
8
 Integrated Development Environment (IDE). The Project

Wonderland file system is a NetBeans free-form Ant project that is composed of even

more free-form ant projects. When we began our project, however, we were unable to

get Project Wonderland to run using the Netbeans IDE. We were unable to pinpoint

exactly why Netbeans was failing but after many hours of work we still had not

succeeded in launching Project Wonderland without errors. In order to overcome this

roadblock we chose to transition our work to a more familiar IDE, Eclipse. Although

Project Wonderland was not designed specifically for use within Eclipse, we were still

able to get it up and running relatively hassle free which was a vast improvement from

the results we achieved through the use of Netbeans.

The Eclipse IDE is not designed to take in the Netbeans free-form Ant project.

Because of this, the entire Project Wonderland file structure had to be loaded as the

project. Ant still worked the same way, but the Java compiler didn't work in every file,

so the majority of our debugging had to be done by compiling the code with Ant and

checking the output for syntax errors. Ant worked perfectly in Eclipse after the build

path was configured, so that was the IDE of choice for the rest of the project.

The Web-based administration features of Project Wonderland allow for easy

dissemination of the Project Wonderland client to users
11

. With a specific Ant target, the

user can build a WAR file from their Project Wonderland source directory (or the default

can be downloaded online). The WAR file contains a Java Web start client which will

14

launch Project Wonderland, a Wonderland World Builder which is a simple interface to

let users quickly build worlds for use in Project Wonderland, and a Wonderland Art

Upload that allows the user to upload art to the Project Wonderland server to add new

content.

In order to use this WAR file, it has to be stored in a Web container that supports Java

Servlets. The Project Wonderland website suggested the use of Jetty, and it worked out

fairly well for us. Jetty was very easy to set up and configure. One configuration file had

to be modified, the WAR file had to be copied into a folder, and then a JAR file was run.

Jetty did have one problem, though. On occasion when trying to download the Web start

client, the Jetty server would give a security exception and crash. The error seemed to

happen at random and only on one computer, so the problem was never solved.

Besides the one error with Jetty, it turned out to be a very effective way to demo the

project. After building the WAR file and starting the Jetty server, anyone with a Web

browser and Java 5 or 6 can go into your version of Project Wonderland and see what

you have done. This was a perfect way to demonstrate our tool as we added more and

more functionality.

15

Illustration 3: UML diagrams of Client and Common packages

16

Design

 The first step taken in designing the application was to determine what exactly a

task manager accomplished. A set of attributes was agreed upon for a task and for a

project of tasks. In order to discern which attributes would be important, several task

managers were researched, like SourceForge and the Mylyn plug-in for Eclipse, and

common attributes shared between their definitions of a task were found. Next, a backend

abstract framework was designed for interfacing with the UI, which would later be

extended to access and control an external task manager. The idea being that the

framework could then easily be tailored to interface with various task managers.

After the framework was designed, the user interface had to be outlined. We came to

the conclusion that access to a list of projects or a list of tasks from a project was needed,

as well as the ability to edit those tasks. Allowing multiple users and login capabilities

was also needed. From these needs it was decided to have a central window that

corresponded to the application, which could manipulate multiple views that it could

switch between, i.e. one for the project list, one for the task list, and so on. This type of

windowing system is easily provided using the AWT package in the Java library. The UI

was designed to work similarly to a JWindow with several JPanels to switch between.

The last step in the design phase was applying it to the client-server setup that Project

Wonderland employs. The UI functionality was placed within the client package because

the server side cells had no need to access the UI. In addition, the code for the Server

was placed in the server package to mirror the client cell. Finally, a system of messages

was added to the common package to talk between the client and server cells. These

17

messages were simple in design, but how the client and server interpret each is separate

and distinct. The messages would often be sent to the server when something was

selected through the UI, or a variable field was changed. When a message was received

by the server, each client would then be notified and updated accordingly. This allowed

us to ensure concurrency between multiple client applications since each client

application was kept up to date as long as the server was kept up to date.

