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Abstract: We consider the assignment of program tasks to processors in distributed computing systems such that system 

cost is minimized and resource constraints are satisfied. Several formulations for this task assignment problem (TAP) 

have been proposed in the literature. Most of these TAP formulations, however, are NP-complete and thus finding exact 

solutions is computationally intractable. Recently, some approximation methods like simulated annealing have been pro-

posed, and simulation results exhibited the potential to solve the TAP using metaheuristics. In order to better understand 

the strengths and weaknesses of various metaheuristics applied to the TAP, we first propose two alternative metaheuris-

tics—one using genetic algorithm and the other reinforcement learning algorithm—as well as their implementation de-

tails. Extensive computational evidences of the two heuristic algorithms against that of simulated annealing are presented, 

compared and discussed. Based on these experimental results, a hybrid strategy employing both metaheuristics is then 

proposed in order to solve the TAP more effectively and efficiently. 
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1. INTRODUCTION 

 A distributed computing system is defined as a collection 

of computers interconnected by a telecommunication net-

work that attempts to disperse the data processing function 

and fits the needs of modern decentralized organization 

structures. Besides the capability of implementing a logically 

integrated information system for geographically dispersed 

corporations, distributed computing systems provide other 

benefits, such as quick access to data, higher system reliabil-

ity, and ease of incremental growth [1]. 

 On the other hand, efficient utilization of resources in 

distributed computing systems is also important [2]. In dis-

tributed computing systems, it is characteristically difficult 

to assign the tasks of a program application to distributed 

processors such that a certain measure of system costs is 

minimized and system resources are effectively utilized. 

Several formulations of this task assignment problem (TAP) 

have been proposed in the literature to cope with various 

types of system costs and environmental constraints. In gen-

eral, the TAP is NP-complete and finding exact solutions is 

computationally prohibitive [3]. 

 In addressing this intractability issue, previous endeavors 

of TAP research can be classified into three areas. First, ex-

act mathematical programming approaches using column 

generation [4] and branch-and-bound [5-6] have been pro-

posed. Second, efficient algorithms have been developed for 

solving TAP on special computer architectures, such as lin-

ear processor array, meshed processor graph, and partial k-tree 
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communication graph [7-11]. Finally, metaheuristic algo-

rithms like simulated annealing have been used to derive 

good enough approximate solutions within reasonable CPU 

time [12-13]. 

 The current study belongs to the last domain of TAP re-

search. Our primary objective is to provide a roadmap for 

better utilizing metaheuristic approaches and to incorporate 

multiple metaheuristics into one integrative framework for 

solving TAP more effectively and efficiently. Previous stud-

ies have shown that the success of using metaheuristic algo-

rithms depends on a proper administration of exploration and 

exploitation search in order to escape from local optimality 

[14]. Moreover, specific execution strategies may cause the 

same metaheuristic algorithm to behave differently. It is also 

noted that different metaheuristics have varying computa-

tional performances for distinct applications and varied al-

lowable execution time. Therefore, a hybrid approach incor-

porating multiple metaheuristics may yield better perform-

ance than a single approach [15]. It is advisable to conduct a 

thorough comparative study on these metaheuristics [16] so 

as to combine their favorable features into one comprehen-

sive approach. 

 In this paper, we first employ two metaheuristics-genetic 

algorithm and reinforcement learning-to compare with 

simulated annealing for solving the TAP. Then, by examin-

ing their computational results, a hybrid algorithm combin-

ing the two alternative metaheuristics is devised to solve the 

TAP more effectively and efficiently. The remainder of this 

paper is organized as follows. Section 2 formulates the TAP 

to be addressed in this paper. In Section 3, two metaheuris-

tics based on genetic algorithm and reinforcement learning 

are proposed individually. Section 4 then follows and pre-

sents the comparative simulation results, based on which a 
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hybrid strategy is devised to incorporate the two metaheuris-

tics. Finally, Section 5 concludes this paper. 

2. PROBLEM FORMULATION 

 In this study, we develop metaheuristic algorithms for 

TAP that exhibits the following problem features. 

