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Abstract: We present power calculations for zero-inflated Poisson (ZIP) and
zero-inflated negative-binomial (ZINB) models. We detail direct computa-
tions for a ZIP model based on a two-sample Wald test using the expected
information matrix. We also demonstrate how Lyles, Lin, and Williamson’s
method (2006) of power approximation for categorical and count outcomes
can be extended to both zero-inflated models. This method can be used
for power calculations based on the Wald test (via the observed information
matrix) and the likelihood ratio test, and can accommodate both categori-
cal and continuous covariates. All the power calculations can be conducted
when covariates are used in the modeling of both the count data and the
“excess zero” data, or in either part separately. We present simulations to
detail the performance of the power calculations. Analysis of a malaria study
is used for illustration.
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1. Introduction

Often the outcome of interest in public health and medical studies is a count
variable, which is usually assumed to follow the Poisson distribution and can
be modeled accordingly. However, the count variable may contain excess zeroes
above what is to be expected from the Poisson model. These excess zeroes may
be due to 1) the presence of a subpopulation with only zero counts, 2) overdis-
persion, or 3) chance (Campbell, Machin, and D’Arcangues, 1991). A common
approach for analyzing such data is the zero-inflated Poisson (ZIP) model (Mul-
lahy, 1986; Lambert, 1992), which is an extension of Cohen’s (1960) modified
Poisson distribution. ZIP modeling has been used to analyze data on caries pre-
vention (Bohning, Dietz, Schlattmann, Mendonca, and Kirchner, 1999), early
growth failure in children (Cheung, 2002), and sudden infant death syndrome
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(Dalrymple, Hudson, and Ford, 2003), as well as many other diseases. ZIP mod-
eling also can accommodate the extent of individual exposure (Lee, Wang, and
Yau, 2001). A score test has been proposed for determining whether the number
of zeros is too large for a Poisson distribution to fit the data well, indicating that
a ZIP model may be a better choice (van den Broek, 1995). ZIP models also have
been extended to the bivariate (Walhin, 2001) and multivariate settings (Li, Lu,
Park, Brinkley, and Peterson, 1999). Hall (2000) and Yau and Lee (2001) have
used random-effects approaches to extend the ZIP model to analyze longitudinal
count data.

If count data are overdispersed such that the variance of the count variable
is greater than the mean, then the Poisson assumption is violated. A negative
binomial distribution may then be used for modeling purposes, as it uses an
additional parameter in describing the variance of the count variable. If the data
are still zero inflated, a zero-inflated negative binomial (ZINB) model may be fit.
A score test for a ZIP regression model against a ZINB alternative (Ridout, Hinde,
and Demetrio, 2001) has been proposed. Hall and Berenhaut (2002) provide an
alternative to Ridout, Hinde, and Demetrio’s (2001) score test by testing that
the variance and covariance components associated with random effects in a ZIP
model are equal to zero, implying that a ZINB model does not fit the data better
than the ZIP alternative.

Studies without a sufficient sample size often will result in a failure to detect
a significant effect when it exists; however, there is often a high cost associ-
ated with recruiting and evaluating large samples of subjects. This consideration
makes sample size (power) calculations a crucial step in designing clinical re-
search and public health studies, many of which are known to have a ZIP- or
ZINB-distributed response. Sample size calculations are especially important for
zero-inflated models because a larger sample size is required to detect a signifi-
cant effect with these models than with the standard Poisson or negative-binomial
models. To date, methods for power calculations for ZIP and ZINB models are
scarce.

Here we present an example of a study with a zero-inflated count response.
Weekly household mosquito counts were obtained for a longitudinal study of
malaria risk factors in Western Kenya (Bloland et al., 1999). In this area, some
houses are reputed to be “malaria houses” - where the risk of disease is great. A
goal of the study was to see if basic sanitation and construction practices would
affect malaria risk. A major outcome of the study was the weekly household
mosquito count, which has an excess number of 0 values as some houses never
have mosquitos.

In Section 2, we review the ZIP and ZINB models. We use Lyles, Lin, and
Williamson’s (2006) approach for computing power for generalized linear models
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to compute power for both zero-inflated models in Section 3. The power calcu-
lations can be based on the Wald or the likelihood ratio tests. We also present
power computations for a two-group comparison with a ZIP model based on a
Wald test where the variance-covariance matrix is calculated from the expected
information matrix. The latter approach was not feasible for the ZINB model
because of the difficulty in taking the expected value of the second derivative
matrix. We present simulation studies to detail the methods’ performance in
Section 4 and illustrate their use with a public health example in Section 5. We
conclude with a short discussion on the merits of these sample-size calculations.

