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ABSTRACT 
 

When confidence intervals for risk-adjusted rates are based on large-sample approximations, with truncation in case 
the lower or upper limit falls outside the range of 0-100%, you know there is Trouble in River City. This paper 
presents an exact calculation of confidence intervals for risk-adjusted rates, applied to the evaluation of hospital 
performance. From subjects with known probabilities of an event, the method takes the inverse of the binomial 
distribution generalized to the case of unequal probabilities. Like the logistic model, the confidence interval is 
calculated assuming that a group effect is additive in the logit domain, causing a shift of the probabilities as a group. 
When the exact upper tail probability for the observed events is α/2, the mean of the shifted probabilities is the lower 
(1-α)% confidence limit on the underlying rate. This generalization of the Clopper-Pearson confidence interval method 
compares favorably with intervals based on the Poisson and normal distributions. With mid-P adjustment, the 
resulting intervals have coverage probability close to the nominal probability. 

INTRODUCTION 
 

The desire for quality improvement in medical care has led to public reporting of the performance of hospitals and 
other providers. Confidence intervals, consisting of a lower and upper limit, are used to communicate the extent of 
knowledge about a given hospital’s performance. By convention, these are 95% confidence intervals, indicating that 
the probability is 0.95 that the true performance is between the lower and upper limits. This can be used to classify a 
hospital as “better”, “average” or “worse”, based on where the hospital confidence interval lies relative to a 
benchmark rate.  When the outcome being measured is sensitive to differences in patient-level risk, the confidence 
interval should be adjusted for the patient-level risk factors, to create a level playing field. The “risk-adjusted rate” is 
an estimate of what the hospital’s performance would have been if the patients at that hospital had a risk profile like 
the “average” hospital. If that were the case, the hospital’s patient outcomes would in theory only reflect the quality of 
care at that hospital, plus random variation, rather than a difference due to having more or less risky patients. 

 

When the complete data set of all hospitals is available, hierarchical statistical models can be used, in which patient-
level risk and hospital rates are estimated in the same model.  In some circumstances, this may not be practical or 
possible. For example, a very large database (either geographically or over time) may be used to accurately estimate 
the parameters for patient-level risk factors, which then may be made available either in a publication or built into a 
software module to compute patient-level risk.  Also, even when hierarchical methods are possible, some approaches 
favor the statistical simplicity of first developing a model on the patient level, then summarizing to the hospital level as 
a subsequent step.  Assuming the outcome is an event which either does or does not occur, two examples of a 
patient-level model are ordinary logistic regression, or simply calculating rates of the event within strata defined by 
risk categories.  In either case, the result is a set of patient-level estimated probabilities of the outcome.  The usual 
next step is to sum the events and probabilities to obtain an observed (O) and expected (E) total on the hospital level, 
and multiply the O/E ratio times a global rate (G) to get a risk-adjusted rate (R).  So, 

  R = G * (O/E)    (1) 

E is assumed to be fixed, and a confidence interval is calculated for O. More correctly stated, a confidence interval for 
the “true” underlying hospital rate is estimated based on the observed number of events. If the confidence interval for 
O is contains E, the hospital is considered “average”.  Otherwise it is classified as an outlier “above” or “below” 
average.  This paper presents a new exact method of calculating the variability of the observed events, free of 
distributional assumptions.  The resulting confidence intervals are valid with small samples and, after a standard 
adjustment, have estimated coverage probability close to the nominal value of 95%. 

 

We will use “K” to represent the observed events instead of “O”.  The rest of this paper is organized as follows: 
Section 1 explains how the exact confidence interval is calculated. Section 2 covers the effect of diversity of risk. 
Section 3 discusses coverage probability and the well-known mid-P adjustment. Section 4 compares the exact 
method to other methods. This is followed by a discussion and conclusion.  
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SECTION 1 – EXACT CONFIDENCE INTERVAL CALCULATION 

STATISTICAL CONTEXT 

 

By definition there is an inverse relationship between a p-value and a confidence interval.  Given the observed data 
and a model with a single parameter, the confidence interval contains all values of the parameter which would not be 
rejected because the p-value is significant. A two-sided statistical test corresponds to a two-sided confidence interval. 
In the case of a 95% two-sided confidence interval, the probability (α) of the underlying parameter being outside the 
interval is .05, with a balanced probability .025 of being in either the upper or lower tail.  

