
16 The Open Artificial Intelligence Journal, 2009, 3, 16-26

 1874-0618/09 2009 Bentham Open

Open Access

Metaheuristic Algorithms for Task Assignment in Distributed Computing
Systems: A Comparative and Integrative Approach

Peng-Yeng Yin
*
, Benjamin B.M. Shao, Yung-Pin Cheng and Chung-Chao Yeh

Department of Information Management, National Chi Nan University, 303 University Rd., Puli, Nantou 545, Taiwan

Abstract: We consider the assignment of program tasks to processors in distributed computing systems such that system

cost is minimized and resource constraints are satisfied. Several formulations for this task assignment problem (TAP)

have been proposed in the literature. Most of these TAP formulations, however, are NP-complete and thus finding exact

solutions is computationally intractable. Recently, some approximation methods like simulated annealing have been pro-

posed, and simulation results exhibited the potential to solve the TAP using metaheuristics. In order to better understand

the strengths and weaknesses of various metaheuristics applied to the TAP, we first propose two alternative metaheuris-

tics—one using genetic algorithm and the other reinforcement learning algorithm—as well as their implementation de-

tails. Extensive computational evidences of the two heuristic algorithms against that of simulated annealing are presented,

compared and discussed. Based on these experimental results, a hybrid strategy employing both metaheuristics is then

proposed in order to solve the TAP more effectively and efficiently.

Keywords: Computer, heuristic algorithms, task assignment problem, distributed systems, genetic algorithms, reinforcement

learning, simulated annealing.

1. INTRODUCTION

 A distributed computing system is defined as a collection

of computers interconnected by a telecommunication net-

work that attempts to disperse the data processing function

and fits the needs of modern decentralized organization

structures. Besides the capability of implementing a logically

integrated information system for geographically dispersed

corporations, distributed computing systems provide other

benefits, such as quick access to data, higher system reliabil-

ity, and ease of incremental growth [1].

 On the other hand, efficient utilization of resources in

distributed computing systems is also important [2]. In dis-

tributed computing systems, it is characteristically difficult

to assign the tasks of a program application to distributed

processors such that a certain measure of system costs is

minimized and system resources are effectively utilized.

Several formulations of this task assignment problem (TAP)

have been proposed in the literature to cope with various

types of system costs and environmental constraints. In gen-

eral, the TAP is NP-complete and finding exact solutions is

computationally prohibitive [3].

 In addressing this intractability issue, previous endeavors

of TAP research can be classified into three areas. First, ex-

act mathematical programming approaches using column

generation [4] and branch-and-bound [5-6] have been pro-

posed. Second, efficient algorithms have been developed for

solving TAP on special computer architectures, such as lin-

ear processor array, meshed processor graph, and partial k-tree

*Address correspondence to this author at the Department of Information

Management, National Chi Nan University, 303 University Rd., Puli, Nan-

tou 545, Taiwan; Tel: +886-49-2910960; Fax: +886-49-2915205;

E-mail: pyyin@ncnu.edu.tw

communication graph [7-11]. Finally, metaheuristic algo-

rithms like simulated annealing have been used to derive

good enough approximate solutions within reasonable CPU

time [12-13].

 The current study belongs to the last domain of TAP re-

search. Our primary objective is to provide a roadmap for

better utilizing metaheuristic approaches and to incorporate

multiple metaheuristics into one integrative framework for

solving TAP more effectively and efficiently. Previous stud-

ies have shown that the success of using metaheuristic algo-

rithms depends on a proper administration of exploration and

exploitation search in order to escape from local optimality

[14]. Moreover, specific execution strategies may cause the

same metaheuristic algorithm to behave differently. It is also

noted that different metaheuristics have varying computa-

tional performances for distinct applications and varied al-

lowable execution time. Therefore, a hybrid approach incor-

porating multiple metaheuristics may yield better perform-

ance than a single approach [15]. It is advisable to conduct a

thorough comparative study on these metaheuristics [16] so

as to combine their favorable features into one comprehen-

sive approach.

 In this paper, we first employ two metaheuristics-genetic

algorithm and reinforcement learning-to compare with

simulated annealing for solving the TAP. Then, by examin-

ing their computational results, a hybrid algorithm combin-

ing the two alternative metaheuristics is devised to solve the

TAP more effectively and efficiently. The remainder of this

paper is organized as follows. Section 2 formulates the TAP

to be addressed in this paper. In Section 3, two metaheuris-

tics based on genetic algorithm and reinforcement learning

are proposed individually. Section 4 then follows and pre-

sents the comparative simulation results, based on which a

Metaheuristic Algorithms for Task Assignment in Distributed Computing Systems The Open Artificial Intelligence Journal, 2009, Volume 3 17

hybrid strategy is devised to incorporate the two metaheuris-

tics. Finally, Section 5 concludes this paper.

2. PROBLEM FORMULATION

 In this study, we develop metaheuristic algorithms for

TAP that exhibits the following problem features.

• Some communication cost between two tasks is in-

curred if there is a communication need between them

and if they are executed on different processors.

• Each processor is capacitated with certain resources

(such as processing power or memory size).

• A fixed initiating cost will be incurred if the processor

is used by at least one task.

• Each task consumes some units of the resources of the

processor on which it is executed.

• The objective is to minimize the total fixed and com-

munication costs.

 Assume there are r application tasks to be assigned to n

processors in a distributed computing system. There are

communication needs among some pairs of the tasks. Let

cij be the communication cost between tasks i and j if they

are executed on different processors and sk be the fixed

cost if processor k is assigned at least one task (i.e., is initi-

ated). Task i consumes ai units of the resources from its

executing processor, and processor k has bk units of re-

sources. We define a task assignment X as a matrix of r n

binary variables xik (1 i r and 1 k n), where xik = 1 if

task i is assigned to processor k, or 0 otherwise. Further, let

yk = 1 if processor k is assigned at least one task, and yk = 0 if

no task is assigned to it. Our objective is to minimize the

sum of fixed cost for using processors and communication

cost incurred by a task assignment that satisfies the resource

constraints. The task assignment problem (TAP) can be for-

mulated as the following 0-1 quadratic integer programming

problem.