2. Zero-Inflated Models

Let the response Yi denote a non-negative integer count for the ith observa-
tion, i = 1, · · · , N . The probability of an excess zero is denoted by πi, 0 ≤ πi ≤ 1.
Following Cheung (2002), the random variable Yi follows a ZIP distribution if

Pr(Yi = yi) =

{
πi + (1 − πi)e

−λi if yi = 0

(1 − πi)
e−λiλ

yi
i

yi!
if yi > 0

(2.1)

for i = 1, · · · , N . The mean and variance of the ZIP random variable are E(Yi) =
(1 − πi)λi and Var(Yi) = (1 − πi)λi(1 + πiλi). If Yi follows a ZINB distribution,
then

Pr(Yi = yi) =

{
πi + (1 − πi)

(
1

1+κλi

)κ−1

if yi = 0

(1 − πi)
Γ(κ−1+ yi)
Γ(κ−1)(yi!)

(
κλi

1+κλi

)yi
(

1
1+κλi

)κ−1

if yi > 0
(2.2)

for i = 1, · · · , N . The mean and variance of the ZINB random variable are
E(Yi) = (1− πi)λi and Var(Yi) = (1− πi)λi(1+(κ + πi)λi), where κ is an overdis-
persion parameter. The ZINB model reduces to the ZIP model as κ → 0 (that
is, equation 2 and equation 1 are then equivalent).

For both models, we assume that πi will be modeled with logistic regression,
logit(πi) = X iβ, where Xi is a 1 × p row vector of covariates (including an
intercept) and β is the corresponding p× 1 column vector of parameters. This is
a natural choice for a binary response and results in an odds ratio interpretation
for the parameters. We model the mean of the count part as log(λi) = Ziγ,
where Zi is a 1×q row vector of covariates and γ is the corresponding q × 1
column vector of parameters. Let θ = [ β ′,γ ′] ′. The covariate vectors Xi and
Zi may contain the same or differing predictors.
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3. Power Calculations for Zero-Inflated Models

Lyles, Lin, and Williamson (2006) proposed a simple and flexible method for
estimating conditional power (that is, power given any prespecified fixed covariate
design matrix) for binary, ordinal, and count outcomes. This method requires
only standard software for fitting the desired generalized linear model. The model
is fit to a representative expanded data set using easily calculated weights that
represent response probabilities given the assumed values of the parameters. The
resulting variance-covariance matrix is used for power calculations based on the
Wald test. Power based on the likelihood ratio statistic can be approximated by
refitting the model under the null hypothesis.

Lyles, Lin and Williamson’s (2006) approach proceeds as follows. Assume
that the zero-inflated response variable Y takes J possible values 0, 1, · · · , J − 1
where J is chosen such that the Pr(Y ≥ J |Xi = xi,Zi = zi) for any specific
vectors xi and zi in their respective design matrices is negligible. For example,
one could use the criterion that Pr(Y < J |Xi = xi,Zi = zi) ≥ 0.999 for
each distinct covariate set. The representative expanded data set proposed here
represents a generalization of an “exemplary” data set proposed for other power
calculations (O’Brien, 1986; O’Brien, 1988; and O’Brien and Muller, 1993). The
expanded data set is comprised of one record for each of the J response values per
combination of covariate values with an associated weight wij = Pr(Yi = j|X i =
xi,Zi = zi) easily calculated from (1) and (2). We are interested in testing the
following hypothesis:

H0 : Hθ = h0 versus HA : Hθ �= h0 (3.1)

where H is an (h × (p + q)) matrix of full rank and h0 is a (h × 1) vector of
constant terms.

