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Abstract Latent growth curve models as structural equation models are extensively
discussed in various research fields (Curran and Muthén in Am. J. Community Psy-
chol. 27:567–595, 1999; Duncan et al. in An introduction to latent variable growth
curve modeling. Concepts, issues and applications, 2nd edn., Lawrence Earlbaum,
Mahwah, 2006; Muthén and Muthén in Alcohol. Clin. Exp. Res. 24(6):882–891,
2000a; in J. Stud. Alcohol. 61:290–300, 2000b). Recent methodological and sta-
tistical extension are focused on the consideration of unobserved heterogeneity in
empirical data. Muthén extended the classic structural equation approach by mix-
ture components, i.e. categorical latent classes (Muthén in Marcouldies, G.A., Scku-
macker, R.E. (eds.), New developments and techniques in structural equation model-
ing, pp. 1–33, Lawrance Erlbaum, Mahwah, 2001a; in Behaviometrika 29(1):81–117,
2002; in Kaplan, D. (ed.), The SAGE handbook of quantitative methodology for the
social sciences, pp. 345–368, Sage, Thousand Oaks, 2004). The paper discusses ap-
plications of growth mixture models with data on delinquent behavior of adolescents
from the German panel study Crime in the modern City (CrimoC) (Boers et al. in Eur.
J. Criminol. 7:499–520, 2010; Reinecke in Delinquenzverläufe im Jugendalter: Em-
pirische Überprüfung von Wachstums- und Mischverteilungsmodellen, Institut für
sozialwissenschaftliche Forschung e.V., Münster, 2006a; in Methodology 2:100–112,
2006b; in van Montfort, K., Oud, J., Satorra, A. (eds.), Longitudinal models in the
behavioral and related sciences, pp. 239–266, Lawrence Erlbaum, Mahwah, 2007).
Observed as well as unobserved heterogeneity will be considered with growth mix-
ture models. Special attention is given to the distribution of the outcome variables as
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counts. Poisson and negative binomial distributions with zero inflation are considered
in the proposed growth mixture models variables. Different model specifications will
be emphasized with respect to their particular parameterizations.

Keywords Panel data · Latent class growth analysis · Growth mixture modeling ·

Heterogeneity · Zero-inflated negative binomial model

1 Introduction

Longitudinal research studies with repeated measurements are quite often used to ex-
amine processes of stability and change in individuals or groups. With panel data it
is possible to investigate intraindividual development of substantive variables across
time as well as interindividual differences and similarities in change patterns. While
the traditional analysis of variance (ANOVA) and the analysis of covariance (AN-
COVA) assume homogeneity of the underlying covariance matrix across the levels
of the between-subjects factors and the same covariance patterns for the repeated
measurements, the structural equation methodology offers an alternative strategy: the
latent growth curve models. These models describe not only a single individual’s de-
velopmental trajectory, but also capture individual differences in the intercept and
slopes of those trajectories. Based on the formative work of Rao and Tucker’s basic
model of growth curves (Rao 1958; Tucker 1958), Meredith and Tisak (1990) dis-
cussed and formalized the model within the structural equation framework. Further
developments of the growth curve model were proposed by McArdle and Epstein
(1987), McArdle (1988) and Muthén (1991, 1997).

Observed heterogeneity in growth curve models can be captured by covariates
explaining part of the variances of the intercept and slope. But the assumption of
a single population underlying the growth curves has to be relaxed in the case of
unobserved heterogeneity. Instead of considering individual variation around a sin-
gle growth curve, different classes of individuals should vary around different mean
growth curves. A very suitable framework to handle the issue of unobserved het-
erogeneity is growth mixture modeling introduced by Muthén and Shedden (1999).
These mixture models differ between continuous and categorical latent variables. The
categorical latent variables represent mixtures of subpopulations where the product
membership is inferred from the data. Like the conventional growth curve models,
intercept and slope variables capture the continuous part of the model. Growth mix-
ture models can also be seen as an extension of the structural modeling approach
with techniques of latent class analysis. The inferred membership of each individual
to a certain class is produced with the information of the estimated latent class prob-
abilities. Further developments and applications with the program Mplus (Muthén
and Muthén 2006) are discussed in several papers by Muthén (2001a, 2001b, 2003,
2004). Recently, Muthén (2008) gives a model overview of the so-called latent vari-

able hybrids within the continuous and categorical latent variable framework.
Statistical techniques to group and classify individuals with categorical panel data

(e.g., latent class analysis) have a long tradition in behavioral and social sciences
(Rost and Langeheine 1997). In criminology, classification of longitudinal contin-
uous and count data were formally introduced by Nagin and Land (1993), Nagin
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(1999) and Roeder, Lynch and Nagin (1999) with the semiparametric group-based

approach (see also Nagin 2005 for an overview). This technique enhanced the ability
to estimate group membership of individuals who follow a common trajectory across
time (e.g., persistent offenders). Muthén (2004) discusses this group-based approach
as a simpler specification of the general growth mixture model and labeled it as latent

