

1.5.3 Project 3: Traffic Monitoring

This project aims to provide helpful information about traffic in a given geographic area based on

the history of traffic patterns, current weather, and time of the day. Such information can be used

by automobile drivers in choosing the best time to travel a given route or the best route at a given

time.

Most traffic information services (e.g., Yahoo! Traffic, Traffic.com) only provide current

information about traffic conditions in a given area. While current information is essential, these

reports are often incomplete because their sources frequently fail to report the current traffic

conditions. Hence, the user cannot assume that there is no heavy traffic in a given location simply

because that location was not reported by these services.

The idea is to analyze historic traffic information collected over a long period of time to highlight

locations which appear most frequently in the traffic advisories and thus are likely to be subject to

heavy traffic conditions even if they do not appear in the current traffic advisory. Here are

specific examples of services that could be offered:

• A “traffic map” which reviews historic traffic “hotspots” across a certain area, given the

choice of day(s) of the week, weather conditions, and severity of incidents (Figure 1)

• Historic traffic patterns along a path (route) between two end-points, given time of the

day and weather conditions (Figure 2)

• If the desired route is anticipated to suffer heavy traffic for the specified travel period, the

system could

- Offer a detour

- Suggest an alternative period to travel along the current route.

Traffic pattern could be defined as the function describing the number of reported traffic incidents

with respect to time of day and weather conditions.

Statement of Requirements

The system should collect traffic and weather information over a given geographic area. The user

will be able to view two types of statistics about the traffic incidents:

Ivan Marsic • Rutgers University 2

SERVICE 1: Statistics across the Entire Area

The user should make the following choices:

1. Day of the week (weekday vs. weekend vs. all)

2. Weather conditions (shine/clear vs. rain vs. fog vs. snow vs. all)

3. Incident severity (critical vs. all)

For example, the user may be interested to know the traffic statistics of critical severity incidents

for rainy weekdays across the given area. Given the user-selected input parameters, the system

shall extract the historic statistics and visualize the results on top of a geographic map of the area,

similar to Figure 1. The numeric values of the mean and variance can be visually encoded by

color and size of the graphical markers shown on the map. For example, marker color can range

from green (level 1) for the smallest mean1 number of reports to red for the highest mean number

of reports (level 10). The marker size can be used to encode the variance.

1 As discussed in Extensions below, computing the means may not be the best way to express the statistical

properties of traffic incidents, i.e., it is not known whether these follow a normal or skewed distribution.

Figure 1: Traffic “hotspots” across a given area. Symbol color encodes traffic intensity.

Chapter 1 • Introduction 3

The user should be able to choose to show/hide the markers corresponding to any of the 10

different levels of traffic severity (mean number of reports) by checking/un-checking the check

boxes shown below the map.

The system should also show a plot of the traffic pattern with respect to time of day, i.e., the

mean number of traffic incidents as a function of time of day. Example is shown on top of Figure

1.

SERVICE 2: Statistics along a Given Route

The route is to be specified by giving the starting and destination addresses, similar to Figure 2.

Data Collection and Preprocessing

Data collection should commence early on in the semester so to have adequate statistics by the

end of the project2. Ideally, data collection should be continuous over several years, but several

months should give reasonable results. To initiate the data collection process in the soonest

possible time, here I provide a tentative design for the data collection program. The readers are

welcome to adopt their own data collection procedure.

2 Normally, this description would not be part of the problem statement. The reason it is included here is to

facilitate data collection as early as possible in the course of the project.

Figure 2: Traffic history along a given path. Symbol color encodes traffic intensity.

Ivan Marsic • Rutgers University 4

The data collection algorithm design is shown in Figure 3. The program runs in an infinite loop,

periodically retrieving the traffic and weather reports for the specified cities. The student should

prepare a list of postal zip codes to cover the area for which the traffic monitoring tool will be

used. This need not include every zip code in the area because the web traffic reports are

relatively coarse and cover a significantly larger area surrounding the zip code. After retrieving

all the reports and storing them in a local database, the program waits for a given period of time,

shown as one our in Figure 3(a), and repeats the procedure.

The web report retrieval modules for traffic and weather reports are very similar, as shown in

Figure 3(b). Notice that there is a 2-second waiting period inserted at the end of each zip code’s

data retrieval to avoid the web server mistaking our program for a denial-of-service attack, which

would happen if a large number of requests were posted in a short time period.