The Wald and likelihood ratio (LR) test statistics are given by

TW = (Hθ̂ − h0)
′[Hvâr( θ̂ )H′]−1(H θ̂ − h0)

and

TLR = −2[l(θ̂
∗

) − l(θ̂)],

where θ̂ is the unrestricted maximum likelihood estimate of θ, θ̂
∗

is the cor-
responding maximum likelihood estimator under H0, and l(.) denotes the log-
likelihood function. Under H0, both test statistics are asymptotically distributed
as central chi-square random variables with h degrees of freedom. Under HA,
and following Wald (1943) and Stroud (1973), TW is asymptotically distributed
as non-central χ2

h,λ, where the non-centrality parameter λ is (Hθ − h0)
′[Hvar( θ̂ )

H′]−1(Hθ − h0). For the likelihood ratio test, TLR is asymptotically distributed
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as non-central χ2
h,ν, where the non-centrality parameter is ν = −2[l∗(θ) − l(θ)],

l(θ) being the log-likelihood under the true θ, and l∗(θ) is the loglikelihood when
θ is evaluated under H0 (Wald, 1943; Stuart, Ord, and Arnold, 1999). Let α
represent the specified type-I error rate and χ2

h:1−α the critical value from the
central χ2

h distribution. The power for testing H0 with the Wald or likelihood
test is

1 − η =

∫
∞

χ2

h:1−α

f(u; h, c) du

where η is the type-II error rate, f(u; h, c) is the probability density function of
the non-central χ2

h, c distribution, and c is the appropriate degrees of freedom for
either test.

The expanded data set is created as follows. For i = 1, · · · , N, specify xi

and zi and calculate the weight wij for specified θ (and also κ for the ZINB
model). Choose J such that the probability that Y is greater than or equal to J
is negligible. Each record in the data set will correspond to an observation with
response j (j = 0, 1, · · · , J − 1). For example, assume that we are calculating
the power for a sample of N = 100 and have chosen J = 16. Additionally,
we assume that one covariate is used in the “excess zero” modeling, xi, and a
different covariate is used in the count modeling, zi. The expanded data set will
include N × J = 1600 records with the 16 records for the ith experimental unit
given as follows:

Xi Zi Yij Wij

xi zi 0 wi0

xi zi 1 wi1

xi zi 2 wi2

· · ·
xi zi 14 wi14

xi zi 15 wi15

The third column represents the response and
∑15

j=0 wij ≈ 1.0. If hypothet-
ically xi and zi were specified to be 2 different binary covariates (50% in each
category for each covariate), then the first 25 experimental units (400 records)
would have xi = zi = 0, the next 25 xi = 0 and zi = 1, the following 25 xi = 1
and zi = 0, and the last 25 xi = zi = 1. The expanded data set can be shortened
for categorical covariates by multiplying the appropriate weights by the number
of observations with the corresponding covariate pattern. For the above example,
the shortened data set would have 64 (16×4 distinct covariate patterns) records
with the weights multiplied by 25.
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When the predictor of interest is a continuous variable, we use a representa-
tive covariate data set along with the expanded data set. Let xi be a realization of
a continuous covariate X whose cumulative distribution function F (x) is assumed
known. Using the Blom adjustment (Blom, 1958), we create a representative

covariate data set consisting of the expected quantiles: xi = F−1
(

i−0.375
N+0.25

)
. An

example is found in the second set of simulations in Section 4 where such a data
set is illustrated in a table. See Lyles, Lin, and Williamson (2006) for a more
detailed explanation.

3.1 Power calculations for 2-sample test with ZIP data

Here we demonstrate that power for ZIP models can also be calculated using
the traditional approach where the variance-covariance matrix of parameter esti-
mates is calculated from the expected information matrix. In contrast, a similar
approach for the ZINB model is not feasible due to the difficulty in taking the ex-
pected value of its second derivative matrix. Although this method is extendible
to multiple groups, we focus here on a two-group comparison and present power
calculations for ZIP models using the Wald test. For most sample size calcula-
tions conducted for medical and public health studies, the main hypothesis of
interest is usually a comparison between two groups, such as treatment (new
drug versus standard drug or placebo) or gender (male versus female). A binary
covariate xi will be used in the modeling of both parts of the ZIP model. The
probability πi of an excess zero will be modeled as logit(πi) = β0 + β1xi and the
mean of the Poisson part as log(λi) = γ0 + γ1xi. Therefore, the parameters of
interest here are θ = [β0, β1, γ0, γ1]

′.
We present the score functions and the information matrix for this ZIP

model in Appendix 1. Let θ̂ be the solution to the score equations. Then,
var(θ̂) = (1/N)I−1

θ
(θ), which can be estimated by substituting θ̂ for θ. Specify

the hypothesis for θ as (3). For example, if the hypothesis of interest is that
the two groups (xi = 0, 1) have the same probability of an excess zero, then
H = [ 0 1 0 0 ] and h0 = 0. If one is interested in testing for an overall
difference between the two groups, then one may use

H =

[
0 1 0 0
0 0 0 1

]

and h0=[ 0 0 ]. One only has to specify the sample sizes (N0 and N1), the
probabilities of an excess zero (π0 and π1), and the means of the Poisson counts
(λ0 and λ1) for the two groups in order to conduct these power calculations, as θ

is easily solved in terms of these parameters for the two-group comparison. The
advantage here is that it is easier for a medical investigator to specify probabilities
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Table 1: Power (%) to test H0 : [β1, γ1]
′ = 0 for a two-sample ZIP model at

α = 0.05 (two sided) with N0 = N1 = 100.