•   Some communication cost between two tasks is in-

curred if there is a communication need between them 

and if they are executed on different processors. 

•  Each processor is capacitated with certain resources 

(such as processing power or memory size). 

•  A fixed initiating cost will be incurred if the processor 

is used by at least one task. 

•  Each task consumes some units of the resources of the 

processor on which it is executed. 

•  The objective is to minimize the total fixed and com-

munication costs. 

 Assume there are r application tasks to be assigned to n 

processors in a distributed computing system. There are 

communication needs among some pairs of the tasks. Let 

cij  be the communication cost between tasks i and j if they 

are executed on different processors and sk  be the fixed 

cost if processor k is assigned at least one task (i.e., is initi-

ated). Task i consumes ai units of the resources from its 

executing processor, and processor k has bk units of re-

sources. We define a task assignment X as a matrix of r n 

binary variables xik (1  i  r and 1  k  n), where xik = 1 if 

task i is assigned to processor k, or 0 otherwise. Further, let 

yk = 1 if processor k is assigned at least one task, and yk = 0 if 

no task is assigned to it. Our objective is to minimize the 

sum of fixed cost for using processors and communication 

cost incurred by a task assignment that satisfies the resource 

constraints. The task assignment problem (TAP) can be for-

mulated as the following 0-1 quadratic integer programming 

problem. 

Minimize COST(X) = sk yk

k=1

n

+ cij 1 xik x jk

k=1

n

j=i+1

r

i=1

r 1

,  (1) 

subject to xik = 1
k=1

n

,  i = 1, 2, …, r      (2) 

ai xik bk yk

i=1

r

  k = 1, 2, …, n       (3) 

xik ryk

i=1

r

  k = 1, 2, …, n       (4) 

xik 0,1{ } , yk 0,1{ }   i, k 

 The first and second terms in the objective function (1) 

represent the total fixed cost and communication cost, re-

spectively, incurred by the assignment X. Constraint (2) 

states that each task should be assigned to exactly one proc-

essor. Constraint (3) ensures that the resource capacity of 

each processor is greater than or equal to the total amount of 

resources used by its assigned tasks, and constraint (4) guar-

antees that a processor is used if it is assigned at least one 

task. 

 It has to be pointed out that the (TAP) formulation con-

sidered above is related to the assignment-type problem 

(ATP) which determines an assignment of some items 

(tasks) to some resources (processors) so as to optimize an 

objective function and satisfy side constraints [17-18]. What 

separates TAP from other ATP instances, especially the 

classic and general assignment problems, is the quadratic 

objective function. This quadratic functional form due to 

communication needs between tasks makes the problem 

more complex and worth further examination. 

 Since this (TAP) formulation is a 0-1 integer program 

with a quadratic objective function and it is computationally 

prohibitive, its transformations to linear programs have been 

developed where approximate solutions are reported within 

reasonable computational time [4-5]. On the other hand, an 

alternative for solving TAP efficiently is to use metaheuris-

tics. In the next section, we will conduct a comparative study 

of several metaheuristic algorithms and devise a hybrid 

strategy to combine their favorable features. 

3. TWO METAHEURISTIC ALGORITHMS FOR TAP 

 The searching methods using metaheuristics can be clas-

sified into two classes, perturbation methods and construc-

tive methods. The perturbation methods start with a full 

specification of a solution and then iteratively move to a 

neighboring solution by perturbing part of the specification. 

Some typical methods of this sort are simulated annealing 

[19] and tabu search [20]. Genetic algorithm performs in a 

similar manner but it fosters a set of candidate solutions 

rather than a singleton [21]. On the other hand, the construc-

tive methods start with a partial specification of a solution 

and then search for the next most probable segments to build 

a full specification. Usually a network for selecting the solu-

tion segments is trained and the experience regarding the 

merit of choosing a segment is converted to a transition 

probability pertaining to the corresponding edge. Some typi-

cal methods of this kind are artificial neural networks [22], 

ant colony optimization [23], and reinforcement learning 

[24]. 