Minimize COST(X) = sk yk

k=1

n

+ cij 1 xik x jk

k=1

n

j=i+1

r

i=1

r 1

, (1)

subject to xik = 1
k=1

n

, i = 1, 2, …, r (2)

ai xik bk yk

i=1

r

 k = 1, 2, …, n (3)

xik ryk

i=1

r

 k = 1, 2, …, n (4)

xik 0,1{ } , yk 0,1{ } i, k

 The first and second terms in the objective function (1)

represent the total fixed cost and communication cost, re-

spectively, incurred by the assignment X. Constraint (2)

states that each task should be assigned to exactly one proc-

essor. Constraint (3) ensures that the resource capacity of

each processor is greater than or equal to the total amount of

resources used by its assigned tasks, and constraint (4) guar-

antees that a processor is used if it is assigned at least one

task.

 It has to be pointed out that the (TAP) formulation con-

sidered above is related to the assignment-type problem

(ATP) which determines an assignment of some items

(tasks) to some resources (processors) so as to optimize an

objective function and satisfy side constraints [17-18]. What

separates TAP from other ATP instances, especially the

classic and general assignment problems, is the quadratic

objective function. This quadratic functional form due to

communication needs between tasks makes the problem

more complex and worth further examination.

 Since this (TAP) formulation is a 0-1 integer program

with a quadratic objective function and it is computationally

prohibitive, its transformations to linear programs have been

developed where approximate solutions are reported within

reasonable computational time [4-5]. On the other hand, an

alternative for solving TAP efficiently is to use metaheuris-

tics. In the next section, we will conduct a comparative study

of several metaheuristic algorithms and devise a hybrid

strategy to combine their favorable features.

3. TWO METAHEURISTIC ALGORITHMS FOR TAP

 The searching methods using metaheuristics can be clas-

sified into two classes, perturbation methods and construc-

tive methods. The perturbation methods start with a full

specification of a solution and then iteratively move to a

neighboring solution by perturbing part of the specification.

Some typical methods of this sort are simulated annealing

[19] and tabu search [20]. Genetic algorithm performs in a

similar manner but it fosters a set of candidate solutions

rather than a singleton [21]. On the other hand, the construc-

tive methods start with a partial specification of a solution

and then search for the next most probable segments to build

a full specification. Usually a network for selecting the solu-

tion segments is trained and the experience regarding the

merit of choosing a segment is converted to a transition

probability pertaining to the corresponding edge. Some typi-

cal methods of this kind are artificial neural networks [22],

ant colony optimization [23], and reinforcement learning

[24].

 In order to understand the relative strengths and weak-

nesses of different metaheuristics for solving the TAP, we

adopt separate algorithms from each category, namely ge-

netic algorithm from the perturbation group and reinforce-

ment learning algorithm from the constructive group.

3.1. Genetic Algorithms

 Genetic algorithms (GAs) are metaheuristic algorithms

based on natural genetic systems [21]. Each candidate solu-

tion to the underlying problem is represented by a binary

string, called a chromosome, using a problem-specific cod-

ing scheme. The merit of individual string is evaluated

through a fitness function that properly fits the optimization

goal of the problem [25]. GAs search for a near-optimal so-

lution by fostering a population of strings using three genetic

operators: selection, crossover, and mutation. The evolution

18 The Open Artificial Intelligence Journal, 2009, Volume 3 Yin et al.

process is iterated until the fitness of strings can be hardly

improved or until a pre-specified number of generations is

reached. We next present the principal GA features for the

TAP.

3.1.1. Coding Scheme and Fitness Function

 Each assignment corresponding to a candidate solution of

the TAP can be encoded into a string as

A = 1 2 r , (5)

where i [1, n] represents the index of the processor to

which task i is assigned. Note that index character i can be

encoded in binary with log2 n bits. String A can be eas-

ily transformed to a corresponding assignment X (see Eq.

(1)) of r tasks to n processors; however, this assignment may

violate constraints (2)-(4). The fitness of string A, in a sense,

is inversely proportional to the sum of the incurred cost and

the capacity-exceeded amount of resource requirement.

Thus, we define the fitness function as

f(A) = K - (COST(A) + E(A)), (6)

where K is a constant, COST(A) is the total fixed and com-

munication costs (see Eq. (1)) incurred by the assignment

corresponding to A, and E(A) is a possible excess of resource

requirement over the capacity determined by

E(A) = max ai xik bk yk

i=1

r

, 0
k=1

n

. (7)

 The larger the value of E(A), the less feasible the as-

signment A under consideration. When E(A) = 0, it indicates

that there is no violation of the resource-capacity constraints.

Essentially, E(A) is used as a penalty function measuring the

infeasibility of a candidate solution and is incorporated into

the optimization goal of our problem.

3.1.2. Genetic Operators

 A population of strings according to the coding scheme

(5) is generated at random. This population then repeatedly

evolves to subsequent populations using the following three

genetic operators.

• Selection. This operator selects strings with high fit-

ness values to form the next population mimicking

the natural selection of the fittest [26]. Each string of

the current population is selected with a probability

proportional to its fitness, i.e., Selecti =

f (Ai) f (A j)j=1

P

, where Selecti is the selection

probability of string Ai and P is the population size.

• Crossover. This operator randomly selects pairs of

strings within the current population. For each pair of

parent strings, a crossover position is randomly de-

termined. Two offspring strings are produced by

swapping the bits to the right hand position of the

crossover site of both parent strings. The crossover

operator is conducted with a crossover probability pc

whose value is usually drawn from the range of [0.6,

1.0]. With this crossover operation, the solution space

is explored by interchanging information between

strings. Since the highly fit strings occupy a large

proportion of the population, they are likely to expe-

rience more trials of crossover operations and the

search is navigated toward “good” regions of the so-

lution space.