class growth analysis. In difference to the general growth mixture model the growth
curve parameters are fixed and not random, assuming no variation across individuals
within classes. The possibility to treat their measurements as counts with the Poisson
distribution as the underlying statistical model (see, e.g., Ross 1993) is also part of the
mixture model. If the count variables are inflated with zeros, i.e. the particular behav-
iors seldom occur, a variant of the Poisson model, the so-called zero-inflated Poisson
model (ZIP, Lambert 1992) should lead to a better statistical representation of the data
than a model without considering the zero inflation. However, a Poisson distribution
assumes the equality of its mean and variance. This property is rarely found in em-
pirical data. If the variance is larger than the mean, then the negative binomial model
(NB) should be used instead of the Poisson model to get a parameter estimate of the
overdispersion (cf. Hilbe 2007 for an overview of the varieties of negative binomial
models). If the count variables are both inflated with zeros and overdispersed, the so-
called zero-inflated negative binomial model (ZINB, Hilbe 2007, p. 174f.) should be
applied. The recent version of the Mplus program allows the specification of differ-
ent count data models including the ZIP- and the ZINB model (Muthén and Muthén
2010). The paper will focus on the applicability of zero-inflated count data models
which has been seldom used within growth mixture analyses.

After a short introduction of growth curve and growth mixture models, special
cases for count data are discussed in Section 2. Section 3 gives a brief introduction
of the longitudinal study, the sample and the variables used in the statistical analyses.
Results of the growth curve and growth mixture models are presented in Sections 4
and 5. A summary and discussion with suggestions for further research are given in
Section 6.

2 Method and models

2.1 Growth curve models

The possibility that the individual trajectories of a dependent variable can vary is one
of the main advantages of the growth curve model. The formal representation of a
growth curve model can be seen either as a multilevel, random-effects model or as
a latent variable model, where the random effects are latent variables (Meredith and
Tisak 1990, p. 108; Willet and Sayer 1994, p. 369):

yi = Ληi + ǫi (1)

yi is a t × 1 vector of repeated measurements for observation i where t is the number
of panel waves. η is a q × 1 vector of latent growth factors where q is the number
of these factors. ǫ is a t × 1 vector of time-specific measurement errors, and Λ is the
t ×q matrix of factor loadings with fixed coefficients representing the functional form
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Fig. 1 Quadratic growth curve
model for t panel waves

of the individual trajectories. Variations of individual trajectories are captured by q-
numbers of latent variables η whereas usually η1 is the intercept, η2 is the linear slope

and in case of nonlinear development η3 represents the quadratic slope (cf. Fig. 1).
If applicable, additional latent variables can be specified. It is assumed that the latent
growth factors and measurement errors are independent and multivariate normally
distributed:

[

ηi

ǫi

]

≈

([

α

0

]

,

[

Ψ 0
0 Θ

])

(2)

where α is a q × 1 vector of growth factor means and Ψ is the respective q × q

covariance matrix. Θ is a p × p covariance matrix of time-specific measurement
errors which are usually constrained to be a diagonal matrix.

For estimation a probability density function is used:

f (yi) = φ
[

yi;μ(θ)Σ(θ)
]

(3)

where φ is the probability density function for yi and θ is the vector of all parameters
to be estimated. μ(θ) is a p × 1 model-implied mean vector given by

μ(θ) = Λα (4)

and Σ(θ) is a p × p model-implied covariance matrix given by

Σ(θ) = ΛΨ Λ′ + Θ. (5)

Parameters in θ are ML estimates which maximizes the likelihood that the measure-
ments yi are drawn from a multivariate normal distribution. Equation (1) assumes that
all individuals are drawn from the same population. The means of the latent growth
factors α show the average development of the measurement yi across p panel waves
within a homogeneous population.

2.2 Growth mixture models

Growth mixture models can relax the assumption of a homogeneous population and
can give information about parameter differences across unobserved subpopulations.
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Instead of considering individual variation of single means of the vector η the growth
mixture model allows different classes of individuals to vary around different means.
Classes are introduced by a latent categorical variable where the categories represent
the unobserved heterogeneity of the data (Muthén and Shedden 1999):

yik = Λkηik + ǫik (6)

The growth mixture model (abbreviated GMM) in (6) allows the estimation of k =

1, . . . ,K latent classes. The probability density function for the GMM is a finite
mixture of normal distributions:

f (yi) =

K
∑

k=1

πkφk

[

yi;μk(θk)Σ(θk)
]

(7)

πk is the unconditional probability that a measurement belongs to latent class k, φk is
the multivariate probability density function for latent class k. μk(θk) represents the
model-implied mean vector given by

μk(θk) = Λkαk (8)

and Σk(θk) is the model-implied covariance matrix given by

Σk(θk) = ΛkΨkΛ
′
k + Θk (9)

In an unconditional mixture model the latent variables η are only described by their
class specific means αk and variances Ψk . A conditional mixture model includes ex-
ogenous latent variables ξn representing the observed heterogeneity of the data. The
relation between ξn and the categorical class variable c is given by a multinomial
logistic regression equation:

logit(πk) = αk + Γkξn (10)

with πk = P(ck = k|ξn). Γk is a (K − 1)×q-parameter matrix containing regression
coefficients of K classes on ξn.