 In order to understand the relative strengths and weak-

nesses of different metaheuristics for solving the TAP, we 

adopt separate algorithms from each category, namely ge-

netic algorithm from the perturbation group and reinforce-

ment learning algorithm from the constructive group. 

3.1. Genetic Algorithms 

 Genetic algorithms (GAs) are metaheuristic algorithms 

based on natural genetic systems [21]. Each candidate solu-

tion to the underlying problem is represented by a binary 

string, called a chromosome, using a problem-specific cod-

ing scheme. The merit of individual string is evaluated 

through a fitness function that properly fits the optimization 

goal of the problem [25]. GAs search for a near-optimal so-

lution by fostering a population of strings using three genetic 

operators: selection, crossover, and mutation. The evolution 
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process is iterated until the fitness of strings can be hardly 

improved or until a pre-specified number of generations is 

reached. We next present the principal GA features for the 

TAP. 

3.1.1. Coding Scheme and Fitness Function 

 Each assignment corresponding to a candidate solution of 

the TAP can be encoded into a string as 

A = 1 2 r ,          (5) 

where i [1, n]  represents the index of the processor to 

which task i is assigned. Note that index character i can be 

encoded in binary with log2 n  bits. String A can be eas-

ily transformed to a corresponding assignment X (see Eq. 

(1)) of r tasks to n processors; however, this assignment may 

violate constraints (2)-(4). The fitness of string A, in a sense, 

is inversely proportional to the sum of the incurred cost and 

the capacity-exceeded amount of resource requirement. 

Thus, we define the fitness function as 

f(A) = K - (COST(A) + E(A)),       (6) 

where K is a constant, COST(A) is the total fixed and com-

munication costs (see Eq. (1)) incurred by the assignment 

corresponding to A, and E(A) is a possible excess of resource 

requirement over the capacity determined by 

E(A) = max ai xik bk yk

i=1

r

,  0
k=1

n

.      (7) 

 The larger the value of E(A), the less feasible the as-

signment A under consideration. When E(A) = 0, it indicates 

that there is no violation of the resource-capacity constraints. 

Essentially, E(A) is used as a penalty function measuring the 

infeasibility of a candidate solution and is incorporated into 

the optimization goal of our problem. 

3.1.2. Genetic Operators 

 A population of strings according to the coding scheme 

(5) is generated at random. This population then repeatedly 

evolves to subsequent populations using the following three 

genetic operators. 

•  Selection. This operator selects strings with high fit-

ness values to form the next population mimicking 

the natural selection of the fittest [26]. Each string of 

the current population is selected with a probability 

proportional to its fitness, i.e., Selecti = 

f (Ai ) f (A j )j=1

P

, where Selecti is the selection 

probability of string Ai and P is the population size. 

•  Crossover. This operator randomly selects pairs of 

strings within the current population. For each pair of 

parent strings, a crossover position is randomly de-

termined. Two offspring strings are produced by 

swapping the bits to the right hand position of the 

crossover site of both parent strings. The crossover 

operator is conducted with a crossover probability pc 

whose value is usually drawn from the range of [0.6, 

1.0]. With this crossover operation, the solution space 

is explored by interchanging information between 

strings. Since the highly fit strings occupy a large 

proportion of the population, they are likely to expe-

rience more trials of crossover operations and the 

search is navigated toward “good” regions of the so-

lution space. 

•  Mutation. Each gene of a string may undergo mutation 

with a low probability pm. Note that we perform the 

mutation operator on character scale instead of binary 

bit. This operator substitutes a new value for a ran-

dom character to be mutated. Mutation preserves suf-

ficient diversity between strings in the population and 

prevents the undesirable premature convergence. It 

also guarantees a non-zero probability of the search 

for any feasible string. 

