
Page1

ISPF Design Coding
Hints and Tips

Lionel B. Dyck

Kaiser Permanente Information Technology

Session 2646

August 22, 2002 1:30pm

e-mail: Lionel.B.Dyck@kp.org

Welcome to Session S2646. This session has been given for a number of

years and to provide fresh material I have created an application

specifically to demonstrate the coding hints and tips by example.

Page2

August 22, 2002 ISPF Design and Coding Hints

and Tips

2

ObjectivesObjectives

• This session will present ISPF dialog coding techniques

utilizing the REXX programming language. ISPF
features presented will include: LMDLIST, ISPF Tables

(including point-and-shoot and free form text find),
BROWSE, EDIT, and VIEW. Use of Field Level Help
in panels will be discussed along with popup panels for

prompting.

• This session counts towards the ISPF certificate

program.

Our objective.

Page3

August 22, 2002 ISPF Design and Coding Hints

and Tips

3

OverviewOverview

• Simple ISPF Dialog

• Process a List of Datasets Based on HLQ

• ISPF Panels – 5

• REXX Execs – 1

• Messages – 1

– Use IBM Provided Message

• Code Available From

– http://www.lbdsoftware.com/s2646.zip

To demonstrate the coding techniques today I will utilize a simple ISPF

dialog that I developed for this session. It utilizes all the basic elements

of dialog coding and consists of 5 ISPF Panels that are driven by 1

REXX Exec and uses 1 ISPF Message (the message is an IBM provided

message).

The code that you will see today is being made available on my web site

at http://www.lbdsoftware.com using the direct link shown in the slide.

You can find many real applications on my web site as well, including

the popular XMITIP for sending e-mail from the mainframe.

Page4

August 22, 2002 ISPF Design and Coding Hints

and Tips

4

InstallationInstallation

• Download S2646.ZIP

• Unzip

• Binary upload share.xmit file to OS/390 or z/OS into

sequential file with RECFM=FB LRECL=80

• Issue RECEIVE INDS(upload.dsn)

• Review contents of created dataset

To install follow these simple instructions.

Page5

August 22, 2002 ISPF Design and Coding Hints

and Tips

5

To UseTo Use

• Read $DOC member

• Copy $SHARE member into your EXEC Library

• Invoke:

– TSO %$SHARE

or

– TSO %$SHARE hlq

To use this sample dialog read the $DOC member of the PDS.

Copy member $SHARE into a library in your SYSPROC or SYSEXEC

concatenation. Then copy the other members (as noted in the $DOC)

into your ISPF Panels Library (ISPPLIB).

Page6

August 22, 2002 ISPF Design and Coding Hints

and Tips

6

CodingCoding

• ISPF Panels

• OS/390 REXX

• Use ISPF Edit Models

The coding of this application consisted of creating some ISPF Panels

with the driver application written in REXX. The use of the ISPF Edit

Models aided in the creation of the REXX code and the Panels.

While in ISPF Edit the model selection list can be displayed by entering

the command model on the ISPF Edit command line.

If you know the model you want to use then enter the command model

service (e.g. model vget).

Page7

August 22, 2002 ISPF Design and Coding Hints

and Tips

7

ISPF Edit ModelsISPF Edit Models

By entering the word MODEL on the ISPF Edit command line this

selection panel appears.

Page8

August 22, 2002 ISPF Design and Coding Hints

and Tips

8

ISPF Edit Model: VGETISPF Edit Model: VGET

This is an example of the MODEL code generated for the VGET service.

Page9

August 22, 2002 ISPF Design and Coding Hints

and Tips

9

ISPF Model: PanelsISPF Model: Panels

Models for ISPF Panels.

Page10

August 22, 2002 ISPF Design and Coding Hints

and Tips

10

ISPF Panel Model: ATTRISPF Panel Model: ATTR

This is an example of the ISPF panel model ATTR.

Page11

August 22, 2002 ISPF Design and Coding Hints

and Tips

11

Testing Testing -- $SHARE Exec$SHARE Exec

/* rexx */
address tso

'altlib activate application(exec)’ , ‘dataset(share.pds)'

address ispexec

'libdef ispplib dataset id(share.pds) stack'
'select cmd(%share) newappl(isr) passlib'

address tso

'altlib deactivate application(exex)’

address ispexec

'libdef ispplib'
exit 0

This sample REXX Exec can not only be used to test this sample

application but also used to demonstrate how to dynamically access

ISPF application libraries such that you do not have to install all the

elements (execs, clists, panels, etc.) into system level libraries.