The simplest mixture model is latent class growth analysis (abbreviated LCGA),
which is a submodel of (6) assuming that growth factors η are fixed instead of random
effects, i.e. they have zero variances within the particular classes (Ψ = 0). So, classes
are treated as homogeneous with respect to their development. Two major advantages
are emphasized (Muthén 2004, p. 350): It can be used to find cutpoints in the within-
class variation on the growth factors and it can serve as a starting point for the more
general GMM.

Growth mixture models are estimated by maximizing the log-likelihood function
within the admissible range of parameter values given classes and data. Mplus em-
ploys the EM-algorithm for maximization (Dempster et al. 1977; Muthén and Shed-
den 1999). For a given solution, each individual’s probability of membership in each
class is estimated. Individuals can be assigned to the classes by calculating the pos-
terior probability that an individual i belongs to a given class k. Each individual’s
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posterior probability estimate for each class is computed as a function of the param-
eter estimates and the values of the observed data.

Standard errors of estimates are asymptotically correct if the underlying mixture
model is the true model. In general, test statistics require well-defined classes in a
mixture model. In mixture models a k class model is not nested within a k + 1
class model. Therefore, χ2-differences cannot be used for statistical tests. Usually,
the Bayesian Information Criterion (BIC; Schwarz 1978) are used for model com-
parisons which was found to perform best for growth mixture models in a simulation
study by Nylund et al. (2007). The model with the smallest BIC is accepted within
model comparisons.

2.3 Special cases for count data

2.3.1 Poisson and zero-inflated Poisson model

When the response variable under study is a count, the Poisson regression as a spe-
cial case of the generalized linear model are often applied. Let yi be the number of
observed count occurrences, xi be the vector of covariates and νi be the expected
number of counts.1 The number of events in an interval of a given length is Poisson
distributed and the Poisson regression model can be formulated via a log link function
(Hilbe 2007, p. 39; Greene 2008, p. 585):

Pr(yi |xi) = exp(−νi)ν
yi

i /yi ! (11)

with νi = exp(α + x′
iβ). β is the vector of regression coefficients. The conditional

mean function of the Poisson distribution is E(yi |xi) = νi with its equidispersion
Var(yi |xi) = νi .

If the number of zeros in the count variable are very large, a variant of the Poisson
regression model is more appropriate: the so-called zero-inflated Poisson model (ab-
breviated ZIP). The ZIP model combines the Poisson regression model in (11) with a
logit model to cover the zero inflation in the count variable (Lambert 1992):

Pr(yi |xi) =

⎧

⎨

⎩

πi + (1 − πi) exp(−νi) for yi = 0

(1 − πi)
exp(−νi )ν

yi
i

yi
for yi ≥ 1

(12)

π is the probability of being an extra zero. A growth mixture model with two parts
are estimated simultaneously when zero inflation of the data is assumed: the first
part contains the Poisson model of the measurements with values of zero and above
and the second part refers to the logit model of the measurements with values of
zeros across the panel waves. The Poisson and the ZIP model can be applied with the
program Mplus (starting with version 3).

1Note that usually λ is used in the Poisson model instead of ν. But here the authors are using λ for
parameters (factor loadings) congruent to the terminology in structural equation models.
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2.3.2 Negative binomial and zero-inflated negative binomial model

If the assumption of equidispersed data does not hold, the negative binomial regres-
sion model can be employed by introduction of latent heterogeneity in the conditional
mean of the Poisson model (Hilbe 2007, p. 207; Greene 2008, p. 586):

Pr(yi |xi, ǫi) = exp
(

α + x′
iβ + ǫi

)

= hiνi (13)

where hi = exp(ǫi) is assumed to have a one parameter gamma distribution, G(θ, θ)

with mean equal to 1 and variance κ = 1/θ . The negative binomial distribution can be
obtained by integrating hi out of the joint distribution. The conditional mean function
is still E(yi |xi) = νi while overdispersion can be obtained from the latent heterogene-
ity with the variance function Var(yi |xi) = ν2

i [1 + (1/θ)]. Because of the quadratic
term for νi , the negative binomial model was labeled NB-2. Other variance functions
lead to other types of negative binomial models (Hilbe 2007, p. 78).

With large number of zeros in the count variable, the so-called zero-inflated neg-

ative binomial model (abbreviated ZINB) is more appropriate. Similar to the ZIP
model the ZINB model combines the negative binomial regression model with a logit
model to cover the zero inflation in the count variable (Hilbe 2007, p. 160f.).2

3 Study, sample and variables

The application of different growth curve and growth mixture models was conducted
with data from the ongoing panel study Crime in the Modern City (CrimoC).3 Eight
annual panel waves had been collected between 2002 and 2009 from a sample of ado-
lescents with a mean age of 13 (7th grade) in the initial survey (n = 3411). The sam-
ple was drawn from schools in Duisburg, an industrial city of approximately 500000
inhabitants located in the western part of the Ruhr area. Self-administered question-
naires were completed in school classes. After leaving the school at the end of the
10th grade, adolescents had to be contacted by mail or personally at home.