Current traffic conditions reports can be downloaded from the Yahoo! Traffic service:

http://maps.yahoo.com/traffic. This website provides traffic information for a target zip code in the

RSS XML format. The service is accessed using HTTP GET request (see Appendix C) with the

following URL:

http://maps.yahoo.com/traffic.rss?csz=〈zipCode〉&mag=〈magnification〉&minsev=〈minimumSeverity〉

The parameters are as follows:

• csz=〈zipCode〉 The target area for which to retrieve traffic information. You can provide a

zip code, a city name, or an address. Here we assume that zip codes are used.

• mag=〈magnification〉 The level of “magnification” for the displayed map. Allowed values

are 3, 4, and 5, corresponding to 4 miles, 10 miles, and 40 miles, respectively.

• minsev=〈minimumSeverity〉 The minimum severity of the reported traffic incidents.

Allowed values are 1 through 5, with the following significance: 1 ≡ Minor, 2 ≡

Moderate, 4 ≡ Major, 5 ≡ Critical. If such a value is specified, only those incidents with a

List of

postal

codes

List of

postal

codes

Wait 1 hour

For each postal code,

retrieve current

traffic report

For each postal code,

retrieve current

weather report

Traffic records

by postal code

Weather records

by postal code

lookup

store

storelookup

Given postal code,

query the Web server

Parse the XML

response to extract

traffic/weather report

Wait 2 sec

Store the report as

database record

(a) (b)

Figure 3: Data collection algorithm: (a) overall design; (b) web report retrieval module.

Chapter 1 • Introduction 5

severity larger than the one requested will be included in the response. For example if we

set this value to 4, only major and critical incidents will be reported.

For our purposes, it is suggested that the following parameters are used: csz= one of the zip codes

from the list prepared for the region of interest; mag= 4 and minsev= 1. This allows us to capture

all the incidents regardless of their severity even if some zip codes are missing. (The

magnification may need to be adjusted to reflect the density of the towns in the region under

consideration.)

The reader should consult the Yahoo! website for the format of the RSS XML response. Once the

response is parsed, the extracted data are stored in a local database. The schema for the traffic

database table is shown in Table 1, where the fields have the following meaning (id is the

primary key and zipCode is explained above):

• latitude and longitude coordinates give the position of the particular incident

• title is a short title for the reported event

• description provides a short description of the reported event

• titleHash and descriptionHash can be used for quick equality comparisons to

detect duplicate reports; they are hash codes of the contained strings

• startTime is the date and time when this event was reported to Yahoo! and published

at their website

• endTime is the estimated date and time when this event will end (example: the accident

will be cleared or the construction will end)

• updateTime is the date and time of the last update for this particular event

Data duplication of traffic incidents is common as many traffic incidents are current for more

than one hour. Because we are retrieving a full list of incidents every hour, we are likely to collect

the same information multiple times. Furthermore, as noted earlier, traffic reports for a given zip

code usually cover a much larger area around that zip code, which results in data duplication

because of overlapping regions covered by the reports for different zip codes. Data duplication

represents a problem for our project because we compute the traffic pattern for a location based

on the number of traffic incidents reported for that location. Data duplication would artificially

inflate these scores and grossly skew the results.

Table 1: Database schema for traffic reports.
+-----------------+---------------------+------+-----+---------------------+----------------+

| Field | Type | Null | Key | Default | Extra |

+-----------------+---------------------+------+-----+---------------------+----------------+

| id | int(10) unsigned | | PRI | NULL | auto_increment |

| zipCode | varchar(5) | | | | |

| latitude | int(11) | | MUL | 0 | |

| longitude | int(11) | | | 0 | |

| titleHash | int(11) | | | 0 | |

| descriptionHash | int(11) | | | 0 | |

| startTime | datetime | | | 0000-00-00 00:00:00 | |

| endTime | datetime | | | 0000-00-00 00:00:00 | |

| updateTime | datetime | | | 0000-00-00 00:00:00 | |

| severity | tinyint(3) unsigned | | | 0 | |

| title | varchar(255) | YES | | NULL | |

| description | varchar(255) | YES | | NULL | |

+-----------------+---------------------+------+-----+---------------------+----------------+

Ivan Marsic • Rutgers University 6

Before inserting a new traffic incident into the database, we first check if a report already exists in

the database with the same latitude, longitude, title and start time. If such a report does not exist,

the incident is added to the table. If a report with these parameters is found, we assume it refers to

the same incident and we check the update times of the two reports. If the update time of the

current report is later than the one in the database, the record in the database is updated with the

new information; otherwise, the newly reported incident is discarded.

We may also wish to remove reports of road construction from the analysis. These reports are not

really indicative of the traffic patterns for a specific location. They do affect traffic for the

duration they are in effect but, because they do not occur regularly, they are not good predictors

for future traffic situations. Construction-related items can be identified by parsing the title or

description of the item for keywords as “construction,” “work,” and “maintenance.”