The ALTLIB is used to define a dynamic addition to the current

SYSEXEC concatenation where REXX programs reside.

The Address statement is used to identify the environment in which the

subsequent commands are to execute in. ALTLIB is a TSO command

while LIBDEF and SELECT are ISPF commands and require the

ISPEXEC environment.

The LIBDEF is an ISPF service for dynamically allocating a temporary

ISPF library, in this case a PANEL library.

The SELECT service is used to invoke a ISPF Service, in this case a

REXX Exec.

Page12

August 22, 2002 ISPF Design and Coding Hints

and Tips

12

InitializationInitialization

/* REXX */

arg options

Address ISPExec
"Vget (Zapplid)"
if zapplid <> "SHAR" then do

"TBCreate sharcmds names(zctverb zcttrunc zctact ,
zctdesc)",
"replace share nowrite"
zctverb = "RFIND"
zcttrunc = 0
zctact = "&SHARFIND"
zctdesc = "RFIND for SHARE Dialog"
"TBAdd sharcmds"
"Select CMD(%"sysvar('sysicmd') options ") ,
“Newappl(SHAR)“,
"Passlib SCRName(SHAREDLG)"
"TBEnd sharcmds"
exit 0

end

The example code that you will see on the slides is mostly without comments to conserve slide
space. For the comments see the actual exec.

All REXX Programs, also called EXECs, should start with a comment, which must contain the
word REXX, so that the EXEC can be installed in either a SYSPROC or SYSEXEC
concatenation.

The next statement acquires any options passed with the command. The ‘arg options’ will
retrieve all the passed parameters and place them in the REXX variable options, after translating
the parameters to upper case. To avoid the upper case translation use ‘parse arg options’.

The next section of code is something that I like to use with my dialog applications. It makes
sure that the application is executed under the correct ISPF Application ID.

This code:

1.VGETs the current ISPF Application ID

2.Tests to see if it is SHAR and if it is not the following code executes, otherwise the do/end falls
through to the mainline code.

3.Otherwise the code creates an ISPF Commands Table, SHARCMDS, as a temporary table
(nowrite) and creates a table row for a Repeat Find (RFIND) command that will be used within
this dialog for searching a table of datasets.

4.The REXX Exec is then recursively executed using the ISPF Select service using the original
command name, sysvar(‘sysicmd’), and parameters while specifying the desired ISPF
Application ID using the NEWAPPL keyword. The PASSLIB is used to tell the SELECT service
to use any currently allocated ISPF Libraries (LIBDEF). The Screen name is also specified
(SCRNAME) so that when using a SWAP LIST the application will display with the name we
specified.

5.The TBEND occurs after the recursive execution completes and closes the temporary ISPF
Commands Table.

6.The ‘exit 0’ statement terminates the execution.

Page13

August 22, 2002 ISPF Design and Coding Hints

and Tips

13

Default ValuesDefault Values

/* --------------------- *

* Define Default Values *

* --------------------- */

parse value '' with null dsn

zerralrm = "NO"

table_name = "SHARE"random(999)

zerrhm = "sharehlp"

Default values must be set and these are set in this applicationat the

beginning of the mainline code.

In this case two variables are set to null, the variable named null and the

dsn variable.

The zerralrm is set to NO – could be set to YES if you want to hear a

beep when a message is issued.

The zerrhm variable is set to the help panel for the application so if the

user presses F1 (Help) when they see the messages, the first F1 will

show the long message and the second F1 will display this panel.

The table name is also set using a random number.

Page14

August 22, 2002 ISPF Design and Coding Hints

and Tips

14

Initial Panel DisplayInitial Panel Display

/* ------------------------------------- *

* Display a prompting panel for the HLQ *

* ------------------------------------- */

if length(options) = 0 then do forever

"Display Panel(Sharep)"

options = hlq

if zcmd = "CANCEL" then exit 4

if rc = 0 then

if hlq <> null

then leave

if rc > 0 then

if hlq = null

then exit 4

end

This code will test for any passed parameters, which in our case would

be a high- level-qualifier or hlq. If there are none then display the panel.