Data for the following analyses stem from a five-wave panel data set covering the
period from late childhood to late adolescence (age 13–17). Included are 1552 adoles-
cents who participated in all panel waves and comprised 45.5% of the initial sample.
This indicates a common but nevertheless considerable attrition that can partly be
ascribed to the method used for panel construction (Pöge 2005)4 and to certain char-
acteristics of the respondents. As can be seen from Table 1, the distributions of the

2Note that several software implementations allow the zero-inflated binary process to be either probit or
logit (for details, Hilbe 2007, p. 174). The negative binomial (NB-2) and the ZINB model can be applied
with the program Mplus (starting with version 5.2).
3Detailed information about the study can be obtained from the webpage www.crimoc.org.
4To avoid high refusal rates in the initial sample by collecting respondents’ names and addresses, respon-
dents were asked to fill out and reproduce an individual and unique code year by year. The code was
generated by questions regarding particular individual and rememberable characteristics (e.g., first letter
of mothers name). However, participants to a large degree seem to differ in their ability to reproduce the
code correctly.
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Table 1 Panel (2002–2006) and initial cross sectional (2002) sample

Panel Cross section

n (%) n (%)

✚ 642 (41.4) 1728 (50.7)

✙ 910 (58.6) 1679 (42.2)

School (high) 392 (25.3) 778 (22.8)

School (medium 2) 517 (33.3) 1064 (31.2)

School (medium 1) 373 (24.0) 806 (23.6)

School (low) 270 (17.4) 763 (22.4)

Total 1552 (100.0) 3411 (100.0)

Note: Educational level of schools given in brackets

Table 2 Descriptives for annual self-reported delinquency

Age y s2 s3 s4 %zero

13 t1 2.688 139.393 9.259 114.448 74.98

14 t2 6.264 615.899 8.007 99.100 68.90

15 t3 5.202 593.146 12.446 235.413 71.46

16 t4 4.216 451.517 9.908 131.694 76.34

17 t5 4.105 540.799 9.281 101.293 82.29

y = mean; s2 = variance; s3 = skewness; s4 = kurtosis

panel respondents by gender and educational level are somewhat biased compared
to the distributions in the cross-sectional sample from 2002. This indicates that girls
as well as high educated respondents are overrepresented in the panel data used for
analyses.

Several applications of growth mixture models with data from this investigation
and a previous pilot study have been published Reinecke (2006a, 2006b, 2007, 2008).
While these analyses were focused on the annual summed prevalence rates, i.e. the
versatility of adolescents delinquent behavior, the current analyses are focused on the
incidence rates to directly study the development of the frequency, i.e. the intensity
of delinquent behavior. The annual incidence rate is a composite measure of self-
reported delinquency. Respondents were as asked to give the number of delinquent
behaviors committed during the last 12 months for 16 different offenses separately.
The offenses were theft of and out of cars, theft out of a vending machine, theft of
bicycles, other thefts, burglary, shoplifting, fencing, robbery, purse snatching, assault
with and assault without a weapon, graffiti, scratching, damage to property and drug
dealing. The overall annual incidence rate is given as the sum of the rates for the 16
behaviors. Table 2 contains descriptive information about the annual composite mea-
sures of self-reported delinquency. After a peak at age 14 (t2) the mean frequency of
delinquent activity is constantly declining. The distributions are characterized by rel-
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atively high proportions of persons who do not report any delinquent activity (% ze-
ros) and relatively few persons with extreme values. Large variances, skewness and
kurtosis are further characteristics which are typical for behavioral data relying on
rare events. Thus, the measures of annual self-reported delinquency can be treated as
overdispersed count data with an inflation of zeros.

The following analyses are divided into three parts: first, techniques of latent
growth curve models will be used to specify the observed outcome as a function
of time (respective age) alone and to check for potential variations around the growth
factors means. Second, latent class growth and growth mixture model specifications
will be applied to the data. Furthermore, the best fitting solutions two alternative mod-
eling approaches (zero-inflated Poisson and zero-inflated negative binomial) will be
compared with regard to the differences and similarities of assigning individuals to
latent classes. Third, the best growth mixture model will be enlarged by adding co-
variates in order to give auxiliary information for a more precise classification and to
incorporate potential predictors of the particular latent class distributions.

4 Latent growth models

The basic functional form of the growth process for all subsequent (unconditional)
latent growth and growth mixture models is given in (14), (15), and (16):5

⎡

⎢

⎢

⎢

⎢

⎣

y1ik

y2ik

y3ik

y4ik

y5ik

⎤

⎥

⎥
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⎦

=

⎡
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ǫ3ik

ǫ4ik

ǫ5ik

⎤

⎥

⎥

⎥

⎥

⎦

(14)

According to the development of the mean level of self-reported delinquency (Ta-
ble 2) the specification of a quadratic term was deemed necessary to account for
non-linear change. The growth factor loadings were accordingly fixed in matrix Λk .
The latent growth factors are described as a function of their means in vector αk and
residual parameters in vector ζk :

⎡

⎣

η1ik

η2ik

η3ik

⎤

⎦ =

⎡

⎣

α1k

α2k

α3k

⎤

⎦ +

⎡

⎣

ζ1ik

ζ2ik

ζ3ik

⎤

⎦ (15)

Matrix Ψk contains the variances and covariances of the latent growth factors:

Ψk =

⎡

⎣

ψ11k

ψ21k ψ22k

ψ31k ψ32k ψ33k

⎤

⎦ (16)