3.2. Reinforcement Learning 

 The reinforcement learning approach addresses the issue 

of how a simple agent can learn a complicated task through a 

sequence of trial-and-error interactions with its environment 

[24]. The agent examines the current state of its environment 

and makes a decision of choosing an action to perform. The 

state of the environment is, therefore, triggered by the 

agent’s action and changed to another state. The agent ob-

serves the new state and receives an immediate reward re-

garding the desirability about the state transition. The proc-

ess is repeated and the agent learns an optimal policy of 

choosing an action in a given state that maximizes the ex-

pected sum of the cumulative rewards received over time. 

 The optimal assignment of the TAP can be learned by a 

reinforcement learning algorithm. Fig. (1) depicts the rela-

tionship between tasks and processors. The directed graph 

consists of r + 2  layers of nodes. The first layer and the last 

layer contain only one node, which represent the starting 

node and the sinking node, respectively. The remaining r 

layers represent the possible assignments of the r tasks. Each 

of these layers contains n nodes and each of the n nodes cor-

responds to the assignment of this task to a specific proces-

sor. A path emanating from the starting node and terminating 

at the sinking node represents one possible assignment of the 

r tasks. Next, we describe the features of the reinforcement 

learning algorithm for the TAP. 

•  The set of environment states, 

S = s0 , s f{ } si, j{ }
1 i r ,1 j n

. Elements 0s  and fs  

are the initial state and the final state corresponding to 

the starting node and the sinking node, respectively, 

and jis ,  indicates the state that task i is assigned to 

processor j. 

•  The set of agent actions, A = ai{ }
1 i n

. Selecting ac-

tion ai to perform means assigning the next task to 

processor i. 

•  The set of scalar rewards, R. The reward value is 

computed by the reward function discussed below. 
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•  The state transition function, (si, j , ak ) = si+1,k . This is 

apparent from the definitions of S and A. 

•  The reward function, 

    (si, j , ak ) = (bt xwtaw

w=1

i+1

)
t=1

n

zk + cw,i+1 1 xwt xi+1,t

t=1

n

w=1

i

  (8) 

•  where zk = sk if processor k is not used until the (i+1)
th

 

task is assigned to it; otherwise zk = 0. As such, we 

measure the merit of assigning the (i+1)
th

 task to 

processor k as the remaining resource capacity di-

vided by the extra system costs incurred by the as-

signment of the (i+1)
th

 task. We design the reward 

function to favor the assignment of the next task that 

both maximizes the remaining resource capacity (for 

later use) and incurs the least system cost (for opti-

mization objective). 

 To learn the optimal assignment of the TAP, we employ 

the Q-learning algorithm [24], which has been one of the 

most commonly used methods for learning the optimal pol-

icy for reinforcement learning. First, we define the Q func-

tion, Q(si, j , ak ) , as the maximum cumulative reward which 

can be attained by performing action ak  in state si, j  and 

then proceeding optimally until the final state s f  is ob-

served. The recursive definition of Q(si, j , ak )  is given by 

Q(si, j ,  ak ) = (si, j ,  ak ) + max
al

Q(si+1,k ,  al ) ,     (9) 

where (0,  1)  is the discounting factor that determines 

the relative value of the rewards received in the future. The 

agent then initializes a table of the estimate, Q̂(si, j , ak ) , of 

the Q function for each possible state-action pair (si, j , ak ) . 

The initial value of Q̂(si, j , ak )  can be any small constant. 

For simplicity, we initialize each entry of Q̂(si, j , ak )  as 1. 

These table entries are iteratively updated by 

Q̂(si, j ,  ak ) = (si, j ,  ak ) + max
al

Q̂(si+1,k ,  al )     (10) 

 In other words, the value of the generic Q(si, j , ak )  can 

be incrementally approximated by Q̂(si, j , ak ) . The 

Q-learning algorithm for the TAP is summarized in Table 1. 

The algorithm is repeated for a pre-specified maximum 

number of iterations. Then the r sequential actions chosen by 

the learned optimal policy constitute the near-optimal as-

signment. There still remains an issue of how to choose the 

action in a given state (see Step 4 in Table 1). Obviously, if 

every action can be visited infinitely often, the policy learned 

will converge to the optimal task assignment. However, in 

real-world applications where the computation time is lim-

ited, it is crucial to design an appropriate action selection 

rule which instructs the agent to experience the minimal 

number of actions that still explore the policy space suffi-

ciently. 