 

 

Figure 1: Binomial confidence interval, with K=6, N=18 

First we will discuss this approach in a special case, in which all 
patients in a hospital have the same probability of the event. 
This reduces to the Clopper-Pearson method of calculating a 
confidence interval for a binomial proportion [Reference 1]. In 
this model, there are N subjects, each with an identical 
probability P of an event, and an observed total of K events. 
The probability of observing K events or less, the lower tail 
probability (LTP), is given by the binomial distribution, which in 
SAS

®
 is the function PROBBNML(P,N,K). The upper tail 

probability (UTP), of observing K events or more, is given by 1-
PROBBNML(P,N,K-1). With given values of K and N, the 
method searches for the value of P which causes the tail 
probability to be α/2. This is the confidence limit. Like a rubber-
band with increasing tension, it is clear that any more extreme 
value of P, as a null hypothesis, would cause a reduction in the 
tail probability to below .025 and would be rejected by a two-
tailed statistical test. The Clopper-Pearson method is known as 
“exact” because of the exact computation based on the 

binomial distribution. Figure 1 shows the binomial distribution when the value of P is at the two confidence limits, 
where the tail probabilities equal .025.  

 

Now we will generalize this to the case where each subject can have a different probability Pi of the event. This 
“generalized binomial” probability calculation is done by a SAS

®
 macro %GENBINOM (see “Access to Macros” 

section).  A call to this macro takes the form %GENBINOM(N,K,P_) in which P_ is now an array of probabilities of 
length N.  While a function can only produce a single value, this macro stores LTP, UTP, and the probabilities of 
observing each specific numbers of events.  

 

Figure 2: Logistic transformation of probabilities 

Just as the Clopper-Pearson method shifts the value of the single 
parameter P, in the more general case we need to shift the entire 
collection of individual probabilities. How we chose to shift the 
probabilities is open for discussion --- any monotone increasing 
transformation would be possible. One way to shift the set of 
probabilities P_ is by adding a constant in the logit-transformed 
domain. The shifted probabilities Si are calculated by transforming 
from a probability to an XBeta, back into a probability: 
 XBeta = log(Pi/(1-Pi)) + constant,  
 Si = exp(XBeta) / (1 + Exp(XBeta)).   (2) 
 
One reason to use this particular transformation is that this is the 
one used in the logistic regression model, in which effects are 
assumed to be additive in the logit domain. So this method makes 

no assumptions other than those already used in logistic regression. The shift can be interpreted as a “group effect” 
parameter in a logistic model.  If S_ is the array of shifted probabilities, the desired group effect value has been found 
when the upper or lower tail probability from %GENBINOM(N,K,S_) equals .025.  

 

To summarize the statistical model, given a set of estimated probabilities Pi, assumed to be known and invariant, the 
statistical model is that the observed events Yi ~ Binary(Si), where logit(Si) = logit(Pi) + group effect, and 
Logit(P)=log(P/(1-P). The group effect is assumed to be the only unknown parameter. When the exact upper tail 
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probability for the observed events is α/2, the mean of the shifted probabilities is the lower (1-α)% confidence limit on 
the underlying rate, and conversely for the upper confidence limit.  
 
In the special case of K=0, a lower confidence limit cannot be calculated, and is given the value of zero. The upper 
confidence limit is calculated as with higher values of K.  A comparable approach handles K=N. 

CALCULATING THE GENERALIZED BINOMIAL PROBABILITIES 

 

The Key Concept: When subject i is added, the total number of events will either increase by 1 if the event occurs 
with subject i, with probability Pi, or it will stay the same if the event does not occur with subject i, with probability 1-Pi. 
So the probability of observing K events after subject i is added can easily be calculated from the probabilities before 
subject i is added. 

 

In this discussion, let P_ represent the array of individual probabilities, shifted or not, and let GB(N,K,P_) be the 
generalized binomial probability of observing exactly K events in N subjects with probability array P_. (These are not 
cumulative probabilities).  For brevity, GB(N,K,P_) is written as GB(N,K). The following shows the relationship 
between GB(N,K) for various values of K and N. 

 

Table 1: Changing probabilities as number of subjects N increases 

  Probability of Observing K Events 
With N Subjects 

 

N Change K=0 
Events 

K=1 
Event 

K=2 
Events 

K=3 
Events 

 

Probability Cascade 

0 No 
Subjects 

1.00    

1 Add 
Subject 1 

GB(1,0) GB(1,1)   

2 Add 
Subject 2 

GB(2,0) GB(2,1) GB(2,2)  

3 Add 
Subject 3 

GB(3,0) GB(3,1) GB(3,2) GB(3,3) 

P = .30

P = .20

P = .40

K= 0 1 2 3  
 

The width of the rectangles in the Probability Cascade figure indicates the size of the probability in the corresponding 
(left-aligned) cells to the left, for a specific example where the subjects have the probabilities as shown.  Rotating the 
rectangles 90 degrees creates a histogram comparable to Figure 1. 