5K = 1 for latent growth models.
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Table 3 Comparison of different latent growth model specifications

Model Random effects Parameters Log-likelihood BIC

ZIP1 – 6 −39092.919 78229.921

ZIP2 I 7 −23596.340 47244.112

ZIP3 IS 9 −17714.575 35495.276

ZIP4 ISQ 12 −16007.225 32102.617

ZINB1 – 11 −10924.769 21930.358

ZINB2 I 12 −10206.846 20501.860

ZINB3 IS 14 −10164.167 20431.195

ZINB4 ISQ 17 −10156.666 20438.237

I = intercept; S = linear slope; Q = quadratic slope

Table 4 Estimated random effects for ZINB models

ZINB2 ZINB3 ZINB4

Parameter Est. (z-value) Est. (z-value) Est. (z-value)

ψI 8.522 (18.645) 9.423 (12.434) 6.687 (10.009)

ψS – – 0.551 (7.044) 2.491 (5.496)

ψQ – – – – 0.160 (4.796)

Model specifications varied from fixing the variances and covariances of the latent
growth factors to zero (fixed effects model) to a completely random effect specifica-
tion (random effects model).6 Due to the large amount of non-delinquent adolescents
the models were specified as zero-inflated. The possibility of significant overdisper-
sion to the outcomes variables was considered by testing the zero-inflated Poisson
(ZIP) against the zero-inflated negative binomial model (ZINB).

Results clearly show that, according to the log-likelihood and the Bayesian Infor-
mation Criterion (BIC), the ZINB models outperform the ZIP models (Table 3). The
additional consideration of overdispersion seems more suitable to represent the out-
come variable as negative binomial distributed. Correspondingly, the estimated dis-
persion parameters for the outcomes in all ZINB models have values >0 (p < 0.05).
Furthermore, within the ZINB models the fixed effects specification (ZINB1) is out-
performed by the random effects models (ZINB2 to ZINB4). According to the BIC,
the model with random effects for the intercept and linear slope and fixed effect for
the quadratic slope performs best (ZINB3). Parameter estimates for the growth factor
variances are significant in all ZINB model specifications with random effects (Ta-
ble 4). Even the small variance of the quadratic slope in the model ZINB4 is signifi-

6In the fixed effects model the variances of the intercept, the linear and quadratic slope were fixed to zero,
assuming that all individuals follow a unique developmental trajectory. In the random effects model the
variances of the growth factors were estimated, assuming that all individuals follow a unique developmen-
tal trajectory, but may vary in their initial levels and the extent of change indicated by the linear and the
quadratic slope.
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Table 5 Comparison of latent class growth models (ZINB)

Model Classes Parameters Log-likelihood BIC

LCGA (ZINB) 2 15 −10326.262 20762.734

LCGA (ZINB) 3 19 −10169.237 20478.073

LCGA (ZINB) 4 23 −10142.068 20453.123

LCGA (ZINB) 5 27 −10116.018 20430.414

LCGA (ZINB) 6 31 −10098.193 20424.152

LCGA (ZINB) 7 35 −10087.260 20431.676

LCGA (ZINB) 8 39 −10076.222 20438.989

cant although the BIC is slightly higher than the BIC in the previous model ZINB3.
Hence, the results indicate that individuals randomly vary around one developmental
trajectory that applies to all individuals in the sample.

5 Latent class growth and growth mixture models

The significant variation around the growth factor means from the latent growth anal-
ysis might be an indication of possible unobserved heterogeneity in adolescents’ de-
velopment of delinquency. The hypothesis to detect more than one distinct group
of individuals was analyzed by applying two different parameterizations of mixture
models to the data. First, with a latent class growth analysis (LCGA) models with in-
creasing numbers of classes representing distinctive developmental trajectories were
tested. Note that LCGA allows no variations of the growth factors. Furthermore, the
models were estimated with respect to the zero-inflated negative binomial distribution
of the outcome variables. Log-likelihood and the BIC values were used to identify the
sufficient number of classes.

Table 5 gives an overview of the model results. The resulting best LCGA model
has six classes with the lowest BIC value (20424.152). The model estimated dis-
persion parameters for the five outcomes (panel waves) in the six-class model are
t1 = 2.220 (z = 1.862), t2 = 2.337 (z = 6.338), t3 = 2.594 (z = 6.343), t4 = 3.403
(z = 10.092) and t5 = 6.621 (z = 6.613).7 The estimated degree of overdispersion
again supports the estimation of the model on the basis of the negative binomial
model assumptions.