π0 = 0.15

π1 = 0.20

λ1

λ0 4.0 5.0 6.0

4.0 11.3 77.6 99.9
11.4 78.1 99.9
12.1 80.6 99.9

4.5 34.6 30.0 97.1
34.8 30.1 97.3
33.5 28.1 98.6

5.0 80.4 11.8 71.8
80.8 11.8 72.1
75.3 10.9 73.9

π1 = 0.25

λ1

λ0 4.0 4.5 5.0

4.0 30.0 47.4 83.8
31.0 48.6 84.7
28.4 47.0 88.2

4.5 53.5 31.1 47.8
54.4 32.0 48.8
52.0 31.0 51.6

5.0 87.5 51.6 31.7
88.1 52.4 32.6
83.5 48.4 28.8

π1 = 0.25

λ1

λ0 10.0 11.0 12.0

10.0 32.8 64.7 97.2
33.6 65.2 97.2
30.2 73.7 99.5

10.5 41.9 41.5 85.5
42.7 42.3 85.7
40.7 40.7 88.3

11.0 64.5 32.8 62.4
65.2 33.6 62.9
59.4 27.1 69.1

π0 = 0.45

π1 = 0.50

λ1

λ0 5.5 6.0 6.5

4.0 88.5 98.6 99.9
89.0 98.8 99.9
88.7 98.7 99.9

4.5 54.2 86.0 97.9
54.4 86.4 98.1
53.1 85.1 97.5

5.0 19.5 51.2 83.3
19.5 51.3 83.6
20.5 52.9 84.2

π1 = 0.55

λ1

λ0 11.0 12.0 13.0

10.0 44.8 85.4 99.0
44.8 85.4 99.0
44.7 85.5 99.1

10.5 28.0 65.3 94.7
28.1 65.3 94.7
26.3 71.2 98.7

11.0 22.5 42.9 82.7
22.6 43.0 82.6
20.9 42.3 83.3

π1 = 0.60

λ1

λ0 5.0 5.5 6.0

4.0 76.8 93.7 99.1
77.1 93.9 99.2
78.2 93.4 98.3

4.5 54.1 75.7 92.6
54.5 75.9 92.7
54.2 74.0 92.1

5.0 45.3 53.9 74.3
45.8 54.3 74.6
48.0 55.9 74.7

and mean counts then parameters on the logit or log scales.

4. Simulations

To assess the performance of our proposed power calculations for both ap-
proaches, we conducted several studies using simulated data. For the first set
of simulations, we randomly generated ZIP-distributed data for 200 observations
with a binary covariate (x = 0, 1 for 100 observations each) for each simulated
data set. The parameters used to generate the data (β and γ) were specified
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Table 1 (continued): Power (%) to test H0 : [β1, γ1]
′ = 0 for a two-sample ZIP

model at α = 0.05 (two sided) with N0 = N1 = 100.

π0 = 0.75

π1 = 0.80

λ1

λ0 5.5 6.0 6.5

4.0 55.7 77.6 91.4
56.0 78.3 92.0
56.2 78.7 91.3

4.5 30.4 52.8 74.7
30.4 53.0 75.1
30.8 50.1 73.3

5.0 15.2 29.0 50.0
15.2 29.0 50.1
16.2 28.8 48.6

π1 = 0.85

λ1

λ0 11.0 12.5 14.0

10.0 41.3 74.0 95.7
42.0 74.1 95.5
39.3 74.2 95.3

10.5 34.9 61.3 90.2
35.7 61.6 89.9
33.1 60.2 89.4

11.0 32.8 49.4 81.5
33.6 50.0 81.3
33.1 48.5 80.4

π1 = 0.90

λ1

λ0 5.0 5.5 6.0

4.0 75.3 83.4 90.7
78.1 85.2 91.5
78.3 86.9 92.6

4.5 69.2 75.1 82.8
72.9 78.1 84.7
70.0 75.8 86.5

5.0 67.4 69.3 74.8
71.4 73.1 77.9
69.3 71.7 78.4

The calculated power using the Wald test with expected information matrix is
the main entry (bold). The middle entry is the calculated power using Lyles
et al.’s method based on the likelihood ratio test (italicized). The empirical
power based on the Wald test from the 1000 simulations is presented below.