Graphics

 AWT is a windowing toolkit that is primarily used for the creation and

manipulation of windows and panels, as well as some simple graphics, i.e. shapes, lines,

colors. Unfortunately, AWT is not a package devoted to creating graphical user

interfaces. Swing is a project within the Java Foundation Classes with the purpose of

creating GUI components that can be integrated easily together with a common look and

feel. The Swing project contained a simple component for all of the UI capabilities

required for the project: List Boxes, Buttons, Text Boxes, Labels, and so on. Swing

components were decided upon for the UI in the design.

After the design was complete, work started with implementing the abstract

framework into the UI. The ease of use that Swing provides with its components and

framework made the UI a quick task and it was ready to test within days. This excess of

time seemed like a blessing until it was discovered that Project Wonderland v0.4, the

build being used, does not support Swing. According to a release from the Project

Wonderland team at Sun
15

, Project Wonderland v0.5 is to have Swing embedded into its

18

architecture. This was exciting, but seeing as the project was scheduled to be completed

by then, we were forced to rethink our design of the UI.

With the Swing project a non-option, another avenue was sought for our UI: AWT.

As AWT is merely a windowing toolkit, with limited graphics capabilities, the

components we were planning on taking advantage of through Swing had to be imitated.

AWT allows for mouse and key listeners to work with each UI panel that we

implemented to enact control over their components. Mouse listeners took care of focus

and buttons, and key listeners filled in text at the current focus, if applicable. Each

component had to be drawn and have scaling handled, which isn’t very costly, but did

result in a very inefficient amount of code. The initial premise of solving the Swing

problem was to abstract all the UI so it could easily be replaced later, which was not done

initially, but was accomplished in the final version of the project.

Controller

Illustration 4: The Initial Design of the Controller Package

19

Illustration 5: UML Diagram of Final Controller Package

20

In order for the UI to function, it became necessary to create a controller class that

would allow for the UI to communicate with some external task manager. The main

requirements for the controller package were that it be able to manage a list of projects,

and in addition manage the list of tasks within each of these projects. The ability to add

and remove tasks, modify the information held in a task, and view task information was

required for the UI to function correctly. In order to implement this functionality we

chose to design three interfaces which would define the required methods such as

getTask, editTask, etc.

These three interfaces were the IController, IProject, and ITask. The

responsibilities for the IController were to allow a user to login, and also get the list

of tasks that the user has access to. These three interfaces were all managed by a

TaskManager class which was designed to be a Singleton since there should only be

one TaskManager instance created for each person using our application. In addition,

in order to make our application more extensible the only change required in the program

should be to change the type of IController created in the TaskManager to the

implementation that functions with the backend the programmer wishes to use. Next, the

IProject interface defined the functionality that is required of a project that is to be

used in our application. It is required that each project has a name, and that the project

manages a list of ITasks that contain the actual information relevant to specific tasks.

Classes that implement IProject are required to be able to modify the data in each of

the tasks, as well as add them and remove them to and from the system, respectively.

Finally, the ITask interface specified the methods required of a basic task in our system.

21

This included getting the properties of the data held in the task, as well as being able to

change the properties within the task. In order to implement these functions some type of

backend was required to store the task data so that we could retrieve it. We attempted a

number of solutions including SourceForge, XPlanner, and ultimately, Pivotal Tracker.

We tried to make our program as extensible as possible so that it would not be

difficult to allow our application to run using various backends. It was important that we

did this since it became necessary for us to experiment with many different applications.

Our initial plan was to use Sourceforge but problems arose with the API that could not be

corrected and as a result we were forced to research other options.