 Let the agent be in state si, j  and face the choice among 

a set of available actions ak{ }
1 k n

. We propose a thresh-

olded maximum-exploitation action selection rule to deter-

mine the probability of choosing action ka  as follows. 

p(ak si, j ) =
1

0

1

n

,  if q < q0  and k = arg max
l

Q̂(si, j , al );

, if q < q0  and k arg max
l

Q̂(si, j , al );

,  otherwise,                                     

  (11) 

where q is a random number drawn from U(0, 1), and 

q0 (0,  1)  is the threshold controlling the relative emphasis 

on each sub-rule. The tie with p(ak si, j )  is broken at ran-

dom. This rule facilitates the controlled tradeoff between the 

selection of the action that delivers the maximum estimate of 

Q̂  and a uniform random selection. It has been empirically 

shown that the thresholded maximum-exploitation action 

selection rule outperforms several other competing rules 

[27]. 

 

Fig. (1). The graph representation of the TAP as a reinforcement learning network. 
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4. SIMULATION RESULTS 

 In this section, we present the performance evaluations 

obtained using the competing metaheuristics. Three algo-

rithms, namely simulated annealing (SA), genetic algorithm 

(GA), and Q-learning algorithm (QA), were implemented in 

C++ language and executed on a 1.8GHz PC with 192MB 

RAM. The parameters used in these algorithms are tuned 

empirically. To be specific, the parameter setting used by SA 

is (initial temperature = 500, length of Markov chain = 1200, 

temperature decreasing rate = 0.85, chain increasing rate = 

1.1), GA (population size = 100, crossover rate = 0.9, muta-

tion rate = 0.03), and QA (action selection threshold = 0.3). 

 The inter-task communication is rendered by a task in-

teraction graph (TIG), G V , E( ) , where V is a set of r nodes 

and E is a set of edges connecting these nodes. Each node 

represents a task and each edge specifies the communication 

requirement between its two connecting tasks. Fig. (2) gives 

an example of TIG where the communication requirement 

among four tasks is specified. We define the task interaction 

density d of G V , E( )  as 

d =
E

V (V 1) 2
,        (12) 

where V  and E  denote the number of elements in the 

corresponding set. 

 

Fig. (2). An example of TIG. 

 The testing dataset is generated according to different 

problem characteristics, namely the r/n ratio and density d. 

We set the value of n equivalent to 6, 10, 20, and 30, respec-

tively, and compute the value of r accordingly so that the r/n 

ratio is equal to 1.5, 2, and 3. For each (r, n) pair, we gener-

ate three different TIGs with density d equivalent to 0.3, 0.5, 

and 0.8. As such, we obtain a testing dataset of 36 problem 

instances available from [28] for evaluating the performance 

of the competing methods. The other parameters are gener-

ated randomly: the fixed cost is between 1 and 200, the 

communication cost is between 1 and 50, the resource capac-

ity of each processor varies from 50 to 250, and the resource 

requirement of each task ranges from 1 to 50. 

 We analyze both off-line and on-line performances. The 

off-line performance is measured as the average cost ob-

tained when the testing algorithm has run for a specified pe-

riod of CPU time. This is a common practice that many pre-

vious studies have adopted. However, this measure alone can 

be inadequate for analyzing the strengths and weaknesses of 

metaheuristic algorithms because different algorithms may 

exhibit different performance levels as CPU duration time 

varies. Thus, we also measure the on-line performance as the 

dynamic costs to allow for varied CPU elapse time. 

4.1. Off-Line Performance 

 We conduct two experiments as follows. In the first ex-

periment, all algorithms are given equally short CPU time 

periods to derive the solutions, while in the second experi-

ment the allowed CPU time durations are relatively longer. 

As for the short CPU time periods, they are 10, 50, 100, and 

200 seconds for various numbers of processors. And for the 

long CPU time periods, they are 100, 500, 1000, and 2000 

seconds. Since all algorithms are probabilistic and each in-

dependent run of the same algorithm on a particular testing 

problem may yield a different result, we calculate the aver-

age cost over 10 independent runs of each algorithm for 

every problem instance. 