 

Figure 3:  Changes of state, retrospective view from state with K events in N subjects. 

Changes of State Probabilities 

 
 

The probability cascade algorithm works by induction, calculating the solution on each row from the probabilities 
already calculated on the row above. Formally,  

 GB(N,K) = GB(N-1,K-1) * Pn + GB(N-1,K)*(1-Pn).  (3) 

On the edges of the triangle the above expression reduces to a single term. Starting at the top with the trivial case of 
N=0, the probability GB(0,0) = 1.0. (If there are no subjects, there are no events with certainty.) From there, all 
GB(N,K) probabilities are calculated, proceeding down through the triangle one row at a time. The goal is to obtain 
the set of probabilities on the bottom line. Table 1 with its internal relationships is a weighted version of Pascal’s 
Triangle. This elegant algorithm for calculating the exact probability was published by Luft and Brown in 1993 
[Reference 2], who attributed the idea to a conversation with renowned statistician John Tukey.  

+
 * (1 – Pn) 

GB(N-1,K-1) 

* Pn 

 GB(N,K) 

GB(N-1,K) 
K events 

or 

 No 
Event 

K-1 
events 

Event 

 K events 
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For some applications, the probabilities GB(N,K) for each value of K are needed in their own right.  An example is the 
calculation of coverage probability discussed later in this paper.  But for p-values or for the confidence interval 
calculation, one is interested in the cumulative probabilities.  The lower tail probability (LTP) is the sum of GB(N,x) 
over x=0 to K. The upper tail probability (UTP) is calculated by subtracting the LTP of K-1 events from 1. Using the 
full form of the GB function, where the array of probabilities P_ is explicitly shown as an argument, we have the 
following formula: 

LTP(K) = 


K

x 0

GB(N,x,P_)      (4)   

UTP(K) = 1 - LTP(K-1)         
Note that these quantities can be calculated from the probabilities for K or fewer events, so there is no need calculate 
the columns of Table 1 to the right of K. Also for efficiency, problems in which K is predominantly above N/2 can be 
redefined by negating the definition of the event. 

SEARCHING FOR THE EXACT CONFIDENCE INTERVAL 
 
In calculating the confidence interval, a search algorithm applies trial values for the shifting constant. Each trial value 
produces a shifted set of probabilities, which in turn produce a revised exact tail probability (upper or lower). The 
search terminates when the tail probability is arbitrarily close to the target value of α/2.  Any search algorithm can be 
used, such as an interval-splitting binary search. We implemented a search algorithm which is a mixture of the secant 
method and the false position method, both described in Wikipedia. This algorithm sacrifices some efficiency in return 
for a high degree of robustness. This algorithm is implemented in the %SEARCH macro (See Access to Macros 
section). 
 

Table 2: Calculation times  

Execution times of exact 95% confidence intervals.  Times are reasonable even with 
very large problems, as shown in Table 2 using an accuracy of .0000001.  Computer 
used: Intel Core 2 Duo running at 2.1 GHz. 
 
 
 
 

CODE OUTLINE 
 
The follow is a pseudo-code version of the program, modified to be similar to the explanation in this article.  Assume 
the input data set has two variables: Prob and Event.  The following calculates the upper confidence limit only. 
 

PROC TRANSPOSE DATA=in OUT=probs PREFIX=prob; 
 VAR prob; 
PROC SUMMARY DATA=in; 
 VAR event; 
 OUTPUT OUT=counts(rename=(_freq_=N)) SUM=K; 
DATA _null_; 
 SET sums; 
 CALL SYMPUT('N',N); 
 
DATA out; 
 MERGE counts probs; 
 ARRAY P_ (&N) prob1-prob&N; 
 ARRAY S_ (&N) _temporary_; 
 ARRAY GB_(0:&N,0:&N) _temporary_; 
 GB_(0,0)=1; * Fill top left cell; 
 
DO shift = SEARCHING UNTIL( Lower_Tail = .025 ); 
  DO i = 1 to N; 
     * Get shifted probability S_; 
     xbeta = log(P_(i)/(1-P_(i))) + SHIFT; 
     s_(i) = exp(xbeta)/(1 + exp(xbeta)); 
     * Calculate row i of generalized binomial probs; 
     DO j = 0 to i; 
         GB_(i,j) = GB_(i-1,j-1)*S_(i) +  
                    GB_(i-1,j)*(1-S_(i)); 
     END; 

K / N Time (sec)

5 / 1000 0.016

50 / 10,000 0.95

 500 / 100,000 163.7

Prepares the data as a single observation 
with counts (K and N) and all individual 
probabilities as variables. 