According to the estimated model the largest class represents a group of adoles-
cents who are nearly not involved in any delinquent activity during the observed
period (non offenders, 43.7%). The second largest class are individuals who are sup-
posed to commit very few delinquent acts (low level offenders, 18.7%). The third
largest class is starting from a low level of delinquency, followed by a slight increase
until a peak at age 15. A likewise slight decrease can be observed from there on
until the initial level is attained again (adolescence limited offenders, 15.8%). The

7Dispersion parameters were held equal across classes.
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Table 6 Estimated means and residuals for the six-class LCGA model

Class t1 t2 t3 t4 t5

Non offenders Est. means 0.025 0.009 0.006 0.008 0.022

Residuals 0.000 0.001 0.000 0.000 0.000

Low level Est. means 0.751 0.758 0.564 0.380 0.231

Residuals −0.033 0.063 −0.008 −0.042 0.024

Adolescence Est. means 2.160 5.490 7.002 5.494 2.652

limited Residuals −0.012 −0.157 0.730 −0.780 0.249

High level/ Est. means 19.287 37.139 42.860 36.344 22.645

persistent Residuals −2.123 9.269 −5.701 −4.751 4.135

Late starters Est. means 0.027 0.123 0.523 2.497 13.380

Residuals −0.002 −0.004 0.055 −0.263 0.894

Early decliners Est. means 8.123 9.209 0.856 0.008 0.000

Residuals −0.097 0.006 −0.001 0.000 0.000

fourth largest class is characterized by individuals with a high and partial persis-
tent level of delinquent activity (high level and persistent offenders, 10.2%). The
two smallest classes are of special interest for the prediction of chronic or in-
tensive delinquent behavior over the life-course. Both of them challenge the as-
sumption that the early onset of delinquent behavior is one of the best charac-
teristics for the prediction of long-term criminal careers (Farrington et al. 1990;
Odgers et al. 2007): the second smallest class represents a pathway of individuals
with nearly no estimated delinquent activity for the first three years of the observa-
tion, but then engage in delinquency arriving at a comparatively high level at the end
of adolescence (late starters, 6.0%). Reversely, the smallest group shows a remarkable
level of delinquency at age 13, then it rapidly declines to a near zero level (early de-
cliners, 5.6%). Both trajectories would not be expectable from early onset prediction.
Table 6 displays the model estimated means and residuals, indicating the develop-
mental trajectories for the six classes based on the estimated posterior probabilities.8

Especially for the class of high level offenders the residuals indicate considerable de-
grees of over- and underestimation of the means. The other residuals indicate at most
small differences between estimated and observed means.

Based on the results of the LCGA, a growth mixture model with random effects
was specified and tested. Previous analyses have shown that variances of the linear

8For further analyses it may be desirable to use a classification variable that assigns every individual to
exactly one class by the individuals highest probability of class membership. This absolute and determined
classification may differ from the solution based on estimated posterior probabilities, especially when the
separation of the classes lacks accuracy. A criterion to assess the quality of the classification is the entropy
criterion E(k) (Celeux and Soromenho 1996). For example, the entropy for the six-class LCGA model
is E(k) = 0.661. However, despite the indistinctness in classification such solutions can be suitable for
substantive interpretation.
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Table 7 Comparison of growth mixture models (ZINB)

Model Classes Parameters Log-likelihood BIC

GMM (ZINB) 2 16 −10158.691 20434.938

GMM (ZINB) 3 20 −10121.995 20390.936

GMM (ZINB) 4 24 −10093.843 20364.022

GMM (ZINB) 5 28 −10083.137 20371.998

GMM (ZINB) 6 32 −10074.556 20384.226

GMM (ZINB) 7 36 −10070.231 20404.965

and quadratic growth factor could be fixed to zero while the intercept variance was
estimated but set equal across classes (Mariotti and Reinecke 2010). Table 7 shows
the results with up to seven classes. Like the LCGA models, the GMM models were
estimated with respect to the zero-inflated negative binomial distribution. According
to the smallest BIC value the best model has four classes. Models with five classes and
above show considerable higher BIC values. The log-likelihood differences diminish
with an increase of the number of classes. Just as for the LCGA model with six classes
the model estimated dispersion parameters indicate significant levels (t1 = 3.250 (z =

3.385), t2 = 2.253 (z = 9.710), t3 = 2.558 (z = 10.334), t4 = 2.668 (z = 7.998) and
t5 = 5.244 (z = 7.406)). The estimated intercept variance turned out to be significant
(ψI = 2.076 (z = 4.732)) indicating remarkable variation around the base level of
self-reported delinquent behavior.

Again, the largest class represents individuals with nearly no delinquent activity
(non offenders, 43.1%). The second largest class is estimated to have a mean trajec-
tory of persistent and frequent delinquent activity (high level and persistent offend-
ers, 28.6%). The third largest class starts with a quite remarkable level of delinquent
activity at age 13 and even enhances the estimated mean frequency at age 14. After-
wards, delinquency constantly decreases to lower levels throughout middle adoles-
cence (adolescence limited, 18.0%). The smallest class represents the developmen-
tal path of individuals who engage in delinquent activity by the end of adolescence
(late starters, 8.7%).9 Table 8 displays the model estimated means and residuals for
the four classes based on the estimated posterior probabilities. Here, the estimated
mean values for the class of high level offenders seem to suffer from substantive un-
derestimation. Additionally, the estimated mean for the t5 in the late starters class
is somewhat underestimated. Despite these notable discrepancies between estimated
and observed means the residuals are quite low.