The Display service is used to display the prompting panel. The HLQ

field from the panel is placed into the options variable for use in our

code.

A test is made to see if the user entered the word ‘CANCEL’ in the

command field. Note that the command field is defined as upper case so

the test must be for an upper case word. If CANCEL then the dialog is

ended with the exit statement.

Next the return code variable (rc) is tested and if zero (0) a test is made

for an hlq and if there is one then this ‘do forever’ loop is ended with the

leave statement.

If that isn’t the case then the return code is again tested for greater than

zero indicating a PF3 or PF4 was entered, a test is made for hlq being

null and if null then the dialog is ended with the exit.

Page15

August 22, 2002 ISPF Design and Coding Hints

and Tips

15

Initial PanelInitial Panel

This is the initial panel. The user would enter the desired HLQ to

process and the press Enter to register it and proceed. To quit the process

the user would enter the word CANCEL in the Command field or PF3

with no HLQ.

A tutorial is available via the standard PF1 key.

Page16

August 22, 2002 ISPF Design and Coding Hints

and Tips

16

Initial Panel)AttrInitial Panel)Attr

)attr default(%+_)

% type(text) intens(high)

~ type(text) intens(high) caps(off) just(asis)color(turq)

+ type(text) color(turq)

The first part of the panel is the Attributes section. The statement)attr

defines the section. An attribute is defined on the panel using a special

character. In this case I am using the %, ~, and + characters. The

default attributes of %, + and _ are referenced but we are changing the

attributes for the % and + symbols.

Page17

August 22, 2002 ISPF Design and Coding Hints

and Tips

17

Initial Panel)BodyInitial Panel)Body

)Body Expand(\\)

%-\-\- ~SHARE Dialog Example%-\-\-

%Command ===>_zcmd

+

+Enter a valid high level qualifier (1 to n levels):

+

%HLQ:===>_hlq

+

This is a sample ISPF Dialog for demonstration purposes. Press F1

for a full tutorial or move the cursor to the HLQ entry field for

field level help.

+

+ Press%Enter+after entering a valid HLQ or Use the%PF3+with no HLQ to Quit

The)Body statement includes the Expand(\\) field. The Expand is used

to specify the characters used for delimiting the expansion and is used

for panels where you want the text centered or aligned. The panel text is

then coded using the attribute characters to define the attributes (color,

intensity, etc.) for the text.

Page18

August 22, 2002 ISPF Design and Coding Hints

and Tips

18

Initial Panel)…Initial Panel)…

)Init

.help = sharehlp

.cursor = hlq

)Proc

if (&zcmd EQ &z)

ver (&hlq,nb,dsname)

)Help

Field(hlq) Panel(sharehh)

)End

After the)BODY statement is the)INIT which in this example defines

the ISPF Help Panel for this Panel. The help panel is named

SHAREHLP. The cursor is also positioned to the HLQ input field.

The)PROC is the process section.

A test is made for the command field to verify that it is equal to &Z,

which is the ISPF Variable for null. If null then the HLQ variable is

verified to be non-blank (nb) and to conform to the syntax of a dataset

name.

The)HELP section is for field level help. The FIELD keyword defines

the input field on the panel to which the field level help applies. The

PANEL keyword defines the ISPF Help Panel.

The)END statement ends the panel definition statements.

Page19

August 22, 2002 ISPF Design and Coding Hints

and Tips

19

Field Level Help PanelField Level Help Panel

This is a field level help panel being displayed. Notice that it is a popup

and situated below and to the right of the field to which it is associated.

Page20

August 22, 2002 ISPF Design and Coding Hints

and Tips

20

Field Level Help PanelField Level Help Panel

)attr default(%+_)

` type(text) intens(high) caps(off) just(asis) color(yellow)

~ type(text) intens(high) caps(off) just(asis) color(turq)

+ type(text) color(turq)

% type(text) intens(high)

)Body Window(55,8) Expand(\\)

%-\-\- ~SHARE HLQ Specification%-\-\-

+

+Enter a valid high level qualifier of 1 to n levels.

`

+e.g.`SYS1

` SYS1.ABC

)Init

)Proc

&zup = sharehlp

)End

This is an example of a Field Level Help Panel. It is no different from

any other ISPF Panel, which should be no surprise.

