EE319K Lab Demo Page 1

Demo Day Activities

1) Download the first example from internet (you can try the other two later) There are some simple examples to begin with

- 1) This example is a squarewave output on PP7, with the time delay implemented as a loop. http://users.ece.utexas.edu/~valvano/Starterfiles/Simple_DP512asm.zip (if DP512) http://users.ece.utexas.edu/~valvano/Starterfiles/Simple_DG128asm.zip (if DG128)
- 2) This example is a not gate, with PT7 input, PP7 output http://users.ece.utexas.edu/~valvano/Starterfiles/NotGate_DG128asm.zip
- 3) This example implementing a squarewave, with the TCNT timer delay http://users.ece.utexas.edu/~valvano/Starterfiles/Square_DG128asm.zip
- 2) Cut out sheet of paper
- 3) Plug board into protoboard, lining the paper up with the pins (see pins 1,25,26,50)
- 4) Connect RS232 cable between the 9S12 and the PC (this is COM1 in ACA1.106)
- 5) Switch in LOAD mode

6) Power applied to 9S12 (notice the polarized power plug)

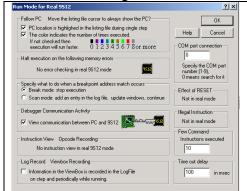
- 7) Start TExaS
- 8) Open the file **SimpleDG128.UC** (if DP512 use **SimpleDP512.UC**)
- 9) Place the system in *Simulation* mode, assemble, and run. Observe the Scope and IO.
- 10) Place the system in *Real 9S12* mode. Is your board connected? The IO and Scope windows can be closed or hidden; they are not needs in *Real 9S12* mode
- 11) Assemble the program, notice that it also downloads code to 9S12DG128
- 12) Run the program and notice the lights flash (click on the UC window and type **F5** to update)
- 13) Experiment with single stepping features

Reset

Single step until Register Y decrements twice

Notice that BreakMode is selected in the Mode menu

In the list file, first left click on the eora instruction, then right click RuntoCursor


This **Delay** subroutine takes over 150,000 instructions to execute, so it will not be appropriate to use **StepOver** or **StepOut** commands for this example. However, for most subroutines, the **StepOver** command will single step through, executing the entire subroutine. The **StepOut** command can be used once a subroutine is started to single step through the remaining instructions of the subroutine. (**StepOut** actually executes until the SP gets bigger).

EE319K Lab Demo Page 2

14) Explain the **Mode->RunMode...** settings

Click **Mode** menu, roll mouse over **RunMode**... command and type **F1**

Click the green Real 9S12 link in the first line

- COM port defines the serial port on the PC COM=0 will search all COM ports for a 9S12 In ACA1.106, COM=0 or COM=1 can be used Some USB to serial links use COM=3
- PC location is highlighted and colored Highlighting is good for single step
- Breakpoint/Scanpoint mode selection
- View communication shows low-level messages
- Few Command is F11
- Time out delay should be 100 msec

15) Experiment with *Breakpoints*

Reset (Recall that **BreakMode** is selected in the **Mode** menu)

In the list file, first left click on the eora instruction, then right click BreakatCursor

Run and observe the program halts at or near the eora instruction

16) Experiment with Scanpoints

Reset (Recall that **Breakpoint** is set at the **eora** instruction)

Execute **Mode->BreakMode** and deselect **BreakMode** (this is *Scanpoint* mode)

Run and observe the program dumps the ViewBox at or near the eora instruction

17) Experiment with Screen Update Mode

Reset

Remove the breakpoints (click RemoveAll in the Break/Scan box)

Execute Mode->ScreenUpdatePeriod and select 1 second updates

Run and observe the program dumps the ViewBox every 1 second

To run in embedded mode

- 0) Disconnect power to the 9S12DG128 board
- 1) Disconnect the serial cable because it is not needed
- 2) Set the Run/Load switch to Run mode,
- 3) Apply power to the 9S12DG128 board

The 9S12DG128 runs at 8 MHz if you do not modify the PLL.

You can adjust the E clock rate by configuring the PLL.

Things you can do with the power on

Hit the reset button

Move the Run/Load switch

Touch/release buttons on the board or protoboard

Connect/disconnect voltmeter to system

Plug and unplug the RS232 cable

Things you should not do with the power on (the \$100 learning experience)

Plug/unplug the board into/from the protoboard

Connect/disconnect cables to external devices

Insert/remove wires resistors or chips from the protoboard

Touch bare wires or pins with your fingers