•  Performance with Short CPU Elapse Time 

 Table 2 tabulates the average costs obtained using the 

three metaheuristic  algorithms  given the short CPU  time  

Table 1. The Q-Learning Algorithm for the TAP 

 

Step 1 Initialize the table entry Q̂(si, j , ak ) = 1  for each i, j, k. 

Step 2 Set Iteration = 1. 

Step 3 Start with the initial state s0 . 

Step 4 Select an action according to the action selection rule. 

Step 5 Update the table entry Q̂(si, j , ak )  using Eq. (10). 

Step 6 If the final state s f  is not yet reached, goto Step 4. 

Step 7 If Iteration < MAX_ITERATION //stopping criterion is not yet satisfied// 

   Set Iteration = Iteration + 1, and goto Step 3. 

Step 8 Start from the initial state s0 , output the sequence of actions which result in the maximum Q̂  values until the final state s f  is reached. 

task 2 task 4 

task 3 



Metaheuristic Algorithms for Task Assignment in Distributed Computing Systems The Open Artificial Intelligence Journal, 2009, Volume 3    21 

 

periods. It is observed that QA is better than or equal to the 

other two algorithms by obtaining the minimal cost for 30 

instances. For the other six instances, SA produces the 

minimal cost. To compare the results with absolute per-

Table 2. The Average Costs and Offsets Obtained Using the Three Metaheuristics, Namely the Simulated Annealing (SA), Genetic 

Algorithm (GA), and Q-Learning Algorithm (QA), Given a Short CPU Elapse Time 

 