In this example the)BODY statement uses a WINDOW keyword to

define the area of the panel to 55 characters wide and 8 lines deep.

We’ve already seen the EXPAND keyword.

Page21

August 22, 2002 ISPF Design and Coding Hints

and Tips

21

Primary Help PanelPrimary Help Panel

The primary help panel is shown here. It has two selections which are

displayed automatically by just pressing the ENTER key or the selection

may be made manually by entering 1 or 2.

Page22

August 22, 2002 ISPF Design and Coding Hints

and Tips

22

Primary Help PanelPrimary Help Panel

)attr default(%+_)
` type(text) intens(high) caps(off) just(asis) color(turq)
~ type(text) intens(high) caps(off) just(asis) color(turq) hilite(reverse)
% type(text) intens(high) color(red)
+ type(text) color(turq)
)Body Expand(\\)
%-\-\- ~SHARE Sample ISPF Dialog%-\-\-
%Selection ===>_ZCMD +
%
` This ISPF Dialog provides a sample ISPF application for demonstration
` purposes. It is intended to be used as a learning vehicle to learn some
` of the many ISPF services along with useful REXX coding techniques.
`
` This dialog presents a list of datasets based on a supplied high level
` qualifier. From this list the user may Browse, Edit, Migrate, Recall
` or View the dataset.
`
` The following topics are presented in sequence, or may be selected by
` number:
`

%1+ High Level Qualifier specification
%2+ Dataset Selection

+
)Proc

&zsel = trans(&zcmd
1,sharehh
2,shared1
*,'?'
)

&zup = sharehlp
)end

Here is the code for the primary help panel for this application.

Page23

August 22, 2002 ISPF Design and Coding Hints

and Tips

23

Setup LMDINIT and TableSetup LMDINIT and Table

/* -------------------------------------- *

* Do Library Dataset list initialization *

* -------------------------------------- */

"Lmdinit Listid(LMD) Level("options")"

/* ------------------------------- *

* Create the temporary ISPF Table *

* ------------------------------- */

"TBCreate" table_name "keys(dsn)" ,

"names(act zdlcdate zdlvol)" ,
"Share Replace Nowrite"

The LMDINIT is used to define a dataset list ID for a Level or a dataset.

In this case it is for a dataset Level. The value in the LISTID is a literal

in this statement and is referenced later as a variable.

The TBCREATE is the Table Create service. It is used to create an

ISPF Table. The keys field defines any variable key names to be used

for the table with the names field defining the other, non-key, variables

that will be stored in the table rows. The Nowrite indicates that this table

is to be kept in memory and not written to a table library.

Page24

August 22, 2002 ISPF Design and Coding Hints

and Tips

24

Process LMDListProcess LMDList

/* -- *
* Now loop thru the LMDList for each dataset and add the *
* results to the temporary ISPF table. *
* -- */

do forever
"Lmdlist Listid("lmd") Stats(YES) Dataset(dsn)“ ,

"Option(LIST)"
trc = rc
if trc > 0 then do

"Lmdfree listid("lmd")”
leave
end

"TBadd" table_name
end

The LMDLIST service will return the datasets for a high level qualifier,

one at a time, starting with the first call which is just the hlq. Each

subsequent call will return the next dataset in the list.

The return code is tested and if non-zero the LMDFREE is issued to

close out that service and the leave statement terminates the do forever

loop.

If the return code is zero, meaning a successful LMDLIST, then the

information is added to the ISPF table we created on the prior slide using

the TBADD service.

Page25

August 22, 2002 ISPF Design and Coding Hints

and Tips

25

Table DisplayTable Display

This is the table display.

The Sel column is where the selection option is entered. The Act field is

updated by the application to indicate the last action performed on a

dataset.