in terms of π0, π1, λ0, and λ1. One thousand data sets were generated for vari-
ous (but not exhaustive) combinations ofπ0, π1, λ0, and λ1. See Table 1. Power
calculations were conducted using Lyles, Lin, and Williamson’s (2006) approach
(both the Wald and likelihood ratio tests) and the proposed two-sample power
computation. The data sets were analyzed with the ZIP model that was used
to generate the data (i.e., the binary covariate was incorporated into both the
logit and Poisson parts of the model), so that the model was correctly speci-
fied. To calculate the empirical power for each set of simulations, we estimated
β = [β0, β1]

′ and γ = [γ0, γ1]
′ to test H0 : β1 = γ1 = 0. The resulting Wald test

statistic was compared to a chi-square distribution with two degrees of freedom.
Then the empirical power based on the Wald test was calculated as the number
of data sets resulting in the rejection of H0 : β1 = γ1 = 0 (α = 0.05) divided by
1000.

Table 1 summarizes the simulation results. Of the 81 scenarios, the calculated
power for the two-sample Wald test based on the expected information matrix was
less than the empirical power 40 times, greater than the empirical power 39 times,
and equal to the empirical power twice. The maximum difference between the
calculated power and the empirical power was 0.090 (π0 = 0.15, π1 = 0.25, λ0 =
10.0, λ1 = 11.0), but there were only six scenarios (out of 81) for which the
calculated power was different from the empirical power by more than 0.05.
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Table 2: Expanded data set of 3100 lines (N × J) with N = 100 and J = 31
for ZINB simulation with xi ∼ N(0, 1). The excess zero part of the model is
logit(πi) = −0.406 + 0.65xi and the count part is log(λi) = 1.609 + 0.25xi.

Obs i xi yj weight(wij) Obs i xi yj weight(wij)

1 1 −2.4986 0 0.2197 3039 99 2.1392 0 0.7300
2 1 −2.4986 1 0.1806 3040 99 2.1392 1 0.0059

. .

. .
30 1 −2.4986 29 0.0000 3068 99 2.1392 29 0.0001
31 1 −2.4986 30 0.0000 3069 99 2.1392 30 0.0001
32 2 −2.1392 0 0.2279 3070 100 2.4986 0 0.7730
33 2 −2.1392 1 0.1580 3071 100 2.4986 1 0.0038

. .

. .
61 2 −2.1392 29 0.0000 3099 100 2.4986 29 0.0002
62 2 −2.1392 30 0.0000 3100 100 2.4986 30 0.0001

The results were excellent for moderate and large values of π. The largest dis-
crepancies between the calculated power using the Wald test with the expected
information matrix and the empirical power were for small values of π.

Power calculations using Lyles, Lin, and Williamson’s (2006) method with
the Wald test (observed information matrix) were not shown because the differ-
ence between this approach and the power calculation using the Wald test with
the variance-covariance matrix calculated from the expected information matrix
never exceeded 0.2%. Power calculations using Lyles, Lin, and Williamson’s
method with the likelihood ratio test were very similar to those based on the
Wald test. In the instances where there was a slight difference, the power calcu-
lations based on the likelihood ratio test tended to be higher than those based
on the Wald test.

For a second set of simulations, we randomly generated ZINB-distributed data
(Krishnamoorthy, 2001) with samples of size 100 and 500. The probability πi of
an excess zero was modeled as logit(πi) = β0 + β1xi and the mean of the count
part as log(λi) = γ0 +γ1xi. The covariate xi was distributed as a N(0, 1) random
variable or a U(−0.5, 0.5) random variable. The parameters used to generate the
data were β0 = −0.4055 (corresponding to 40% excess zeros when xi = 0), and
γ0 = 1.6094 (corresponding to a mean count of 5 when xi = 0). The parameters
β1 and γ1 varied according to the sample size and distribution of xi. In general,
we chose β1 and γ1 such that the resulting power is within practical range. Two
thousand data sets were generated for each combination of the parameters. We
found that taking J = 31 for both the N(0, 1) and U(−0.5, 0.5) distributions
ensured that the wij ’s summed very close to one for each xi. We used the criterion
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that
∑J−1

j=0 wij ≥ 0.999∀xi. For specified θ, the criterion can be checked directly
for each unique xi. Alternatively, it is often easy to identify which xi assigns
highest probability to large Y , in which case one could choose J to ensure that
the criterion holds for that xi. See Table 2 for a partial listing of the expanded
data set of size 100×31 = 3100 for the power calculation when N = 100 and xi

is distributed as a N(0, 1) random variable using the Blom adjustment.