Searches for the value of SHIFT 
which makes Lower_Tail = .025 
 (+/- a very small error).  This syntax 
does not currently exist in the data 
step language. 

Calculates shifted probabilities using 
Equation 2. 

Does the “Probability 
Cascade” using Equation 3.  
A single-term version applies 
at the edges (not shown).  

Used in the array statements below.
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  END; 
 
  * Lower tail probability is cumulative sum 0 to K; 
  Lower_Tail = 0; 
  DO j = 0 to K; 
     Lower_Tail = Lower_Tail + GB_(N,j); 
  END; 
  * Mid-P adjustment; 
  if 0<K<N then 
  Lower_Tail = Lower_Tail - .5 * GB_(N,K); 
END; 
 
* Confidence limit is sum of shifted probabilities; 
Upper_Limit=0; 
DO i = 1 to N; 
  Upper_Limit = Upper_Limit + S_(i); 
END; 
DROP prob:; 
run; 

 
 
The above is not working code because the “searching” feature on DO … UNTIL does not exist. (Hopefully it will.)  In 
the actual program, processing is done within BY-groups, the roles of Proc Transpose and Proc Summary are 
incorporated into the data step, searching is done by a macro, S_ is not an array, the GB_ array is one-dimensional, 
and the lower confidence limit is also calculated.  For efficiency, the values of GB_ are not calculated past column K. 
 
 

SECTION 2 – THE EFFECT OF DIVERSITY OF RISK 
 
The first question about the above method might be whether it matters that the method uses the individual 
probabilities of the event, or would the confidence interval from the simpler Clopper-Pearson confidence interval be 
basically the same. In addressing this question (and used again later in examining coverage probability) we used the 
following four risk distributions taken from real-world data: 

1. Equal probabilities. 
2. PPR: The probability of a potentially preventable readmission predicted by the rate within strata defined 

by APR-DRG and severity of illness, using 2008 California discharges.  
3. IQI09: The probability of death in pancreatic resection patients, an AHRQ inpatient quality indicator, 

among 2008 California discharges. 
4. MPM3: The probability of death in an ICU as predicted by the MPM3 model, using data from CHART 

[Reference 3] during 2009. 
 
To modify the number of subjects while holding the distribution constant, The KDE Procedure estimated a probability 
density distribution for the X-Betas. Cumulative percents were calculated, and these values were interpolated at N 
equally-spaced cumulative percent points between the minimum and maximum.  
 

Table 3:  Characteristics of risk distributions 

 Probs X-Betas = log(P/(1-P)) Exact 95% C.I.s for K=5 and N=100 

 
Distribution 

 
Mean 

 
Mean 

Std 
Dev 

Skew- 
ness 

Lower 
Limit 

Upper 
LImit 

 
Width 

EQUAL n/a n/a 0 n/a 1.64 11.28 9.64 

PPR 0.081 -2.67 0.84 -0.95 1.65 11.13 9.47 

IQI09 0.039 -3.58 0.84 1.01 1.66 11.04 9.37 

MPM3 0.125 -2.53 1.34 0.52 2.04 10.35 8.32 
The equal probabilities case provides a baseline of zero risk diversity. The PPR and IQI09 risk distributions have 
almost identical standard deviations, but IQI09 is skewed to the right and PPR is skewed to the left. MPM3 has the 
largest standard deviation. On the right, the pattern is clear that as the diversity of risk increases, the confidence 
intervals become narrower.  The same pattern emerges in Figure 8 in Section 4. 
 

Sums the “bottom line” to get 
the tail probability. 

Applies mid-P adjustment, 
explained in Section 3 below. 

After the search has found 
the correct shift to satisfy the 
UNTIL condition, sum the 
shifted individual probabilities 
to get the confidence limit. 

End of the DO … SEARCHING loop 
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A straightforward way to understand the above is to consider the following plot of the function P*(1-P), which is the 
formula for the variance of a single binomial trial (that is, subject) with probability P.  
 

Figure 4:  Variance reduction with risk diversity.   Empty 

circles: individual subjects with diverse risk. Lower dot: mean 
variance when there is diversity of risk.  Upper dot: mean 
variance when all subjects have the same average risk.   

Note that the mean variance is reduced when there is diversity of 
risk. The conclusion is that methods which do not take diversity of 
risk into account will produce wider confidence intervals, and this 
effect increases with the amount of diversity of risk.  Consider an 
extreme example:  10 patients, 4 of whom are almost certain to die, 
and 6 of whom will almost certainly live.  There is very little doubt 
how many will die, so the confidence interval should be extremely 
narrow around 4, compared to a wider interval if all 10 patients had 
the same 40% risk of death. 