Page26

August 22, 2002 ISPF Design and Coding Hints

and Tips

26

Table Display PanelTable Display Panel

)Attr Default(%+_)

! type(input) intens(high) caps(on) just(left) pad('_')
¬ type(output) intens(low) caps(off) just(left)

+ type(text) color(turq)

)Body Expand(//)
%-/-/- Sample Table for SHARE Dialog -/-/-

%Command ===>_zcmd / /%Scroll ===>_amt +
%

+Selection options: B:Browse E:Edit M:Migrate R:Recall V:View

%Sel Act Dataset Name Create Date Volume

+

)Model
!z+ ¬z+¬z ¬z + ¬z

)Init

.help = SHAREHLP

.zvars = '(sel act dsn zdlcdate zdlvol)'

&amt = csr

)Reinit
)Proc

ver (&sel,list,B,E,M,R,V)
if (&ztdsels = 0000)

&row = .csrrow

if (&row NE 0)
if (&sel = &z)

&sel = B

if (&ztdsels NE 0000)
&row = &z

)Help

Field(sel) Panel(shared1)
)End

This is the panel code for the table display.

The new thing here is the)MODEL statement and the z variables.

The)MODEL indicates that the next statement(s) are used to display the

rows of the table. The z variables are defined in the)INIT section using

the .zvars statement.

In the)PROC section the ver statement is used to limit the values the

user can use in the sel field.

To support point-and-shoot for row selection the ztdsels is tested for

0000 and if so then the row is set to the .csrrow value. If row is not 0

then the sel variable is tested and if null (&z) then the sel value is set to

B for Browse

If the ztdsels is not equal to 0000 then the row value is set to null (&z).

Page27

August 22, 2002 ISPF Design and Coding Hints

and Tips

27

Display Table Display Table -- SetupSetup

/* --- *

* Now Display the ISPF Table. *

* First set key variables to use *

* mult_sels: used if multiple rows are selected on same enter*

* crp: top row in the display *

* --- */

mult_sels = 0

crp = 1

rowcrp = 0

This routine sets some default values for our table display routine.

The mult_sels is used to contain the number of rows selected. The crp

is the current top row pointer and the rowcrp is the cursor position row

value.

Page28

August 22, 2002 ISPF Design and Coding Hints

and Tips

28

Display TableDisplay Table

disp:

do forever

sharfind = "PASSTHRU"

sel = null

if mult_sels = 0 then do

"TBTop" table_name

"TBSkip" table_name "Number("crp") "

"TBDispl" table_name "Panel(sharetbl)" ,

"Csrrow("rowcrp") AutoSel(No)"

end

else

"TBDispl" table_name

t_rc = rc

This is the table display routine which is a do forever loop.

The first thing is to set the sharfind variable to PASSTHRU. This

variable was defined in the command table we created when we started

this exec. PASSTHRU informs ISPF to pass the RFIND (repeat find)

command to this application and not to attempt to process it. This is

done so that we can process the RFIND commands.

Next the sel variable is set to null. This is the variable used to indicate

the selection options for each row.

Next the mult_sels is tested and if zero then we position the table by

using the TBTOP to go to the very top of the table, then the TBSKIP to

skip down to the last row that was referenced. The TBDISPL service is

then called to display the table.

If the mult_sels was not zero then the TBDISPL service is called with

just the table name. This allows the additional rows to be processed.

Page29

August 22, 2002 ISPF Design and Coding Hints

and Tips

29

Process SelectionsProcess Selections

crp = ztdtop

mult_sels = ztdsels
if row <> null then

if row > 0 then do
"TBTop" table_name
"TBSkip" table_name "NUMBER("row")"
end

if t_rc > 7 then do
"TBEnd" table_name
return

end
sharfind = null
call do_it

After the table is displayed we have to process any actions.

First the top row value (ztdtop) is saved in the crp variable. Then the

number of rows selected (ztdsels) is saved in mult_sels.

Then the row variable is tested. If not null, then if greater than zero, then

we find the selected row by going to the top using TBTOP and then

skipping down to the selected row using TBSKIP. This gets the

information from the row for our use.

If the return code is greater than 7 then the table is closed us ing TBEND

and the routine returns to the caller, which in this case is the ISPF Select

service.

Next the sharfind variable is set to null and the do_it routine is called.

Page30

August 22, 2002 ISPF Design and Coding Hints

and Tips

30

Update Table StatusUpdate Table Status

/* --- *

* Place selection into act field and update the row *

* --- */

act = sel

"TBPut" table_name

end

After processing the row the act variable is set from the last action

requested (sel), and the row in the table is updated using the TBPut

service. The do forever loop then continues.