Table 3: Power (%) to test H0 under a ZINB model with a continuous covariate
at alpha = 0.05 (two sided). The models for the excess zero and count parts
are logit(πi) = −0.4055 + β1xi and log(λi) = 1.6094 + γ1xi, respectively, with
κ = 0.2.

N = 100 N = 500

Distribution of xi N(0, 1) U(−0.5, 0.5) N(0, 1) U(−0.5, 0.5)
True β1 = 0.65 β1 = 2.0 β1 = 0.25 β1 = 0.9
Parameters γ1 = 0.25 γ1 = 0.85 γ1 = 0.1 γ1 = 0.45
Hypothesis H0 Test

β1 = γ1 = 0 Wald 0.885 0.881 0.883 0.966
(0.907) (0.911) (0.886) (0.971)

LRT 0.915 0.900 0.890 0.967
(0.924) (0.921) (0.889) (0.972)

β1 = 0 Wald 0.712 0.674 0.718 0.758
(0.764) (0.694) (0.753) (0.763)

LRT 0.792 0.730 0.732 0.769
(0.802) (0.726) (0.755) (0.769)

γ1 = 0 Wald 0.765 0.782 0.732 0.921
(0.756) (0.790) (0.719) (0.924)

LRT 0.743 0.759 0.729 0.917
(0.746) (0.784) (0.719) (0.923)

The calculated power using the Wald and Likelihood Ratio tests are the main
entries. The empirical powers from the 2000 simulations are presented below
each entry in parentheses.

See Table 3 for the simulation results. Power calculations were conducted
using Lyles, Lin, and Williamson’s (2006) approach (both the Wald and likeli-
hood ratio tests) for the tests H0 : β1 = γ1 = 0, H0 : β1 = 0 and H0 : γ1 = 0.
The empirical power was calculated as the number of data sets resulting in the
rejection of the appropriate null hypothesis (α = 0.05) divided by 2000, for the
respective Wald or likelihood ratio test. Both sets of simulations were conducted
via SAS IML1. Overall, the results were satisfactory. The largest difference be-

1SAS Institute, Inc. (1995). SAS/IML Software: Changes and Enhancements through Re-
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tween calculated power and empirical power for data sets of size 100 was 0.052
for the Wald test (xi ∼ N(0, 1) and testing H0 : β1 = 0). For data sets of size
100 and the likelihood ratio test, there were no instances where the calculated
power was different than the empirical power by more than 0.03. There were no
instances where the calculated power was different than the empirical power by
more than 0.04 for either test and data sets of size 500. For sample size of 100, the
likelihood ratio test had greater power than the Wald test for H0 : β1 = 0, and
the opposite was true for H0 : γ1 = 0. However, these differences were negligible
when the sample size increased to 500.

Table 4: Mosquito count from 492 houses in Western Kenya

Separate Pit Latrine
Count Yes No

0 153 133
1 39 31
2 24 18
3 11 17
4 5 14
5 11 3
6 6 4
7 2 1
8 2 1
9 2 0
10 2 0
11 2 0
12 1 0
13 2 1
14 3 0
18 0 1
19 0 1
25 0 1
27 1 0

Total 266 226

lease 6.11. SAS Institute, Inc.: Cary, NC.
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5. Western Kenya Malaria Cohort Study