A comparison of the fit and information criteria of the LCGA model with
six classes and the GMM model with four classes shows lower log-likelihood
(−10098.193 vs. −10093.843) and BIC values (20424.152 vs. 20364.022) for the
GMM model. Especially the difference in the log-likelihood values is small. Based

9Although the model with four classes is statistically the favorable solution, the five-class model can be of
at least the same interest for substantive research questions. The fifth class represents an early withdraw
from delinquent activity (so-called early deliners). The decision about the correct number of classes on
the basis of the BIC is a statistical one and should be reflected with substantive arguments. Given the
methodological character of this paper, the four-class solution is discussed here.
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Table 8 Estimated means and residuals for the four-class GMM model

Class t1 t2 t3 t4 t5

Non offenders Est. means 0.101 0.019 0.009 0.012 0.042

Residuals 0.008 −0.001 0.000 0.000 0.000

High level/ Est. means 8.545 16.733 21.087 18.082 10.551

persistent Residuals −2.618 −0.512 −5.108 −4.412 0.277

Adolescence Est. means 5.770 8.609 2.835 0.218 0.004

limited Residuals −0.962 −0.432 0.060 −0.016 0.001

Late starters Est. means 0.040 0.143 0.566 2.664 14.861

Residuals 0.001 −0.026 0.079 −0.319 −3.487

Table 9 Comparison of LCGA and GMM solutions (ZINB)

LCGA

(1) (2) (3) (4) (5) (6) Total

GMM (7) 772 12 784

(8) 117 190 10 66 383

(9) 16 32 68 175 291

(10) 57 37 94

Total 772 133 222 67 68 290 1552

Note: (1) non offenders, (2) persistent offenders, (3) adolescence limited, (4) late starters, (5) early declin-
ers, (6) low level offenders, (7) non offenders, (8) persistent offenders, (9) adolescence limited, (10) late
starters

on the most likely class membership of individuals the four-class GMM and six-class
LCGA solutions can be crosstabulated in order to compare for differences in the clas-
sification (Table 9). The non offending individuals have been almost equally classi-
fied within both modeling approaches. Moreover, the GMM adolescence limited class
consists mostly of individuals from the LCGA low level and early decline classes. The
GMM late starters class contains most of the LCGA late starters. Finally, the GMM
high level and persistent class has nearly tripled its size mainly by absorbing 256 in-
dividuals from the LCGA adolescence limited and low level classes. Altogether, the
six distinct classes—as a result of the fixed effects model (LCGA)—are now repre-
sented by fewer and more general classes in the GMM. This decrease of the number
of classes in the particular mixture model specification was expected and is in accor-
dance with other applications comparing LCGA and GMM models (Muthén 2004;
Kreuter and Muthén 2008a).

By inspecting the observed individual curves for the three offending classes of the
four-class GMM model it is obvious that because of the massive absorption of the
individuals from different classes of the LCGA model, the high level and persistent
group is the most heterogeneous of the four classes (Fig. 2). The displayed subset
of 72 randomly selected curves of individuals who are classified as high level and
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Fig. 2 Observed individual trajectories for the three offender classes (four-class GMM model)
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Table 10 Comparison of unconditional and conditional four-class GMM model (ZINB)

Unconditional

(1) (2) (3) (4) Total

Conditional (1) 775 3 13 791

(2) 2 327 3 1 333

(3) 7 50 288 345

(4) 3 80 83

Total 784 383 291 94 1552

Note: (1) non offenders, (2) persistent offenders, (3) adolescence limited, (4) late starters

persistent, is characterized by numerous differing “zick–zack” patterns of drifting in
and out of delinquent activity during the observational period. Although these hetero-
geneous pathways for the most part display high levels of delinquency at a particular
point, a more or less consistent pattern of persistent high level offending is hardly
observable. The observed curves of the individuals classified as adolescence limited
or late starters to a greater extent correspond with the estimated mean trajectories
of the classes. Also, within the adolescence limited class several trajectories of the
absorbed early decliners from the LCGA model can be identified.

In a further step the four-class GMM model was again estimated with additional
covariates in order to check if the four-class solution remains stable. This enhanced
model specification uses multinomial logistic regression to predict class membership
from additional information of covariates (cf. (10)) and to further exhibit the profile of
the individuals in the classes (Muthén 2002). For this analysis additional information
on gender and educational level (as displayed in Table 1) were used. The resulting
four-class conditional GMM has a log-likelihood value of −10047.658 and a BIC
of 20315.734. Both values are considerably lower than for the unconditional model
(−10093.843 and 20364.022). The model estimated variance in the intercept factor
again is significant (ψI = 1.929 (z = 6.865)) as well as the estimated dispersion
parameters (t1 = 3.195 (z = 3.420), t2 = 2.300 (z = 9.648), t3 = 2.689 (z = 10.450),
t4 = 2.721 (z = 7.592) and t5 = 4.673 (z = 7.619)).

The classification of individuals based on posterior probabilities resulted in
equally shaped distinct trajectories with similar class proportions compared to the
unconditional four-class model (non offenders, 45.0%; high level and persistent of-
fenders, 25%; adolescence limited, 22.5%; late starters, 7.5%). The classification re-
sults of the unconditional and conditional model are compared in Table 10 based on
the most likely class membership of the respondents. Three aspects are noteworthy:
First, in the conditional GMM model 50 persons were classified into the adolescence
limited class which have to be in the high level and persistent class of the uncondi-
tional GMM model. Second, 13 persons switched from the late starter class in the
unconditional model to the class of non offenders in the conditional model. Third,
the overall stability of the classification is indicated by high values in the diagonal of
the table. All in all, changes in class sizes are moderate.