 

SECTION 3 – COVERAGE PROBABILITY AND THE MID-P ADJUSTMENT 
 
Just as gas mileage is a way of evaluating automobiles, coverage probability is a way of evaluating a confidence 
intervals method. Coverage probability is defined as the probability that the confidence interval method will produce a 
confidence interval which actually contains the underlying parameter value. We want the coverage probability of a 
95% confidence interval method to be about 95%.  
 
While gas mileage depends on speed, coverage probability depends on the assumed value of the underlying rate 
parameter. A confidence interval method produces a confidence interval for each of the N+1 values of K from 0 to N. 
For any assumed value of the underlying rate, some confidence intervals contain this value and others do not.  Also 
based on the assumed underlying rate, each value of K has a certain probability of occurring.  Coverage probability is 
the sum of the probabilities of the values of K whose confidence intervals do in fact contain the underlying parameter 
value.   
 
[Technical Point] about calculating coverage probability: To obtain the probability of observing K events with an 
assumed underlying rate, we used the generalized binomial probabilities, GB(N,K,P_) where the probabilities P_ 
were shifted to have a mean equal to the assumed underlying rate.  In the statistical literature on coverage 
probability, [References 4,6,7], these studies use the binomial distribution for weighting coverage probability.  In the 
current study we use the generalized binomial distribution, which uses the information available regarding diversity of 
risk and becomes more tightly distributed as risk diversity increases.  This is reflected in the narrower confidence 
intervals seen in Section 2.  This has the effect of increasing the coverage probability of any method which does not 
become narrower with increased risk diversity, such as the Poisson distribution discussed in Section 4.   
 
 

Figure 5: Coverage probability for the exact method with N=100, for the PPR distribution, (Left) without the mid-P adjustment 

discussed below, (Right) with the mid-P adjustment discussed below. 

Coverage
Prob

0.92
0.93
0.94
0.95
0.96
0.97
0.98
0.99
1.00

Assumed Rate x N

0 2 4 6 8 10 12 14 16 18 20 22 24

 

Coverage
Prob

0.92
0.93
0.94
0.95
0.96
0.97
0.98
0.99
1.00

Assumed Rate x N

0 2 4 6 8 10 12 14 16 18 20 22 24

With Mid-P Adjustment

 
 
On the left side Figure 5, there are two aspects to note: the shape and the location. Both are related to the fact that 
the outcomes are discrete integer counts. First, the function has a wild “saw-tooth” shape, which has been studied 
extensively [Reference 6]. Secondly, the coverage probability is too high, always above 0.95, indicating that the 
confidence intervals are too wide (“overly conservative”).  This problem occurs with any confidence interval method 
based on integer outcomes, where there is a non-zero probability of observing exactly K events. The problem stems 
from the fact that the probability of K events is included in both the upper and lower tail areas (Refer to Figure 1 
where K=6). Thus, the probability of observing K events is in-effect double-counted. 
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The standard solution, known as the “Mid-P adjustment”, only includes 50% of the probability of observing exactly K 
events in the tail area. [Reference 5]  With this adjustment, the tail probabilities defined in Equation (4) are redefined 
as follows: 

LTP(K) = 




1

0

K

x

GB(N,x,P_) + .5 * GB(N,K,P_)   (5)   

UTP(K) = 1 - LTP(K)  

 
The result is shown on the right side of Figure 5.  Note that the average coverage probability is close to the desired 
level of 0.95.  
 
We apply the mid-P adjustment only when K > 0. The justification is that in the K=0 case, the probability of observing 
fewer than K events is zero, so no overlapping of tail areas is possible.  Also, the inverted statistical test question 
becomes “What is the probability of observing zero events?” which seems more relevant than “What is half the 
probability of observing zero events?” 
 
For deeper understanding, it is useful know whether the confidence interval is under- or over-estimating the location 
of the parameter, or our concern may be with one side of the confidence interval or the other for hypothesis testing.  
The lower coverage probability (LCP) is the probability that the true parameter is above the lower confidence limit, 
and conversely the upper coverage probability (UCP) is the probability that the true parameter value is below the 
upper confidence limit.  For a 95% confidence interval the desired value of both LCP and UCP is 0.975.  Figure 6 
indicates that the upper and lower coverage probability functions both average around 0.975.  A side-benefit is that 
the functions are amenable to statistical summarization, compared to the two-sided coverage probability functions in 
Figure 5 above.   
 