The weather data collection process is quite similar to traffic data collection. Weather reports by

zip code can be obtained from Weather.com. Their RSS page is available at

http://www.weather.com/weather/rss/subscription?from=footer&ref=/index.html. The weather reports can

be accessed from the following URL using a HTTP GET request:

http://rss.weather.com/weather/rss/local/〈zipCode〉?cm_ven=LWO&cm_cat=rss&par=LWO_rss

The 〈zipCode〉 parameter specifies the area of interest. The significance of the other parameters

(cm_ven, cm_cat and par) is not disclosed, so we just use default values. The database schema is

shown in Table 2, where the time field contains the time when this report was collected and

description is description of the weather conditions, such as sunny, heavy rain, cloudy, etc.

Data duplication for weather data does not pose a problem because weather is auxiliary

information that is being added to the traffic reports. Having duplicate items here should not

affect the traffic reports accuracy.

It should be noted that traffic and weather reports are not synchronized, because of using different

providers for traffic and weather data. This means that for a traffic incident reported at time t we

may not have a weather report with the same time stamp. Precise synchronization is not critical

because, usually, weather does not change very rapidly. So it is acceptable to match a traffic

report with time stamp t with a weather report with time stamp t ± x, where x is a short time

interval. Because we are collecting both traffic and weather data every hour, we can find a

matching weather report within an hour of the reported traffic incident.

Extensions

At present, the user can view only the past data statistics but not the current traffic or weather

information. Develop the facilities for the user to view the current information. This can be useful

when viewing the statistics along a given route, so the user can inspect the current conditions.

Table 2: Database schema for weather reports.
+-------------+---------------------+------+-----+---------------------+----------------+

| Field | Type | Null | Key | Default | Extra |

+-------------+---------------------+------+-----+---------------------+----------------+

| id | int(10) unsigned | | PRI | NULL | auto_increment |

| zipCode | varchar(5) | | MUL | | |

| time | datetime | | | 0000-00-00 00:00:00 | |

| description | varchar(40) | | | | |

| temperature | tinyint(3) unsigned | | | 0 | |

+-------------+---------------------+------+-----+---------------------+----------------+

Chapter 1 • Introduction 7

We do not really know what could be useful to drivers in terms of historic characterization of

traffic. This description only provides initial suggestions and the student should be creative and

interview drivers to discover with other ways to process and present traffic information.

There are also user-interface issues: how to design the system so that it can be quickly and safely

used (via a built-in, touch-sensitive screen) while driving on a congested road.

Studying traffic statistics is interesting in its own right. This tool can be repositioned to assist in

studying traffic-related statistics, from incidents to intensity.

Domain Fieldwork

Developing a system to meet the above requirements may be the easiest thing in this project. A

key question is: who should benefit from this system and in what way? At this point I am not sure

whether the system would be valuable to local commuters, people who are new to the area

(tourists?), or someone else. Perhaps it could be useful to a person moving to a new area, to

observe how traffic has changed over the past five years? Or, when getting a new home, to

consider driving distances and the average rush-hour commute times for the past six months? The

developers should interview different potential users and ask for suggestions. Brainstorming or

focus groups could be employed, as well. Perhaps the most effective way to get help is to

demonstrate a working prototype of the system.

Additional Information

See also the book, Problem 2.7 at the end of Chapter 2, the solution of which can be found at the

back of the text.

Yahoo! Maps, online at: http://maps.yahoo.com/

Yahoo! Maps Web Services – Introducing the Yahoo! Maps APIs: http://developer.yahoo.com/maps/

Google Maps, online at: http://maps.google.com/

Google Maps API, online at: http://www.google.com/apis/maps/

GoogleMapAPI – A library used for creating Google maps:

http://www.phpinsider.com/php/code/GoogleMapAPI/

No jam tomorrow? Transport: New techniques are being developed to spot existing traffic jams,

predict future ones, and help drivers avoid both kinds. From The Economist print edition, Sep

15th 2005, Online at: http://www.beatthetraffic.com/aboutus/economist.htm

A system called Beat-the-Traffic, developed by Triangle Software of Campbell, California. A

traffic-prediction system called JamBayes developed by Eric Horvitz of Microsoft Research.

E. Horvitz, J. Apacible, R. Sarin, and L. Liao, “Prediction, expectation, and surprise: Methods,

designs, and study of a deployed traffic forecasting service,” Proceedings of the Conference on

Uncertainty and Artificial Intelligence 2005, AUAI Press, July 2005. Online at:

http://research.microsoft.com/~horvitz/jambayes.htm