Table 11 displays the results of the multinomial logistic regression of class mem-
bership on the categories of gender and educational level. For boys on a low edu-
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Table 11 Odds (elogit) and class probabilities for the conditional four-class GMM model (ZINB)

School (low) ✚ School (med 1) ✚ School (med 2) ✚ School (high) ✚

elogit Prob. elogit Prob. elogit Prob. elogit Prob.

Non offenders 1.000 0.256 1.000 0.295 1.000 0.338 1.000 0.382

High level 1.707 0.436 1.363 0.402 1.089 0.368 0.868 0.333

Ado. lim. 0.818 0.209 0.675 0.199 0.546 0.185 0.451 0.173

Late starters 0.387 0.099 0.353 0.104 0.322 0.109 0.293 0.112

School (low) ✙ School (med 1) ✙ School (med 2) ✙ School (high) ✙

elogit Prob. elogit Prob. elogit Prob. elogit Prob.

Non offenders 1.000 0.460 1.000 0.509 1.000 0.556 1.000 0.602

High level 0.424 0.195 0.338 0.172 0.270 0.150 0.216 0.130

Ado. lim. 0.635 0.292 0.524 0.266 0.433 0.241 0.357 0.216

Late starters 0.115 0.053 0.105 0.053 0.096 0.053 0.087 0.052

cational level the probability to be classified into one of the three offending classes
is about 0.75 with the highest single probability for the high level class (0.44). But
males attending school types with the highest educational level have a probability of
about 0.62 to be classified into one of the three offending classes. The probability
for the adolescence limited class decreases with the educational level of the schools.
Interestingly, even though to a small extent, the probability for the late starter group
of boys increases with higher educational levels.

Girls who visit schools with high educational level are most likely to be classified
as non offenders (0.60). Even for girls in schools with the lowest educational levels
the highest class probabilities appear for the class of non offenders (0.46). The highest
probability to be in one of the offending classes emerges for the adolescence limited
class, but decreases with higher levels of education. The low probability of the high
level class also decreases. The probability of the late starters class of girls remains
stable across school types. Altogether, the main differences seem to exist between
boys and girls, pointing to gender as a relatively strong predictor of class membership.

6 Discussion

The general framework of growth mixture modeling outlined by Muthén (2002, 2004,
2008) integrates continuous and categorical approaches of longitudinal data analysis.
A growth mixture model contains a growth curve model formalized with structural
equations. A categorical variable covers the mixture distribution via a latent class
model. Furthermore, a multinomial regression model formalizes the relationships be-
tween exogenous time-invariant variables and the latent class variable. A popular
submodel, explored and discussed by Nagin and Land (1993) and Nagin (1999) is
LCGA, in which the variances of the growth curve parameters are fixed to zero. Due
to an easier estimation of the parameters, LCGA is computationally less demanding
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and thus useful for a first evaluation of the unobserved heterogeneity of the data. If
count data with large amounts of zeros are analyzed, the outcome variables can be
assumed as zero-inflated Poisson or zero-inflated negative binomial distributed. The
latter one considers highly overdispersed distributions.

Data from a five-wave panel study of adolescents have been used to study unob-
served heterogeneity in the development of deviant and delinquent behavior. In a first
step the outcome variable has been analyzed by means of a latent quadratic growth
model under zero-inflated Poisson and zero-inflated negative binomial specifications.
Due to the overdispersed data, model variants with the negative binomial specification
have always better model fits compared to those ones assuming Poisson distributions.

With latent class growth analysis (LCGA) models up to eight classes have been
tested. According to the BIC, the model with six classes performed best. All classes
can be interpreted substantially. But LCGA treats the growth curve variables as fixed
effects and thus does not account for possible variation within the classes. Possible
overlaps of individual trajectories from different classes are therefore ignored.

Within GMM the variance of the intercept was estimated for models up to seven
classes. According to the BIC, the model with four classes performed best. Simi-
lar to analyses of Muthén (2004) and Kreuter and Muthén (2008a) GMM results in
less classes than LCGA. The consideration of possible overlaps in trajectories leads
to a better substantive interpretation of the development of delinquency. Additional
variations of the linear slope and the quadratic slope did not result in further model
improvements albeit model estimations problems increased with additional parame-
ters to be estimated.

Decisions about the correct number of classes in growth mixture models can also
involve a likelihood ratio-based method for testing k − 1 classes against k classes
developed by Lo et al. (2001) (LMR-LRT) or the bootstrapped likelihood ratio test
(BLRT) proposed by McLachlan and Peel (2000). The performance of these tests for
non normal outcomes is unclear (Jeffries 2003) and the implications for applications
has not been discussed yet.

A next step in analysis could be to test a non-parametric specification of the growth
mixture model (Kreuter and Muthén 2008a, 2008b; Muthén and Asparouhov 2008).
While the basic GMM assumes a specific (normal) distribution for the random effects,
the non-parametric version does not make any such assumption. However, a first
inspection of the individual intercept factor scores for the three offender classes from
the four-class GMM model presented in this paper provided no clear evidence for a
non-normally distributed variation around the estimated intercept.
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