Figure 6: Upper and lower coverage probability of exact method with Mid-P adjustment, (N=100, PPR distribution). 

Coverage probability is very close to the desired value of 0.975. 

  

 

Because CP = LCP + UCP – 1, the two parts of Figure 6 sum to the right side of Figure 5 (subtracting 1).  
Interference patterns create the wild shape of the coverage probability functions. 

 

SECTION 4 – COMPARISON OF METHODS 
 

We evaluated how closely the exact confidence intervals are approximated by methods based on the Poisson 
distribution and the normal distribution. 
 

FOUR METHODS DEFINED 

Method 1 is the subject of this paper. 
Method 2 “Shifted Normal” is a variant of Method 1 which uses the same shifting of probabilities and search 
algorithm, but the tail probabilities are estimated using the normal distribution. 
Method 3 uses the Poisson distribution to estimate a confidence interval on the underlying mean number of events.   
Method 4 “Fixed-Width Normal” uses the normal distribution to calculate a symmetrical confidence interval, using the 
variance calculated from the individual risk probabilities.  
 
Method 2 is an unpublished method included to examine the effect of the assumed “normal approximation of the 
binomial”.  Method 3 is used by the NHSN branch within the CDC to evaluate rates of hospital-acquired infections.  
Method 4 is used by the AHRQ IQI/PSI software for evaluating hospital quality and safety.  
 
To enable “apples-to-apples” comparisons, each method has a “wide” and “narrow” version. The narrow versions 
generally come closer to achieving the desired 95% coverage probability. The following table shows the definitions of 
the wide and narrow versions of each of the above methods. In further discussion we will append “W” or “N” to denote 
the wide or narrow version.  All of these methods produce numbers between 0 and N, and θ represents the 
underlying rate between 0 and 1. 
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Table 4: Wide and narrow versions of methods being compared 

Method  Wide Version Narrow Version 

1. Exact Using Generalized Binomial 1W. no Mid-P adjustment 1N. with Mid-P adjustment 

2. Shifted Normal 2W. with continuity correction 2N  no continuity correction 

3. Poisson 3W. no Mid-P adjustment 3N  with Mid-P adjustment 

4. Fixed-Width Normal 4W. with continuity correction 4N  no continuity correction 

Note: The term “continuity correction” usually describes the adjustment of confidence intervals based on continuous 
distributions (e.g., normal) to account for discreteness. Some authors also use it to describe the mid-P adjustment, 
which is applied to a discrete distribution (e.g. binomial or Poisson).  
 
Method 1W: The exact method based on the generalized binomial distribution, defined as follows: 
 CLupper(K,N) = θ*N | LTP(θ) = α/2 
 CLlower(K,N) = θ*N | UTP(θ) = α/2 
Where LPT and UPT are defined by equations (4) above, or equivalently, 

 LTP(θ) = 


K

x 0

GB(N,x,S_(θ) ), and  UTP(θ)= 1-




1

0

K

x

GB(N,x,S_(θ) ) 

where S_(θ) is the set of probabilities P_ shifted in the logistic domain to have a mean of θ. 
 
Method 1N: The exact method with mid-P adjustment. Like Method 1W except that  GB(N,K,S_(θ)) / 2  is subtracted 
from both LTP(θ) and UTP(θ). 
 
Method 2W: Shifted Normal with continuity correction. This method uses a simple formula in place of the exact 
generalized binomial probability algorithm in Method 1, and like the exact method this requires a search algorithm. 
The method is as follows: 
 CLupper(K,N) = θ*N | LTP(θ,K) = α/2 
 CLlower(K,N) = θ*N | UTP(θ,K) = α/2 
Where LPT and UPT are defined by  
 LTP(θ,K) =     ProbNorm((K+.5 - Exp(θ))/(sqrt(Var(θ))) 
 UTP(θ,K) = 1-ProbNorm((K -.5 - Exp(θ))/(sqrt(Var(θ))) 

Where Exp(θ) =


N

i 0

S_(θ)I ,     Var(θ) =


N

i 0

S_(θ)i(1-S_(θ)i),   

and S_(θ) are the probabilities P_ shifted in the logistic domain to have a mean of θ. 
 
Method 2N: Shifted Normal without continuity correction. Like the above but without the use of the .5 continuity 
correction. 
 