• Mutation. Each gene of a string may undergo mutation

with a low probability pm. Note that we perform the

mutation operator on character scale instead of binary

bit. This operator substitutes a new value for a ran-

dom character to be mutated. Mutation preserves suf-

ficient diversity between strings in the population and

prevents the undesirable premature convergence. It

also guarantees a non-zero probability of the search

for any feasible string.

3.2. Reinforcement Learning

 The reinforcement learning approach addresses the issue

of how a simple agent can learn a complicated task through a

sequence of trial-and-error interactions with its environment

[24]. The agent examines the current state of its environment

and makes a decision of choosing an action to perform. The

state of the environment is, therefore, triggered by the

agent’s action and changed to another state. The agent ob-

serves the new state and receives an immediate reward re-

garding the desirability about the state transition. The proc-

ess is repeated and the agent learns an optimal policy of

choosing an action in a given state that maximizes the ex-

pected sum of the cumulative rewards received over time.

 The optimal assignment of the TAP can be learned by a

reinforcement learning algorithm. Fig. (1) depicts the rela-

tionship between tasks and processors. The directed graph

consists of r + 2 layers of nodes. The first layer and the last

layer contain only one node, which represent the starting

node and the sinking node, respectively. The remaining r

layers represent the possible assignments of the r tasks. Each

of these layers contains n nodes and each of the n nodes cor-

responds to the assignment of this task to a specific proces-

sor. A path emanating from the starting node and terminating

at the sinking node represents one possible assignment of the

r tasks. Next, we describe the features of the reinforcement

learning algorithm for the TAP.

• The set of environment states,

S = s0 , s f{ } si, j{ }
1 i r ,1 j n

. Elements 0s and fs

are the initial state and the final state corresponding to

the starting node and the sinking node, respectively,

and jis , indicates the state that task i is assigned to

processor j.

• The set of agent actions, A = ai{ }
1 i n

. Selecting ac-

tion ai to perform means assigning the next task to

processor i.

• The set of scalar rewards, R. The reward value is

computed by the reward function discussed below.

Metaheuristic Algorithms for Task Assignment in Distributed Computing Systems The Open Artificial Intelligence Journal, 2009, Volume 3 19

• The state transition function, (si, j , ak) = si+1,k . This is

apparent from the definitions of S and A.

• The reward function,

 (si, j , ak) = (bt xwtaw

w=1

i+1

)
t=1

n

zk + cw,i+1 1 xwt xi+1,t

t=1

n

w=1

i

 (8)

• where zk = sk if processor k is not used until the (i+1)
th

task is assigned to it; otherwise zk = 0. As such, we

measure the merit of assigning the (i+1)
th

 task to

processor k as the remaining resource capacity di-

vided by the extra system costs incurred by the as-

signment of the (i+1)
th

 task. We design the reward

function to favor the assignment of the next task that

both maximizes the remaining resource capacity (for

later use) and incurs the least system cost (for opti-

mization objective).

 To learn the optimal assignment of the TAP, we employ

the Q-learning algorithm [24], which has been one of the

most commonly used methods for learning the optimal pol-

icy for reinforcement learning. First, we define the Q func-

tion, Q(si, j , ak) , as the maximum cumulative reward which

can be attained by performing action ak in state si, j and

then proceeding optimally until the final state s f is ob-

served. The recursive definition of Q(si, j , ak) is given by

Q(si, j , ak) = (si, j , ak) + max
al

Q(si+1,k , al) , (9)

where (0, 1) is the discounting factor that determines

the relative value of the rewards received in the future. The

agent then initializes a table of the estimate, Q̂(si, j , ak) , of

the Q function for each possible state-action pair (si, j , ak) .

The initial value of Q̂(si, j , ak) can be any small constant.

For simplicity, we initialize each entry of Q̂(si, j , ak) as 1.

These table entries are iteratively updated by

Q̂(si, j , ak) = (si, j , ak) + max
al

Q̂(si+1,k , al) (10)

 In other words, the value of the generic Q(si, j , ak) can

be incrementally approximated by Q̂(si, j , ak) . The

Q-learning algorithm for the TAP is summarized in Table 1.

The algorithm is repeated for a pre-specified maximum

number of iterations. Then the r sequential actions chosen by

the learned optimal policy constitute the near-optimal as-

signment. There still remains an issue of how to choose the

action in a given state (see Step 4 in Table 1). Obviously, if

every action can be visited infinitely often, the policy learned

will converge to the optimal task assignment. However, in

real-world applications where the computation time is lim-

ited, it is crucial to design an appropriate action selection

rule which instructs the agent to experience the minimal

number of actions that still explore the policy space suffi-

ciently.

 Let the agent be in state si, j and face the choice among

a set of available actions ak{ }
1 k n

. We propose a thresh-

olded maximum-exploitation action selection rule to deter-

mine the probability of choosing action ka as follows.

p(ak si, j) =
1

0

1

n

, if q < q0 and k = arg max
l

Q̂(si, j , al);

, if q < q0 and k arg max
l

Q̂(si, j , al);

, otherwise,

 (11)

where q is a random number drawn from U(0, 1), and

q0 (0, 1) is the threshold controlling the relative emphasis

on each sub-rule. The tie with p(ak si, j) is broken at ran-

dom. This rule facilitates the controlled tradeoff between the

selection of the action that delivers the maximum estimate of

Q̂ and a uniform random selection. It has been empirically

shown that the thresholded maximum-exploitation action

selection rule outperforms several other competing rules

[27].

Fig. (1). The graph representation of the TAP as a reinforcement learning network.

action 1

…
.

…
.

…
.