Page31

August 22, 2002 ISPF Design and Coding Hints

and Tips

31

Process SelectionsProcess Selections

Do_It:

"Control Display Save"

Select

When abbrev("FIND",word(zcmd,1),1) = 1

then call do_find

When abbrev("RFIND",word(zcmd,1),1) = 1

then call do_find

When sel = "B" then "Browse Dataset('"dsn"')"

When sel = "E" then "Edit Dataset('"dsn"')"

When sel = "M" then do
Address TSO,

"Hmig '"dsn"'"

zdlvol = "MIGRAT"

end

Once a selection is made the selection needs to be analyzed and

processed. This routine (this slide and the next 2) do that.

The “Control Display Save” is an ISPF service that saves the current

display environment. This is required in case other displays are done by

the selection action (e.g. Browse).

A REXX Select/When/Otherwise/End clause is used to test the user

selection against the supported selections.

Notice the Browse selection. This is how to invoke the ISPF Browse

service.

If calling a native TSO service then the Address TSO statement needs

to be used, as we do for the HMigrate action.

Page32

August 22, 2002 ISPF Design and Coding Hints

and Tips

32

Process SelectionsProcess Selections

When sel = "R" then do
if zdlvol <> "MIGRAT" then do

"Control Display Restore"
sel = null
zerrsm = "Error"
zerrlm = "HRecall is not valid for a non",

"migrated dataset."
"Setmsg Msg(isrz002)"
return

end
Address TSO,

"Hrecall '"dsn"'"
end

When sel = "V" then "View Dataset('"dsn"')"
otherwise do

"Control Display Restore"
rowcrp = 0
return
end

end
"Control Display Restore"

The R (HRecall) option requires that we verify that the volser is

MIGRAT and if it isn’t then we tell the user via the SETMSG service.

The Otherwise clause does the “Control Display Restore” and then

returns to the display routine.

If the Otherwise clause is not processed, because there was a va lid

selection option, then the “Control Display Restore” is issued after the

Select/When/Otherwise/End falls through.

Page33

August 22, 2002 ISPF Design and Coding Hints

and Tips

33

Update Table if Volser ChangedUpdate Table if Volser Changed

/* --- *
* Test if original volume was MIGRAT and if not then return *
* else use LISTDSI to get current volser and creation date. *
* --- *
Select
When length(sel) = 0 then return
When pos(sel,"BVER") = 0 then return
When zdlvol <> "MIGRAT" then return
Otherwise nop
end

call listdsi "'"dsn"'"
if sysvolume = "MIGRAT" then return
parse var syscreate year"/"day
jdate = right(year,2)day
sdate = date('s',jdate,'j')
zdlcdate = left(sdate,4)"/"substr(sdate,5,2)"/"right(sdate,2)
zdlvol = sysvolume
return

The last action after processing a valid selection action is to test the

volser to determine if the table row value needs to be updated.

First test to see if the selection action character is BVER and if not then

return.

Then test the volser for MIGRAT and if not then return.

If we haven’t returned then use the listdsi REXX function to get the

current volser and creation date and update the table row variables with

these values. Remember that the return to the display routine will update

the row with the last action along with these updates using the TBPUT.

Page34

August 22, 2002 ISPF Design and Coding Hints

and Tips

34

Find SubroutineFind Subroutine

/* --- *
* Find sub-routine *
* First setup the search by positioning to where we last*
* looked. *
* --- */

Do_Find:
parse value zcmd with argcmd argument
upper argument
argument = strip(argument)
sel = ''
hit = 1
crp = ztdtop
find_loop = ''
search = ''
rowid = crp

This is the local, non-ISPF, FIND routine. This differs from the standard

ISPF routine in that you can tailor it to look in any field in the table and

anywhere in a field.

This routine takes two parameters. FIND or RFIND and the search

value.

The search value is translated to upper case and leading and trailing

blanks are removed.

Then some default values are set.

Page35

August 22, 2002 ISPF Design and Coding Hints

and Tips

35

Test for Repeat FindTest for Repeat Find

if argcmd = "RFIND" then do

argument = save_arg

last_find = last_find + 1

"TBTOP " table_name

"TBSKIP" table_name "Position(ROWID)“ ,

"Number("Last_find")"

end

else do

if rowid > 1 then

"TBSKIP" table_name "Position(rowid)"

end

The argcmd option is tested for RFIND and if so then we set up for the

Repeat Find by:

• setting argument to the last used search value

• incrementing the last_find (row number) by 1

• positioning to the new row (last_find) by using TBTOP and

then TBSKIP services

If the argcmd is not RFIND (it must be FIND) we position down 1 row

for the search test.