Method 3W: Poisson distribution.   
Lower CL for the number of events is lambda such that the probability of observing K events or more with a Poisson 
distribution with mean lambda is α/2. Conversely for the upper CI. Because of the relationship between the Poisson 
and Inverse Gamma distributions, Poisson(Gaminv(Prob,K+1),K) = Prob. Therefore the confidence interval can be 
calculated from the formulas: 
 CLupper = Gaminv(1-α/2,K+1) 
 CLlower = Gaminv( α/2,K) 
 
Method 3N: Poisson distribution with mid-P adjustment. Using a search algorithm to find 
 CLupper(K) = lamda | LTP(lamda,K) = α/2 
 CLlower(K) = lamda | UTP(lamda,K) = α/2 
Where LTP(lamda,K) = Poisson(lamda,K-1) + .5 * (Poisson(lamda,K) – Poisson(lamda,K-1)),  
    and UTP(lamda,K) = 1 – LTP(lamda). 
The Poisson(lamda,K) function returns the probability of observing K or fewer events. “Lamda” is the conventional 
name for the mean parameter for the Poisson. 
 
Method 4W: Fixed-Width Normal with continuity correction.  
 CLupper = (K +.5 + 1.96*sqrt(Variance)) 
 CLlower = (K  - .5 - 1.96*sqrt(Variance)),  

where Variance = 


N

i 0

Pi(1-Pi) 

Method 4N: Fixed-Width Normal.  Like the above, without the .5 continuity correction. 
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The methods described above differ in their dependency on K, N and the distributions of probabilities: 

 The Exact method and the Shifted Normal method are dependent upon K, N and the shape of the 
distribution of the logit-transformed probabilities, but not location.  

 The Poisson method depends only upon K. 

 The Fixed-Width Normal method is dependent upon K, N and both the location and shape of the distribution 
of the probabilities. 

 
EVALUATION OF METHOD 2: SHIFTED NORMAL 

The shifted normal method has good overall mean coverage probability near .95 (not shown), but the  
problems are evident when you look at each end separately. 
 

Figure 7:  Coverage probability of Shifted Normal Method (2N). Using PPR distribution with N=50. 
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These results indicate that the shifted normal has good coverage probability when the number of events based on the 
assumed rate is higher than about 20.  Below that, the interval is increasingly below the exact confidence interval, 
being too wide at the low end, and too narrow at the upper end. 
 

EVALUATION OF METHOD 3:  POISSON 

The Poisson approximation assumes that N is infinitely high and can be ignored. It is expected to work well when the 
number of events is low in comparison to the number of subjects. Therefore we chose a low number of events and 
increased N.  

Figure 8:  Upper 95% confidence limits, by Exact and Poisson methods 

(Methods 1N and 3N), for K=4, by N and by risk distribution. 

 
Because the Poisson distribution only depends 
on K, the confidence interval based on it never 
varies as N increases or the risk distribution 
changes.  As expected, with the MPM3 (M) 
distribution of probabilities, which has the 
largest risk diversity, there is the greatest 
difference between the Exact and Poisson 
methods. The exact confidence intervals with 
the PPR (P) and IQI09 (I) distributions differ 
slightly, possibly due to the difference in the 
skewness of these two distributions. If one 
wants to use the Poisson method and be within 
1% of the exact confidence limit, Figure 8 

shows that in the K=4 case and the MPM3 distribution, the sample size must be more than 3,000.  When N=1000, 
which most researchers would consider high relative to K=4, one might expect the large-sample assumptions of the 
Poisson method to hold true, but with a high degree of risk diversity this expectation is not met, as seen in Figure 9.   
 

Figure 9:  Lower and upper coverage probability of Poisson method, Method 4N with MPM3 and N=1000. 
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As expected, when the risk diversity is high as with the MPM3 risk distribution, the Poisson method yields wider 
confidence intervals with upper and lower coverage probability above the target value of 0.975. 
 
EVALUATION OF METHOD 4: FIXED-WIDTH NORMAL 

This method has a “bad news / good news” story to it.  First the bad news.  With this method, a symmetrical 
confidence interval is calculated based on the expected probabilities, and it is rigidly shifted up or down to center on 
the observed number of events.  It does not fit the standard theoretical definition of a confidence interval mentioned in 
Section 1.  One problem is that the confidence intervals are symmetrical, which does not conform to the asymmetrical 
distribution of probabilities confined to the 0 to 1 interval.  The most obvious problem is that it can sometimes produce 
impossible confidence limits outside the 0 to 1 interval.  Truncation is required to provide cosmetic improvement, 
using statements like the following: 
 IF LIMIT < 0 THEN LIMIT = 0;   