….
start sink

task 1 task 2 task r

processor 1

processor 2

processor n

processor 1

processor 2

processor n

action n

action 2

action 1

action n

action 2

action 1

action n

action 2

action n action n

20 The Open Artificial Intelligence Journal, 2009, Volume 3 Yin et al.

4. SIMULATION RESULTS

 In this section, we present the performance evaluations

obtained using the competing metaheuristics. Three algo-

rithms, namely simulated annealing (SA), genetic algorithm

(GA), and Q-learning algorithm (QA), were implemented in

C++ language and executed on a 1.8GHz PC with 192MB

RAM. The parameters used in these algorithms are tuned

empirically. To be specific, the parameter setting used by SA

is (initial temperature = 500, length of Markov chain = 1200,

temperature decreasing rate = 0.85, chain increasing rate =

1.1), GA (population size = 100, crossover rate = 0.9, muta-

tion rate = 0.03), and QA (action selection threshold = 0.3).

 The inter-task communication is rendered by a task in-

teraction graph (TIG), G V , E() , where V is a set of r nodes

and E is a set of edges connecting these nodes. Each node

represents a task and each edge specifies the communication

requirement between its two connecting tasks. Fig. (2) gives

an example of TIG where the communication requirement

among four tasks is specified. We define the task interaction

density d of G V , E() as

d =
E

V (V 1) 2
, (12)

where V and E denote the number of elements in the

corresponding set.

Fig. (2). An example of TIG.

 The testing dataset is generated according to different

problem characteristics, namely the r/n ratio and density d.

We set the value of n equivalent to 6, 10, 20, and 30, respec-

tively, and compute the value of r accordingly so that the r/n

ratio is equal to 1.5, 2, and 3. For each (r, n) pair, we gener-

ate three different TIGs with density d equivalent to 0.3, 0.5,

and 0.8. As such, we obtain a testing dataset of 36 problem

instances available from [28] for evaluating the performance

of the competing methods. The other parameters are gener-

ated randomly: the fixed cost is between 1 and 200, the

communication cost is between 1 and 50, the resource capac-

ity of each processor varies from 50 to 250, and the resource

requirement of each task ranges from 1 to 50.

 We analyze both off-line and on-line performances. The

off-line performance is measured as the average cost ob-

tained when the testing algorithm has run for a specified pe-

riod of CPU time. This is a common practice that many pre-

vious studies have adopted. However, this measure alone can

be inadequate for analyzing the strengths and weaknesses of

metaheuristic algorithms because different algorithms may

exhibit different performance levels as CPU duration time

varies. Thus, we also measure the on-line performance as the

dynamic costs to allow for varied CPU elapse time.

4.1. Off-Line Performance

 We conduct two experiments as follows. In the first ex-

periment, all algorithms are given equally short CPU time

periods to derive the solutions, while in the second experi-

ment the allowed CPU time durations are relatively longer.

As for the short CPU time periods, they are 10, 50, 100, and

200 seconds for various numbers of processors. And for the

long CPU time periods, they are 100, 500, 1000, and 2000

seconds. Since all algorithms are probabilistic and each in-

dependent run of the same algorithm on a particular testing

problem may yield a different result, we calculate the aver-

age cost over 10 independent runs of each algorithm for

every problem instance.

• Performance with Short CPU Elapse Time

 Table 2 tabulates the average costs obtained using the

three metaheuristic algorithms given the short CPU time

Table 1. The Q-Learning Algorithm for the TAP

Step 1 Initialize the table entry Q̂(si, j , ak) = 1 for each i, j, k.

Step 2 Set Iteration = 1.

Step 3 Start with the initial state s0 .

Step 4 Select an action according to the action selection rule.

Step 5 Update the table entry Q̂(si, j , ak) using Eq. (10).

Step 6 If the final state s f is not yet reached, goto Step 4.

Step 7 If Iteration < MAX_ITERATION //stopping criterion is not yet satisfied//

 Set Iteration = Iteration + 1, and goto Step 3.

Step 8 Start from the initial state s0 , output the sequence of actions which result in the maximum Q̂ values until the final state s f is reached.

task 2 task 4

task 3

Metaheuristic Algorithms for Task Assignment in Distributed Computing Systems The Open Artificial Intelligence Journal, 2009, Volume 3 21

periods. It is observed that QA is better than or equal to the

other two algorithms by obtaining the minimal cost for 30

instances. For the other six instances, SA produces the

minimal cost. To compare the results with absolute per-

Table 2. The Average Costs and Offsets Obtained Using the Three Metaheuristics, Namely the Simulated Annealing (SA), Genetic