Since SourceForge was a Simple Object Access Protocol (SOAP) Web application

we tried to find others that were similar since that is what we were most familiar with at

the time. This led us to the XPlanner application which was popular for its ease of use

and simple Web API. Installing XPlanner proved to be fairly reasonable and we quickly

got it running on a local computer. Unfortunately, the SOAP version of the Web API for

XPlanner was built to work with the Java API for XML Based Remote Procedure Calls

(JAX-RPC) which was only compatible with older versions of Java and has mostly been

phased out in favor of the newer Java API for XML Web Services (JAX-WS.) This led

to many difficulties and after numerous attempts ultimately failed as a choice for a

backend. We did temporarily build a functioning controller package to work with the

database that XPlanner utilized but it was ultimately abandoned for our next choice in

Web application backends.

The final solution to our issue of what application should be used for our Task

Manager backend came from the recommendation of our advisor, Professor Pollice. He

22

had recently been looking into a simplistic Web based project manager application that

was very easy to use and setup. This Web application was called Pivotal Tracker and

fortunately for us it ran on a RESTful Web services backend. This allowed us to get

information about the tasks stored in Pivotal Tracker in the form of XML data which we

could then parse and store in our task manager application. This was exactly what we

had been looking for and we quickly set to work implementing our controller package

with the new Pivotal Tracker backend. We created a few classes PTConnector,

PTProject, and PTTask which were the implementations of our three interfaces. In

addition we created a class, HTTPCommunicator which took care of communication

between our application and the RESTful Web services of Pivotal Tracker. The two

main functions in HTTPCommunicator were sendGetRequest(), and

sendPostRequest(). These were used to either acquire information from the Web

services, or alter data on Pivotal Tracker by sending requests to modify the data

accordingly. Everything ended up functioning correctly with the basic project

management aspects of our application but unfortunately, the login manager ultimately

was not able to be implemented. This is due to the fact that Pivotal Tracker uses hash

keys to allow users to access the various task data. Each user can only acquire their key

by logging in to the Website so that is how they manage the accounts. Once acquired,

though, this key can be input into a configuration file in our application which then uses

it to access the appropriate account data. The final step to make our program work was to

parse the XML data we had acquired from Pivotal Tracker’s RESTful services. This is

discussed in the next section.

23

XML

There are two common types of XML parsing: the Document Object Model (DOM),

and the SAX
13

 model. SAX, or Simple API for XML, was one of the first widely adopted

APIs for XML, but from personal experience it was found to be buggy and often fond of

throwing exceptions for no good reason. The DOM works through holding an entire

XML document as a Java object, and then it can access the entire tree structure of the

document, which is done using XPaths. An XPath is a path that points to part of an

XML file, using tag names and other special syntax. This is the XML parsing method that

was employed for decoding the messages sent by Pivotal Tracker in response to the

database queries sent by the project.

The normal source for the XML document in the DOM is to open a file from a

provided file path, but the project needed to pull the Document object from a string of

XML. This required the source to be set up through a StringReader that fed in the

information to the file, which could be parsed by the XPath and the Document object.

This allowed the project to decipher the answers to the queries of the Pivotal Tracker

database, which were then used to update the UI content and in turn the server data.

24

4. Results and Analysis

Several steps were taken to achieve the backend package contained in our final

product. First, what a task is was established and the abstract package was set up so it

could be used while the UI was being developed simultaneously. To test functionality, an

implementation of the Controller package was created to read a project stored in local

text files. This allowed for work on our UI functionality to continue and also provided a

simplistic working backend for testing purposes.

Following our textual backend and our failed attempts at getting the XPlanner

software to work, a version of the backend was created to directly access a database over

the Internet. This version of the backend was not necessarily complete, but provided an

opportunity to work with a system with its own definition of a task, even though it had no

functionality of its own. This wasn’t considered a final solution, but it allowed for

progression from text based data storage to an actual database backend. This paved the

way for transferring data through Web services.

Pivotal Tracker was chosen in the end as the system the backend would be accessing,

and once again the backend was modified. Tweaking needed to be done to finalize the

abstract package and accessing that package, but conversion to Pivotal Tracker was

primarily smooth sailing. It did require a series of XML parsers to be written for reading

the messages from the system, but those came together nicely in the final stages of the

project.