Page36

August 22, 2002 ISPF Design and Coding Hints

and Tips

36

At End of TableAt End of Table

if rc = 8 then do

"TBTop" table_name

"TBSKIP" table_name "Position(ROWID)"

s_smsg = "Wrapped"

end

else s_smsg = "Found"

If the TBSKIP return code is an 8 then we have reached the end of the

table so we need to start over at the top. To do this we use the TBTOP

service followed by the TBSKIP and set the short message to

‘wrapped’.

If the return from TBSKIP was not 8 then the short message is set to

‘found’.

Page37

August 22, 2002 ISPF Design and Coding Hints

and Tips

37

Actual Find (Compare)Actual Find (Compare)

/* ---------------------- *
* Now perform the Search *
* ---------------------- */

save_arg = argument
do forever

search = dsn zdlvol
if pos(argument,search) > 0 then do

crp = rowid + 0
rowcrp = crp
last_find = crp

zerrsm = s_smsg /* "Found" */
zerrlm = argument "found during search in row:" crp

"Setmsg Msg(isrz002)"

leave
end

Now we do the actual find by using the pos function to determine if the

search argument is in the search fields.

The search fields are set by setting the search variable to contain the row

values we want to search – dsn and zdlvol in this case.

If so then we have a match and we set the short message variable zerrsm

to the short message value (s_smsg). The long message variable zerrlm

is set to the search string plus ‘found during search in row:’ and the

row number. The routine then leaves the compare loop which falls

though to the return statement on the next slide.

Page38

August 22, 2002 ISPF Design and Coding Hints

and Tips

38

If Compare FailsIf Compare Fails

"TBSKIP" table_name "POSITION(Rowid)"
if rc = 8 then do

"TBTOP" table_name

s_smsg = "Wrapped"
if find_loop = "on" then do

zerrsm = "Not Found"

zerrlm = argument "Not found during search"
rowid = crp

"Setmsg Msg(isrz002)"
leave
end

else find_loop = "on"
end

sel = ''

end
return

If the compare fails then the TBSKIP service is used to jump to the next

row. If the return code from the TBSKIP is 8 then we start again at the

top of the table.

The find_loop variable is tested to determine if we have already been

here (at the end of the table) before and if so informs the users via the

short and long message that the search value could not be found and the

leave statement ends the search loop.

Page39

August 22, 2002 ISPF Design and Coding Hints

and Tips

39

MessagesMessages

ISRZ000 '&ZEDSMSG ' .ALARM = NO .HELP = ISR2MACR NOKANA

'&ZEDLMSG'

ISRZ001 '&ZEDSMSG' .ALARM = YES .HELP = ISR2MACR NOKANA

'&ZEDLMSG'

ISRZ002 '&ZERRSM' .ALARM = &ZERRALRM .HELP = &ZERRHM NOKANA

'&ZERRLM'

ISRZ003 '&ZERRSM' .A=&ZERRALRM .H=&ZERRHM .T=&ZERRTP .W=&ZERRWN NOKANA

'&ZERRLM'

IBM has provides some generalized messages that can be used. These

are ISRZ000 to ISRZ003.

Page40

August 22, 2002 ISPF Design and Coding Hints

and Tips

40

ResourcesResources

• IBM Publications

– http://www-1.ibm.com/servers/eserver/zseries/zos/bkserv/

• ISPF Edit Models

• SHARE Sessions and Proceedings

– http://www.share.org

• Examples

– http://www.cbttape.org

– http://www.lbdsoftware.com

• Listservs

– IBM-Main

• LISTSERV@BAMA.UA.EDU

– Subscribe ibm-main

– ISPF-L

• Listserv@listserv.nd.edu

– Subscribe ispf-l

– TSO-REXX

• Listserv@VM.MARIST.EDU

– Subscribe tso-rexx

These are just some of the available resources that you should check out

to learn more.

Page41

August 22, 2002 ISPF Design and Coding Hints

and Tips

41

QuestionsQuestions

Now it is your turn to ask any questions you didn’t ask during the

presentation.