Algorithm (GA), and Q-Learning Algorithm (QA), Given a Short CPU Elapse Time

SA GA QA

r n d
Cost Offset% Cost Offset% Cost Offset%

CPU Time

9 6 0.3 372 0.00% 372 0.00% 372 0.00%

 0.5 482 0.00% 482 0.00% 482 0.00%

 0.8 419 0.00% 419 0.00% 419 0.00%

12 6 0.3 805 0.00% 805 0.00% 805 0.00%

 0.5 968 0.00% 970 0.21% 968 0.00% 10 seconds

 0.8 995 0.60% 1004 1.49% 989 0.00%

18 6 0.3 1257 0.00% 1257 0.00% 1257 0.00%

 0.5 2256 1.15% 2258 1.24% 2230 0.00%

 0.8 3032 0.59% 3016 0.07% 3014 0.00%

15 10 0.3 970 1.55% 966 1.14% 955 0.00%

 0.5 1546 4.72% 1528 3.60% 1473 0.00%

 0.8 1961 0.00% 1973 0.61% 1961 0.00%

20 10 0.3 1785 1.23% 1878 6.12% 1763 0.00%

 0.5 2777 1.69% 2797 2.40% 2730 0.00% 50 seconds

 0.8 4927 2.07% 4853 0.58% 4825 0.00%

30 10 0.3 4377 5.32% 4283 3.25% 4144 0.00%

 0.5 7382 1.37% 7332 0.70% 7281 0.00%

 0.8 14658 3.87% 14131 0.28% 14091 0.00%

30 20 0.3 4972 2.84% 4908 1.57% 4831 0.00%

 0.5 8392 1.63% 8312 0.69% 8255 0.00%

 0.8 12332 1.79% 12269 1.29% 12111 0.00%

40 20 0.3 8633 1.97% 8548 0.99% 8463 0.00%

 0.5 14817 2.44% 14629 1.19% 14455 0.00% 100 seconds

 0.8 23607 0.00% 23824 0.91% 23608 0.00%

60 20 0.3 20533 0.00% 20686 0.74% 20664 0.63%

 0.5 33818 0.00% 34357 1.57% 34108 0.85%

 0.8 58651 2.13% 57799 0.69% 57403 0.00%

45 30 0.3 11431 2.18% 11223 0.37% 11182 0.00%

 0.5 21358 0.58% 21412 0.83% 21235 0.00%

 0.8 30914 0.00% 31619 2.23% 31433 1.65%

60 30 0.3 20073 0.77% 19968 0.25% 19919 0.00%

 0.5 37301 0.00% 37800 1.32% 37443 0.38% 200 seconds

 0.8 59508 0.00% 60067 0.93% 59958 0.75%

90 30 0.3 50975 0.00% 51312 0.66% 51010 0.07%

 0.5 89305 1.27% 89629 1.63% 88169 0.00%

 0.8 146589 1.42% 144928 0.29% 144503 0.00%

Average offset 1.20% 1.11% 0.12%

22 The Open Artificial Intelligence Journal, 2009, Volume 3 Yin et al.

formance, we adopt [4] to transform the quadratic objective

function (1) into an integer linear program and use the Lingo

package to compute the exact solution. The maximum al-

lowed CPU time for solving an instance by Lingo is set to

one day. Table 3 presents the derived minimum costs and the

CPU time used by the package. When Lingo fails to solve

the integer linear program within one day, it is terminated

with infeasible solution or unknown status and we discard

such cases for further comparison. It can be seen that as the

problem size increases, it becomes too time consuming for

Lingo to compute exact solutions due to the enormous com-

putations required. For those testing instances where exact

solutions are available, QA is shown to have much closer

approximate results, while SA and GA deviate significantly

from the exact solutions.

 To provide a clearer view on the comparative perform-

ances among the competing methods, the cost offset (defined

as the difference to the minimal cost of the three algorithms

divided by the corresponding cost) is also calculated and

listed in Table 2. We observe that the cost offset ranges from

0% to 5.32% for SA, 0% to 6.12% for GA, and 0% to 1.65%

for QA. The average cost offsets over all the instances are

1.20%, 1.11%, and 0.12% for SA, GA, and QA, respectively.

• Performance with Long CPU Elapse Time

 The experimental result with long CPU elapse time is

displayed in Table 4. We observe that GA attains the mini-

mal cost in all cases, QA reports moderate results, and SA

exhibits the worst performance. The offset to the minimal

cost of GA varies from 0% to 2.64% for QA, and 0% to

4.94% for SA. The average cost offset is 0.51% for QA and

1.66% for SA.

 We observe from the above experiments that the com-

parative performances between the three metaheuristics with

long CPU elapse time are inconsistent with those with short

CPU time duration. Hence, we cannot conclude that any par-

ticular algorithm is superior to the others. A more sophisti-

cated performance evaluation is thus required.

4.2. On-Line Performance

 Since the performance levels of the competing algorithms

vary as the CPU elapse time increases, we also analyze the

on-line performance which is the cost offset with respect to

the varied lengths of CPU time duration. Fig. (3) illustrates a

typical run in our experiment. It is observed that QA has the

minimal cost offset when the length of CPU time duration is

short (less than 668 seconds) in this particular run, while GA

replaces QA as the best approach when the CPU duration

becomes long enough. However, the time point at which GA

and QA exchange their roles as the best approach is

case-dependent, i.e., for some instances, GA may converge

faster to the minimal cost, but for others GA would need

more explorative search before it generates a better solution.

SA, however, is consistently the least effective among the

three; its cost offset ranges from 0.97% to 3.49%.

4.3. A Hybrid Strategy

 It has been successfully shown in many previous studies

that a hybrid version combining multiple metaheuristics can

improve the performance over a single approach [15, 29-30].

It is also advised that exploration search should be empha-

sized in the early stage of the evolution for finding good re-

gions in the solution space. As the evolution proceeds, ex-

ploitation search can be focused to further improve the can-

didate solutions. From the experimental results given in pre-

vious sections, it manifests that GA has focused on explora-

tion search and can deliver high quality solutions if enough

CPU time is used, while QA intensifies the exploitation

search and usually gets to a good solution consuming only a

short CPU time period. We thus devise a hybrid method

(HYB) to incorporate GA and QA, which are the best ap-

proaches based on our empirical results presented in previ-

ous sections. The hybrid method consists of two main stages.

In the first stage, GA is applied for exploring the solution

space until it cannot further improve the solution for a period

of time that is equivalent to one fifth of the total allowed

CPU elapse time. Upon the termination of GA, all candidate

Table 3. The Minimum Costs Obtained Using the Lingo Package and the Used CPU Time

r n d Minimum Cost CPU Time

9 6 0.3 372 36 sec

 0.5 471 1 min 14 sec

 0.8 399 1 min 37 sec

12 6 0.3 769 5 min 16 sec

 0.5 925 18 min 52 sec

 0.8 954 23 min 18 sec

18 6 0.3 1164 30 min 56 sec

 0.5 2220 7 hr 22 min 56 sec

 0.8 2859 8 hr 38 min 10 sec

15 10 0.3 941 1 hr 52 min 32 sec

 0.5 1414 22 hr 15 min 53 sec

 others unknown 1 day

Metaheuristic Algorithms for Task Assignment in Distributed Computing Systems The Open Artificial Intelligence Journal, 2009, Volume 3 23

solutions in the last population and the best solution obtained

up to that point are sorted in the increasing order of their

costs. The top 5% of the sorted solutions are then used to

train the Q-learning network to derive the initial Q value

Table 4. The Average Costs and Offsets Obtained Using the Three Metaheuristics, Namely the Simulated Annealing (SA), Genetic