25

The plan for the user interface was to use simple Swing objects in a series of easy to

use layouts. These goals were diverted at the discovery of Swing not being part of Project

Wonderland v0.4, and a simpler UI was designed that only used the AWT libraries. This

made for much more complicated and dense code without as much functionality but it

still came together as a responsive, working interface.

The majority of the design was implemented rather smoothly into the final product,

with minor hiccups involving the Wonderland API and the various graphics and backend

problems. A great success of the design was the abstracted backend, which made testing

the product very easy. The ability to easily transition between several testing backends

while the final Pivotal Tracker backend was being worked on allowed progress on both

the UI and backend to proceed smoothly. This aspect of the design will also make the

project easier for a later group to extend. Possible extensions include the ability to work

with a different task management system, or maybe a later build of Pivotal Tracker.

Not all aspects of our initial design were able to make it into the final product

though, and several features are still a possible addition to a later version. One of the

most important of these features is the ability for the user to log in as a user in the task

management system. Presently, the user is supplied internally within the extended

backend code for the prototype. The desired functionality would be to allow for the login

panel of our application to communicate directly with the backend’s login management

system.

Another aspect of the design that did not make the prototype is the use of the Java

Swing libraries for the user interface. This is simply something that couldn’t be achieved

26

because it is not a part of the Project Wonderland v0.4 API. The Swing libraries are

scheduled to be a part of Project Wonderland v0.5, so if a build of this project were to be

created after that release, then it would be possible to implement Swing components into

the panels of the user interface.

Finally, the last issue we encountered when creating our application was the

inclusion of unit tests. This was a result of the way Project Wonderland works. Since all

input is handled through Project Wonderland, there is no way to send virtual input to the

application to test it. The only way to test the application is to actually run Project

Wonderland and test the application manually. It is important to note that even Project

Wonderland itself does not have any unit tests.

27

5. Future Work and Conclusions

The first priority for the future of this project would be to make this application

compatible with Project Wonderland v0.5. Project Wonderland v0.5 is mainly a release

to add more features to Project Wonderland, so to make this project compatible would

require only one change. In Project Wonderland v0.4, messaging can be done either by

packing up the information in an object yourself, or by using Java’s object serialization.

In Project Wonderland v0.5, though, messages can only be packed by object serialization.

In order to comply with Project Wonderland v0.5, we would need to change our

messaging to use object serialization.

Another important feature that should be looked into for future work on our project

is the development of a more robust Controller package that would allow for added

functionality in our system. Although, Pivotal Tracker works for our project as a proof of

concept design, it only provides basic task management functionality. It would be an

interesting feature to allow for the sorting and filtering of tasks using our system. In

addition, it would be beneficial to implement a login system that would interface with an

appropriate task management backend since Pivotal Tracker does not allow for this. The

SourceForge API would be able to allow for all of this functionality, so that may be

something a future team could look into.

Implementing Swing into the project wouldn’t change the design much, but would

clean up the code and user interface greatly. Already the UI is set up to use

interchangeable views that work to support the framework this project developed. If the

project was converted to use Swing, each of these views would become an extended

28

version of JPanel. This would remove any hard-coded paint functions, and all the UI

code would then be handled by extended components provided by the Swing package.

The several abstracted components already implemented, the ButtonBar and the

ListViewer, would transition to JButton and JListScroller. All responses

made by the interface are already implemented with MouseListener and

KeyListener, which would change to just MouseListener, as the JTextBox

component can handle keyboard listening itself.

The conversion to using Swing for the interface instead of only AWT would not

require large changes in program function or design, merely aesthetic and efficiency

changes. The benefits here include a smoother loading interface that is easier to use and

more familiar to the average user, as well as a more efficient program simply for lack of

extraneous code. Upgrading this project to Swing would be a very beneficial and

appropriate change, which should and hopefully will occur when Project Wonderland

v0.5 is released.