 
Now for the good news.  We return to the topic of hospital classification, in which the goal is to classify hospitals as 
“average”, “below average” or “above average.  If the only consideration is the use of the confidence interval in 
classifying a hospital, all that matters is whether the confidence interval for the O/E ratio contains 1.0, or equivalently, 
whether the confidence interval around the observed contains the expected number of events.  As it turns out, the 
one and only situation where this confidence interval method gives a valid confidence limit is when the true underlying 
rate is equal to the expected rate.  In that situation, the shifted probabilities used in Methods 1 and 2 would be have a 
shift of zero, and would be exactly where they started, equal to the unshifted probabilities used in Method 4.  So for 
the purposes of classification, this method is reasonable (exactly the same as Method 2, which has minor 
deficiencies).  When a hospital is classified as significantly below average, the lower confidence limit might get 
truncated, but the upper limit, which determines the classification, is approximately correct.    
 
Looking more closely at the “bad news”, there are damages at the other end of the confidence intervals, away from 
the expected rate.  Using Method 4N, we examined the specific case of K=7, with N=300 and the MPM3 risk 
distribution, in both the K<E and E<K situation.  In the K<E case, by searching we found that when the expected 
number of events is precisely 13.29, the Method 4N normal confidence interval is [0.71 – 13.29], putting the hospital 
just on the edge between “average” and “below average.  To assess the inaccuracy of the lower limit of 0.71, we 
adjusted the probability level of the exact confidence interval (Method 1N) to give the same lower limit. The probability 
level had to be increased to 99.9999%.   In the E<K case, when the expected number of events is 3.68 the Method 
4N confidence interval is 3.68 – 10.32, which is on the edge between “average” and “above average”.  The probability 
level of the exact confidence interval had to be lowered to 75% to give the same upper limit.   Without extensive 
testing, it appears that this method is intended only for the purpose of comparing observed to expected rates. 

DISCUSSION 
 
The lack of good statistical methods for confidence intervals for risk-adjusted rates has resulted in difficult trade-offs 
and compromises, which may be having a widespread impact on the world of hospital performance evaluation.  
Selecting the normal distribution method using the expected probabilities (Method 4N) achieves the need for good 
classification of hospital performance, but at the expense of any other uses of the confidence intervals, such as to 
compare hospitals to a benchmark performance goal rather than to an expected rate.  The Poisson method avoids 
the problems of symmetry and truncation, but makes no use of the information contained in the individual 
probabilities, producing wider confidence intervals which may misclassify the performance of some outlier hospitals 
as inliers, especially when there is high diversity of risk.  In addition to the situations already discussed, the author 
has found that invalid confidence limits greater than 100% are sometimes produced (then truncated, of course) by the 
publicly available macro which summarizes the CAHPS hospital surveys.  These are only the situations of which this 
author is aware.  Clearly there is Trouble in River City. 
 

The first step in the right direction would be to explore the SAS
®

 macros included with this paper, which are easy to 

use and written to behave like a SAS
®

 procedure. See “Access to Macros” section.  These macros are currently in 

use by the California Office of Statewide Health Planning and Development (OSHPD).   
 

Looking down the road, in the real world of the management of SAS
®

 programs, convenience and institutional 

support from SAS Institute count for a lot.  A huge advance in spreading the use of these methods would happen if 

they were made available in a SAS
®

 procedure.  SAS
®

 already has a very close match in Proc Freq, which produces 

Clopper-Pearson confidence intervals, and has a WEIGHT statement.  A single option could be added to cause the 
weights to be interpreted as probabilities, implementing the “generalized binomial” distribution.   More widely 
applicable, the data step language needs a searching feature, such as a “SEARCHING” keyword on the DO 
statement with UNTIL. 
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CONCLUSION 
 
There is clearly a need for improved statistical methods for calculating confidence intervals for risk-adjusted rates.  
Commonly used methods produce problematic confidence intervals.  Users of statistical methodology no longer have 
to choose which type of problem to accept, or worry about whether sample sizes are adequate or distributional 
assumptions are valid.  The exact calculation based on the generalized binomial distribution avoids these potential 
pitfalls.  The evaluation of hospital performance using confidence intervals for risk-adjusted rates would be 
significantly improved through the use of the exact confidence interval method.  

ACCESS TO MACROS 
 
The macros are packaged in EXACTCI_Macros.zip, downloadable from the SAS Community web site. Go to 
http://www.sascommunity.org/wiki/Special:ListFiles.  Search for media name “exactci”, click on EXACTCI_Macros.zip 
in the list which appears, then click on EXACTCI_Macros.zip at the top of the page to download.   The documentation 
section of each macro contains instructions for use.  The search capability on the main page of sascommunity.org 
may also work.  If these sources do not work, feel free to contact the author for the macros. 
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