Algorithm (GA), and Q-Learning Algorithm (QA), Given a Long CPU Elapse Time

 SA GA QA
r n d

Cost Offset% Cost Offset% Cost Offset%
CPU Time

9 6 0.3 372 0.00% 372 0.00% 372 0.00%

 0.5 482 0.00% 482 0.00% 482 0.00%

 0.8 419 0.00% 419 0.00% 419 0.00%

12 6 0.3 805 0.00% 805 0.00% 805 0.00%

 0.5 969 0.10% 968 0.00% 968 0.00% 100 seconds

 0.8 989 0.00% 989 0.00% 989 0.00%

18 6 0.3 1257 0.00% 1257 0.00% 1257 0.00%

 0.5 2230 0.00% 2230 0.00% 2230 0.00%

 0.8 2992 0.00% 2992 0.00% 2992 0.00%

15 10 0.3 957 0.21% 955 0.00% 955 0.00%

 0.5 1494 1.41% 1473 0.00% 1473 0.00%

 0.8 1969 0.41% 1961 0.00% 1961 0.00%

20 10 0.3 1768 0.28% 1763 0.00% 1763 0.00%

 0.5 2772 1.52% 2730 0.00% 2730 0.00% 500 seconds

 0.8 4926 2.05% 4825 0.00% 4825 0.00%

30 10 0.3 4262 2.86% 4140 0.00% 4140 0.00%

 0.5 7419 3.61% 7151 0.00% 7225 1.02%

 0.8 14509 4.45% 13864 0.00% 13958 0.67%

30 20 0.3 4995 3.82% 4804 0.00% 4804 0.00%

 0.5 8424 3.16% 8158 0.00% 8180 0.27%

 0.8 12426 4.94% 11812 0.00% 11973 1.34%

40 20 0.3 8545 2.19% 8358 0.00% 8362 0.05%

 0.5 14582 4.31% 13953 0.00% 14248 2.07% 1000 seconds

 0.8 23628 2.35% 23073 0.00% 23454 1.62%

60 20 0.3 20467 1.81% 20096 0.00% 20559 2.25%

 0.5 33980 1.97% 33309 0.00% 33820 1.51%

 0.8 58806 2.91% 57092 0.00% 57227 0.24%

45 30 0.3 11290 2.33% 11027 0.00% 11068 0.37%

 0.5 21277 1.29% 21003 0.00% 21137 0.63%

 0.8 31340 3.32% 30299 0.00% 31120 2.64%

60 30 0.3 19951 1.12% 19727 0.00% 19790 0.32%

 0.5 37224 0.96% 36868 0.00% 37165 0.80% 2000 seconds

 0.8 59334 1.88% 58217 0.00% 58671 0.77%

90 30 0.3 50964 1.55% 50173 0.00% 50991 1.60%

 0.5 89202 1.30% 88044 0.00% 88081 0.04%

 0.8 146430 1.65% 144017 0.00% 144072 0.04%

Average offset 1.66% 0.00% 0.51%

24 The Open Artificial Intelligence Journal, 2009, Volume 3 Yin et al.

estimates. The training process is also performed using the

Q-learning algorithm presented in Table 1 except that in Step

4 the algorithm assigns the next task according to the train-

ing solution that is fed into the network. In the second stage,

QA is applied using the remaining CPU elapse time to report

the final best solution when it terminates. The proposed hy-

brid method takes advantage of the exploration power of GA

to derive better initial Q value estimates, and provides diver-

sification of candidate global best solutions to prevent get-

ting trapped in local minima. Then the intensification power

of QA is used to guide the search in the candidate solution

areas found by GA and derive the best solution quickly.

Fig. (3). The cost offsets in the variance of CPU elapse time.

• Off-Line Performance

 Table 5 shows the costs obtained using HYB given short

and long CPU time, respectively, and the corresponding off-

sets to the minimal cost obtained using the three original

metaheuristics. It is found that the proposed HYB method

either outperforms or performs equally well as the three

metaheuristic algorithms for all problem instances. Depend-

ing on the problem complexity, the cost offset to the minimal

cost of the three metaheuristics varies from 0.0% to –1.33%

for short CPU time and 0.0% to –0.97% for long CPU time,

respectively. Note that a negative value of cost offset indi-

cates the derived cost by HYB is smaller. The average offset

is –0.31% if the short CPU time periods are given. For the

cases with long CPU time periods, HYB obtains an average

offset of –0.18%.

• On-Line Performance

 Fig. (4) shows a typical run of the cost variations with

short CPU elapse time for all testing methods. We observe

that QA intensifies the search toward the neighborhood of

the best-so-far solution and the cost drops quickly at the

early stage. However, it is hardly improved after this period.

On the other hand, GA provides diversified initialization and

may improve the solution if the CPU elapse time is long

enough. The cost obtained by SA is also improved with the

increment of CPU elapse time, but at a slower rate than GA.

The proposed HYB method first applies GA and thus be-

haves similarly like GA within this period. Then HYB uses

the top 5% candidate solutions in the last GA population and

the best-so-far solution to train the Q-learning network and

switches to the QA process. The solution of HYB is im-

proved dramatically after this transition and finally yields a

much better result because QA now can derive a better solu-

tion by exploiting the knowledge learned from GA.

Fig. (4). The cost variations with short CPU elapse time.

Fig. (5). The cost variations with long CPU elapse time.

 Fig. (5) illustrates the results corresponding to the ex-

periment with long CPU elapse time. We observe that GA

outperforms SA and QA if the allowed CPU elapse time is

long enough. However, the proposed HYB method, which

takes advantage of GA and QA, can still derive the best so-

lution among all.