When this project was being discussed the concept of implementing an optional 3-

Dimensional interface that worked off of the virtual environment provided by Project

Wonderland. The idea was that a “virtual office” could be simulated and a project leader

could simply interact with a person’s avatar and be able to assign project-specific tasks to

them. This virtual representation would also allow for a visual display of the relationships

between certain tasks and the avatars of the people involved in those tasks. For example,

if a project had nine people with three tasks, each task with three people working on it, a

visual display might show three triangles linking the avatars of each task group.

29

Discussions about possible display tokens, varying colors and connecting lines, and other

varying interface idea were had, but no final conclusion about how the displays would

happen was decided upon.

This notion of a 3-Dimensional display revolved heavily upon a mouse-click based

system for interactions with the interface. It was decided that the team should write up a

design for an abstract controller that would allow for the connection of a

MouseListener class, a visual display of the information, and the framework for

handling the information itself. This way an implementation of the code could exist in the

future that allowed for someone to link up our framework easily with the Wonderland

project, while providing easy access to visual display and user control.

The goal of our project initially was to explore the usefulness of a virtual office or

project team room. The reason a 3-Dimensional display of the task information for a

project was discussed at all was because it was considered a possible route to

accomplishing the project goal. The team agreed that to accomplish a 3-Dimensional

display, a framework would need to be created and tested, preferably on a 2D display that

was proven to work already. The project has accomplished this initial step of a 2D

display and framework, but the 3D design was shelved and left to be a possible goal of a

future project.

Known Issues

Currently, there are a number of small bugs in the implementation of our UI.

Because we were forced to use AWT as opposed to Swing, we were unable to use real

text boxes, and as a result text can run off of the end of the smaller text boxes (the

30

description field in the task editor wraps correctly). The buttons in our application are

also not as responsive as we’d like because they are not actually buttons. When a mouse

clicks on the screen, it checks through a list of known button locations to see if the

location it clicked is on a button or not. This method works to register the majority of

button clicks, but not all, and is very inefficient. Both of these bugs would be fixed easily

by moving to Swing.

Also in our application, the user is unable to double click on a task or a project to

select it. Ideally, the user would be able to double click on a project in the project list and

that project’s tasks would be displayed, without having to hit the “Select” button in the

lower left. The same should also apply to tasks in the task list, so that the user should be

able to double click on a task and have it open the View/Edit screen.

Finally, there might be a bug in our application with respect to Web containers. We

found that on one specific computer we were unable to launch Project Wonderland from

the Web application. When we attempted to run it, a security exception was thrown with

very little error tracing. As this wasn’t able to be reproduced on other computers, we are

unsure if this is even a bug, but if it is, it is most likely that we configured something

incorrectly in Jetty.

Design Decisions for Login

In order to clear up any ambiguity in the implementation of our login system, this

next section will deal with the design decisions that lead to the current functionality. The

most important factors that impacted the way login worked were based upon the

31

limitations of the backend we chose, and in addition the way that Project Wonderland

handled synchronization.

The first factor that influenced the design of our final controller package was the way

Pivotal Tracker handled accessing its RESTful services. This was accomplished by

acquiring a hash code from your login at the Pivotal Tracker website and then supplying

that hash code each time the user wishes to access the Web services. This design allowed

for Pivotal Tracker to supply secure access to the projects since each user would have to

login to their account to get their hash code in order to access their projects. We were

unsure about how to integrate this into our project since we were expecting users to

supply user names and passwords to access the task manager, but Pivotal Tracker did not

support this method. We considered the option of having users supply their hash codes

upon accessing the interface but since we were implementing the keyboard input

functionality ourselves and there was no copy and paste option, we were concerned that

users of our software might find it cumbersome to enter in a 28 character key. Since our

project was designed with the idea that a group would be using the software in meeting

environments, we decided that it made more sense to have them input their user name and

hash key into a configuration file before deploying their Project Wonderland build. That

way, their projects would be available to them immediately upon the launch of Project

Wonderland without requiring them to log in. Also this would provide for an easier

method of entry of their hash code for Pivotal Tracker using their preferred text editor.