Suppose that we want to calculate the sample size for a new study based
on the parameter values estimated from the data collected in a similar previous
study. One of the objectives of the Western Kenya Malaria Cohort study was
to determine if basic household construction and sanitation practices were re-
lated to malaria risk (Bloland et al., 1999). All participating households were
visited and information on construction, animal ownership, and sanitation prac-
tices (such as the presence of a separate pit latrine structure) were recorded.
Since only two of the many species of mosquitoes in this area transmit malaria,
each participating household then had weekly mosquito trapping sessions, using
a standard CDC-developed mosquito trap during the time that these mosquitoes
are actively feeding (generally 11:00 PM to 2:00 AM). Trapped mosquitoes were
separated by species and malaria-transmitting species were counted to give the
dependent measure used in this analysis. Before the initiation of the study, local
residents had commented that certain homes were “malaria houses” while other
nearby homes “had no mosquitoes” for reasons that were not well known. A
simple change of sanitation or home construction procedure that resulted in a
decrease to the inhabitants’ likelihood of getting malaria would be of tremendous
benefit. Virtually all infants in this area get malaria multiple times before their
first birthday. Of particular interest was whether or not a separate pit latrine
structure, which has clear sanitation benefits, was associated with any difference
in the numbers of mosquitoes that transmit malaria.

The mosquito counts are from the first weekly visit to each house in Septem-
ber, 1994 and are presented in Table 4. In the sample of 492 houses, 286 (58%)
had no mosquitoes, much greater than the expected count of 111 predicted from
a standard Poisson distribution. Here we are concerned with whether mosquito
counts are the same for houses with a separate pit latrine as those without one.
We fit a ZIP model with the covariate x = 0, 1 corresponding to whether or not
the house had a separate pit latrine. The resulting parameter estimates were
β̂ = [0.279, -0.020] ′ and γ̂ = [1.136, 0.171] ′, which yielded π̂ = [0.569, 0.564] ′

and λ̂ = [3.113, 3.693] ′. The joint test of H0 :[β1, γ1]
′ = [0, 0] ′ was nonsignif-

icant (χ2
2 = 4.63, p-value= 0.099) as was the marginal test of H0 : β1 = 0

(χ2
1 = 0.012, p-value= 0.91). However, the marginal test of H0 : γ1 = 0 was sig-

nificant (χ2
1 = 4.53, p-value= 0.033). The results indicate that having a separate

pit latrine structure is not likely to increase mosquito counts to any meaningful
extent.

Using these parameter estimates and based on the Wald test with expected
information matrix, a new study would require sample sizes of 505, 165,000 and
419 in each group to achieve 80% power with a type-I error rate of 0.05 for the
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following three tests H0 :[β1, γ1]
′ = [0, 0] ′, H0 : β1: = 0, and H0 : γ1 = 0,

respectively. For the Wald test with Lyles, Lin, and Williamson’s method with,
the sample sizes calculated were 499, 163,400 and 414, respectively. The sample
sizes calculated based on the likelihood ratio test were 496, 163,350 and 411. If
we assumed that the mosquito count followed the usual Poisson distribution, a
sample of size 323 would be required for 80% power. This example underlines
the potential differences, which can be substantial, in sample size calculations
based on the traditional Poisson model and the ZIP model. When the data
clearly have excess zeros, it is important to use sample size calculations based on
a zero-inflated model to avoid an underpowered study.

6. Discussion

Here we present power calculations for ZIP and ZINB models based on the
Wald and likelihood ratio tests. If interested in a sample-size calculation instead
of a power calculation, one would first specify the power and the percentage of
the sample in each group. Then, by trial and error, one could calculate N0 and
N1 using the above procedure. Example SAS programs and macros, and the
malaria data set from Section 5, are available2.
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Appendix

Let Ai = I(Yi = 0) and define the probability that Ai = 1as τi = πi + (1 −
πi)e

−λi . The score functions for the ZIP model are as follows:

Sβ(β,γ) =

N∑

i=1

{
τ−1
i Aiπi(1 − πi)(1 − e−λi) − πi(1 − Ai)

}
[1, xi]

′

Sγ(β,γ) =

N∑

i=1

{
−τ−1

i Aiλie
−λi(1 − πi) + (1 − Ai)(yi − λi)

}
[1, xi]

′

2See www.personal.psu.edu/hxl28/research/zeroinflated/data.
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and the information matrix is comprised of

Iβ(β,γ) =

N∑

i=1

πi(1 − πi){τ
−1
i (1 − e−λi)(pi2i − e−λi(1 − πi)

2) + 1 − τi}

× [1, xi]
′[1, xi]

Iγ(β,γ) =

N∑

i=1

λi{−τ−1
i (1 − πi)e

−λi(πiλi − τi) + 1 − τi }

× [1, xi]
′[1, xi],

and

Iβ,γ(β,γ) =

N∑

i=1

τ−1
i λie

−λiπi(1 − πi) × [1, xi]
′[1, xi].
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