• t-Test Analysis

 To further confirm the relative performances of the vari-

ous algorithms, we conduct the matched pair t-test for sig-

nificance on cost difference. Table 6 displays the t-test on

the cost difference between every pair of two different algo-

rithms for the 36 testing instances. In summary, the order of

these algorithms from the best to the worst is HYB, QA, GA,

and SA if the short CPU time is specified, while the order

changes to HYB, GA, QA, and SA for the case of long CPU

time. Since the confidence coefficient is 1.689 for the 95%

confidence interval over 36 samples, we also observe that all

of the cost differences are statistically significant except for

the one case of SA vs GA for the short CPU elapse time.

Since the allowed CPU elapse time for deriving the optimal

solution can vary significantly in different applications, it is

beneficial to consider HYB as the candidate approach for it

guarantees the best performance among these metaheuristics

with a wide range of allowed CPU elapse time.

-0.50%

0.00%

0.50%

1.00%

1.50%

2.00%

2.50%

3.00%

3.50%

4.00%

2

2
2

4

4
4

6

6
6

8

8
9

0

1
1

1
2

1
3

3
4

1
5

5
6

1
7

7
8

2
0

0
0

CPU elapse time (in seconds)

C
o
st

 o
ff

se
t

 .

SA GA QA 19800

20000

20200

20400

20600

20800

2

2
4

4
6

6
8

9
0

1
1

2

1
3

4

1
5

6

1
7

8

2
0

0

CPU time (in seconds)

C
o

st

 .

SA

GA

QA

HYB

transition

19200

19400

19600

19800

20000

20200

20400

20600

20800

2

2
2

4

4
4

6

6
6

8

8
9

0

1
1

1
2

1
3

3
4

1
5

5
6

1
7

7
8

2
0

0
0

CPU time (in seconds)

C
o

st

.

SA

GA

QA

HYBtransition

Metaheuristic Algorithms for Task Assignment in Distributed Computing Systems The Open Artificial Intelligence Journal, 2009, Volume 3 25

Table 5. The Average Costs Obtained Using the Hybrid Method (HYB) with their Offsets to the Minimal Costs from Tables 2 and

4

r n d
Cost with Short

CPU Time

Offset to Minimal

Cost in Table 2

Cost with Long

CPU Time

Offset to Minimal

Cost in Table 4

9 6 0.3 372 0.00% 372 0.00%

 0.5 482 0.00% 482 0.00%

 0.8 419 0.00% 419 0.00%

12 6 0.3 805 0.00% 805 0.00%

 0.5 968 0.00% 968 0.00%

 0.8 989 0.00% 989 0.00%

18 6 0.3 1257 0.00% 1257 0.00%

 0.5 2230 0.00% 2230 0.00%

 0.8 2992 -0.74% 2992 0.00%

15 10 0.3 955 0.00% 955 0.00%

 0.5 1473 0.00% 1473 0.00%

 0.8 1961 0.00% 1961 0.00%

20 10 0.3 1763 0.00% 1763 0.00%

 0.5 2730 0.00% 2730 0.00%

 0.8 4825 0.00% 4825 0.00%

30 10 0.3 4140 -0.10% 4140 0.00%

 0.5 7229 -0.72% 7151 0.00%

 0.8 13950 -1.01% 13819 -0.33%

30 20 0.3 4804 -0.56% 4804 0.00%

 0.5 8214 -0.50% 8153 -0.06%

 0.8 12049 -0.51% 11791 -0.18%

40 20 0.3 8401 -0.74% 8341 -0.20%

 0.5 14265 -1.33% 13842 -0.80%

 0.8 23308 -1.28% 22977 -0.42%

60 20 0.3 20291 -1.19% 19994 -0.51%

 0.5 33772 -0.14% 33292 -0.05%

 0.8 57376 -0.05% 56779 -0.55%

45 30 0.3 11087 -0.86% 10931 -0.88%

 0.5 21217 -0.08% 20981 -0.10%

 0.8 30833 -0.26% 30272 -0.09%

60 30 0.3 19862 -0.29% 19537 -0.97%

 0.5 37244 -0.15% 36782 -0.23%

 0.8 59379 -0.22% 58125 -0.16%

90 30 0.3 50855 -0.24% 49801 -0.75%

 0.5 88144 -0.03% 87983 -0.07%

 0.8 144228 -0.19% 143943 -0.05%

Average offset -0.31% -0.18%

26 The Open Artificial Intelligence Journal, 2009, Volume 3 Yin et al.

Table 6 The Matched Pair t-Test for Significance of Cost Differ-

ence Between Every Pair of Two Different Algorithms

Short CPU Duration GA QA HYB

SA -0.236 -2.020* -3.326*

GA -3.339* -4.608*

QA -3.801*

Long CPU Duration GA QA HYB

SA -4.333* -3.121* -4.462*

GA 3.596* -3.390*

QA -3.928*

*Statistically significant at the .05 level.

5. CONCLUSIONS

 In many problem domains, we are required to assign the tasks

of an application to a set of distributed processors such that sys-

tem costs are minimized. Several versions of the task assignment

problem (TAP) have been formally defined but, unfortunately,

most of them have been known to be NP-complete. To our

knowledge, there is little research discussing the comparative

performances for solving TAP using different metaheuristics. In

this paper, we have implemented simulated annealing (SA) algo-

rithm, genetic algorithm (GA), and Q-learning algorithm (QA) to

help solve the TAP. The computational experience manifests that

QA outperforms SA and GA when a short CPU elapse time is

allowed, and GA turns out to be the best approach for long CPU

time duration. Suggested by the empirical results, we proceed to

devise a hybrid method (HYB) which first applies GA to explore

potentially good areas in the solution space and uses the evolved

quality solutions to train the Q-learning network. QA is then ap-

plied to intensify the search and find the final best solution. Ex-

perimental results show that HYB can derive the best quality so-

lutions among all the testing metaheuristic algorithms for a wide

variation of CPU elapse time, and the cost difference to the other

approaches is statistically significant.

REFERENCES

[1] D. Ghosh, I. Murthy, and A. Moffett, “File allocation problem: com-

parisons of models with worst case and average communication de-
lays”, Operations Research, vol. 40, pp. 1074-1085, 1992.