Our decision to use this method of login access was also influenced by Project

Wonderland's handling of synchronization. Presently, this is done by sending messages

32

to the server each time the client is updated in order to ensure that each instance of

Project Wonderland running our application displays the same information as the others.

With this current implementation, if our program allowed for multiple users to login then

these messages would cause our application to function incorrectly. For example, if two

users were logged into our application with differing logins, then when either user

attempted to change the panel they were viewing in our application, the application that

the other user was viewing would change as well since Project Wonderland’s messaging

system enforces a synchronized view between clients. This would make it impossible for

two users to use the application separately under one instance of Project Wonderland

since any change that one user makes will affect the display of all other users. Rewriting

the way that messages are handled would most likely be able to remedy this situation.

33

References

1. "Apache Ant User Manual." Apache Ant. 16 Feb. 2009

<http://ant.apache.org/manual/index.html>.

2. Charette, Robert N. "IEEE Spectrum: Why Software Fails." IEEE Spectrum

Online: Technology, Engineering, and Science News. 17 Feb. 2009

<http://www.spectrum.ieee.org/sep05/1685>.

3. Dickey, Michele D. "Three-dimensional virtual worlds and distance learning: two

case studies of Active Worlds as a medium for distance education." British

journal of educational technology 36 (2005): 439.

4. Horstmann, Cay S. Big Java. New York: Wiley, 2005.

5. "Java.awt (Java 2 Platform SE v1.4.2)." Developer Resources for Java

Technology. 20 Feb. 2009

<http://java.sun.com/j2se/1.4.2/docs/api/java/awt/package-summary.html>.

6. "JDK 5.0 Swing (Java Foundation Classes (JFC))-related APIs & Developer

Guides from Sun Microsystems." Java 1.5 Swing API. 21 Feb. 2009

<http://java.sun.com/j2se/1.5.0/docs/guide/Swing/index.html>.

7. Kohler, Thomas, Kurt Matzler, and Johann Füller. "Avatar-based innovation:

Using virtual worlds for real-world innovation." Technovation (2009).

Technovation. 21 Jan. 09. 19 Feb. 09

<http://www.sciencedirect.com/science/article/B6V8B-4VF0XP0-

1/2/e9240c0e542531c76709fe7af5274a16>.

8. "NetBeans IDE - Base IDE Features." NetBeans. 24 Feb. 2009

<http://www.netbeans.org/features/ide/index.html>.

9. "Pivotal Tracker: API." Pivotal Tracker API. 17 Feb. 2009

<http://www.pivotaltracker.com/help/api>.

10. "Project Wonderland New Cell." TWiki- Project Wonderland New Cell. 21 Feb.

2009 <http://wiki.java.net/bin/view/Javadesktop/ProjectWonderlandNewCell>.

34

11. "Project Wonderland Web Administration." Twiki- Wonderland Web Admin. 18

Feb. 2009

<http://wiki.java.net/bin/view/Javadesktop/ProjectWonderlandWebAdminAdmin

>.

12. "Project Wonderland Visons and Goals." Twiki- Wonderland Visons and Goals.

21 Feb. 2009

<http://wiki.java.net/bin/view/Javadesktop/ProjectWonderlandAbout#VisionAnd

Goals>.

13. "SAX." SAX API for XML. 20 Feb. 2009 <http://www.saxproject.org/>.

14. "Statistics over IT Failure Rate." IT Cortex Web Portal. 17 Feb. 2009

<http://www.it-cortex.com/Stat_Failure_Rate.htm>.

15. "Wonderland Roadmap." Twiki- Wonderland Major Architecture. 20 Feb. 2009

<http://wiki.java.net/bin/view/Javadesktop/WonderlandRoadmap#Release_0_5_J

uly_2008_Major_Arch>.