[2] Z. Liu, and R. Righter, “Optimal load balancing on distributed ho-
mogeneous unreliable processors”, Operations Research, vol. 46, pp.

563-573, 1998.
[3] V. M. Lo, “Task assignment in distributed systems”, Ph.D. thesis,

University of Illinois, 1983.
[4] A. Ernst, H. Hiang, and M. Krishnamoorthy, “Mathematical pro-

gramming approaches for solving task allocation problems”, in 16th
National Conf. of Australian Society of Operations Research, 2001.

[5] A. Billionnet, M. C. Costa, and A. Sutter, “An efficient algorithm for
a task allocation problem”, Journal of ACM, vol. 39, pp. 502-518,

1992.
[6] G. H. Chen, J. S. Yur, “A branch-and-bound-with-underestimates

algorithm for the task assignment problem with precedence con-

straint”, in 10th International Conf. on Distributed Computing Sys-

tems, 1990, pp. 494-501.
[7] V. M. Lo, “Heuristic algorithms for task assignment in distributed

systems”, IEEE Trans Computers, vol. 37, pp. 1384-1397, 1988.
[8] D. M. Nicol, and D. R. O’Hallaron, “Improved algorithm for TAP

pipelined and parallel computations”, IEEE Trans Computers, vol.
40, pp. 295-306, 1991.

[9] D. Fernandez-Baca and A. Medepalli, “Parametric task allocation on
partial k-trees”, IEEE Trans Computers, vol. 46, pp. 738-742, 1993.

[10] C. H. Lee, and K.G. Shin, “Optimal task assignment in homogeneous
networks”, IEEE Trans Parallel and Distributed Systems, vol. 8, pp.

119-129, 1997.
[11] M. Kafil, and I. Ahmad, “Optimal task assignment in heterogeneous

distributed computing systems”, IEEE Concurrency, vol. 6, pp.
42-50, 1998.

[12] F. T. Lin and C. C. Hsu, “Task assignment scheduling by simulated
annealing”, in Conference on Computer and Communication Systems

279-283, 1990, pp. 279-283.
[13] Y. Hamam, and K. S. Hindi, “Assignment of program tasks to proc-

essors: A simulated annealing approach”, European Journal of Op-
erational Research, vol. 122, pp. 509-513, 2000.

[14] Z. Michalewicz and D. B. Fogel, How to Solve It: Modern Heuristics.
Springer-Verlag, New York, 2002.

[15] Z. Z. Lin, J. C. Bean, and C. C. White, “A hybrid genetic/optimi-
zation algorithm for finite-horizon, partially observed Markov deci-

sion processes”, INFORMS Journal on Computing, vol. 16, pp.
27-38, 2004.

[16] M. C. Fu, “Optimization for simulation: theory vs practice”, IN-
FORMS Journal on Computing, vol. 14, pp. 192-215, 2002.

[17] J. A. Ferland, A. Hertz, and A. Lavoie, “An object-oriented method-
ology for solving assignment-type problems with neighborhood

search techniques”, Operations Research, vol. 44, pp. 347-359, 1996.
[18] B. B. M. Shao, and H. R. Rao, “A comparative analysis of informa-

tion acquisition mechanisms for discrete resource allocation”, IEEE
Trans Systems Man Cybernetics A, vol. 31, pp. 199-209, 2001.

[19] S. Kirkpatrick, C. Gelatt Jr., and M. Vecchi, “Optimization by simu-
lated annealing”, Science, vol. 220, pp. 671-680, 1983.

[20] F. Glover, “Tabu search – Part I”, ORSA J. Computing, vol. 1, pp.
190-206, 1989.

[21] D. E. Goldberg, Genetic Algorithms: Search, Optimization and Ma-
chine Learning, Addison-Wesley, Reading, MA, 1989.

[22] R. Hecht-Nielsen, Neurocomputing, Addison-Wesley, Reading, MA,
1990.

[23] M. Dorigo, and L. Gambardella, “Ant colony system: a cooperative
learning approach to the traveling salesman problem”, IEEE Trans

Evolutionary Computation, vol. 1, pp. 53-66, 1997.
[24] L. P. Kaelbling, and A. W. Moore, “Reinforcement learning: a sur-

vey”, Journal of Artificial Intelligence Research, vol. 4, pp. 237-285,
1996.

[25] H. C. Tang, and C. Kao, “Searching for good multiple recursive
random number generators via a genetic algorithm”, INFORMS

Journal on Computing, vol. 16, pp. 284-290, 2004.
[26] C. C. Aggarwal, J. B. Orlin, and R. P. Tai, “Optimized crossover for

the independent set problem”, Operations Research, vol. 45, pp.
226-234, 1997.

[27] P. Y. Yin, “Maximum entropy-based optimal threshold selection
using deterministic reinforcement learning with controlled randomi-

zation”, Signal Processing, vol. 82, pp. 993-1006, 2002.
[28] Experimental dataset downloadable from http://www.im.ncnu.edu.

tw/~pyyin/public_html/MAP_problems.zip
[29] A. H. Mantawy, Y. L. Abdel-Magid, and S. Z. Selim, “Integrating

genetic algorithms, tabu search, and simulated annealing for the unit
commitment problem”, IEEE Trans Power Systems, vol. 14, pp.

829-836, 1999.
[30] C. F. Liaw, “A hybrid genetic algorithm for the open shop scheduling

problem”, European Journal of Operational Research, vol. 124, pp.
28-42, 2000.

Received: November 26, 2008 Revised: January 21, 2009 Accepted: January 26, 2009

© Yin et al.; Licensee Bentham Open.

This is an open access article licensed under the terms of the Creative Commons Attribution Non-Commercial License (http: //creativecommons.org/licenses/by-nc/

3.0/) which permits unrestricted, non-commercial use, distribution and reproduction in any medium, provided the work is properly cited.