SA GA QA 

r n d 
Cost Offset% Cost Offset% Cost Offset% 

CPU Time 

9 6 0.3 372 0.00% 372 0.00% 372 0.00%  

  0.5 482 0.00% 482 0.00% 482 0.00%  

  0.8 419 0.00% 419 0.00% 419 0.00%  

12 6 0.3 805 0.00% 805 0.00% 805 0.00%  

  0.5 968 0.00% 970 0.21% 968 0.00% 10 seconds 

  0.8 995 0.60% 1004 1.49% 989 0.00%  

18 6 0.3 1257 0.00% 1257 0.00% 1257 0.00%  

  0.5 2256 1.15% 2258 1.24% 2230 0.00%  

  0.8 3032 0.59% 3016 0.07% 3014 0.00%  

15 10 0.3 970 1.55% 966 1.14% 955 0.00%  

  0.5 1546 4.72% 1528 3.60% 1473 0.00%  

  0.8 1961 0.00% 1973 0.61% 1961 0.00%  

20 10 0.3 1785 1.23% 1878 6.12% 1763 0.00%  

  0.5 2777 1.69% 2797 2.40% 2730 0.00% 50 seconds 

  0.8 4927 2.07% 4853 0.58% 4825 0.00%  

30 10 0.3 4377 5.32% 4283 3.25% 4144 0.00%  

  0.5 7382 1.37% 7332 0.70% 7281 0.00%  

  0.8 14658 3.87% 14131 0.28% 14091 0.00%  

30 20 0.3 4972 2.84% 4908 1.57% 4831 0.00%  

  0.5 8392 1.63% 8312 0.69% 8255 0.00%  

  0.8 12332 1.79% 12269 1.29% 12111 0.00%  

40 20 0.3 8633 1.97% 8548 0.99% 8463 0.00%  

  0.5 14817 2.44% 14629 1.19% 14455 0.00% 100 seconds 

  0.8 23607 0.00% 23824 0.91% 23608 0.00%  

60 20 0.3 20533 0.00% 20686 0.74% 20664 0.63%  

  0.5 33818 0.00% 34357 1.57% 34108 0.85%  

  0.8 58651 2.13% 57799 0.69% 57403 0.00%  

45 30 0.3 11431 2.18% 11223 0.37% 11182 0.00%  

  0.5 21358 0.58% 21412 0.83% 21235 0.00%  

  0.8 30914 0.00% 31619 2.23% 31433 1.65%  

60 30 0.3 20073 0.77% 19968 0.25% 19919 0.00%  

  0.5 37301 0.00% 37800 1.32% 37443 0.38% 200 seconds 

  0.8 59508 0.00% 60067 0.93% 59958 0.75%  

90 30 0.3 50975 0.00% 51312 0.66% 51010 0.07%  

  0.5 89305 1.27% 89629 1.63% 88169 0.00%  

  0.8 146589 1.42% 144928 0.29% 144503 0.00%  

Average offset   1.20%  1.11%  0.12%  
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formance, we adopt [4] to transform the quadratic objective 

function (1) into an integer linear program and use the Lingo 

package to compute the exact solution. The maximum al-

lowed CPU time for solving an instance by Lingo is set to 

one day. Table 3 presents the derived minimum costs and the 

CPU time used by the package. When Lingo fails to solve 

the integer linear program within one day, it is terminated 

with infeasible solution or unknown status and we discard 

such cases for further comparison. It can be seen that as the 

problem size increases, it becomes too time consuming for 

Lingo to compute exact solutions due to the enormous com-

putations required. For those testing instances where exact 

solutions are available, QA is shown to have much closer 

approximate results, while SA and GA deviate significantly 

from the exact solutions. 

 To provide a clearer view on the comparative perform-

ances among the competing methods, the cost offset (defined 

as the difference to the minimal cost of the three algorithms 

divided by the corresponding cost) is also calculated and 

listed in Table 2. We observe that the cost offset ranges from 

0% to 5.32% for SA, 0% to 6.12% for GA, and 0% to 1.65% 

for QA. The average cost offsets over all the instances are 

1.20%, 1.11%, and 0.12% for SA, GA, and QA, respectively. 

•  Performance with Long CPU Elapse Time 

 The experimental result with long CPU elapse time is 

displayed in Table 4. We observe that GA attains the mini-

mal cost in all cases, QA reports moderate results, and SA 

exhibits the worst performance. The offset to the minimal 

cost of GA varies from 0% to 2.64% for QA, and 0% to 

4.94% for SA. The average cost offset is 0.51% for QA and 

1.66% for SA. 

 We observe from the above experiments that the com-

parative performances between the three metaheuristics with 

long CPU elapse time are inconsistent with those with short 

CPU time duration. Hence, we cannot conclude that any par-

ticular algorithm is superior to the others. A more sophisti-

cated performance evaluation is thus required. 

4.2. On-Line Performance 

 Since the performance levels of the competing algorithms 

vary as the CPU elapse time increases, we also analyze the 

on-line performance which is the cost offset with respect to 

the varied lengths of CPU time duration. Fig. (3) illustrates a 

typical run in our experiment. It is observed that QA has the 

minimal cost offset when the length of CPU time duration is 

short (less than 668 seconds) in this particular run, while GA 

replaces QA as the best approach when the CPU duration 

becomes long enough. However, the time point at which GA 

and QA exchange their roles as the best approach is 

case-dependent, i.e., for some instances, GA may converge 

faster to the minimal cost, but for others GA would need 

more explorative search before it generates a better solution. 

SA, however, is consistently the least effective among the 

three; its cost offset ranges from 0.97% to 3.49%. 

4.3. A Hybrid Strategy 

 It has been successfully shown in many previous studies 

that a hybrid version combining multiple metaheuristics can 

improve the performance over a single approach [15, 29-30]. 

It is also advised that exploration search should be empha-

sized in the early stage of the evolution for finding good re-

gions in the solution space. As the evolution proceeds, ex-

ploitation search can be focused to further improve the can-

didate solutions. From the experimental results given in pre-

vious sections, it manifests that GA has focused on explora-

tion search and can deliver high quality solutions if enough 

CPU time is used, while QA intensifies the exploitation 

search and usually gets to a good solution consuming only a 

short CPU time period. We thus devise a hybrid method 

(HYB) to incorporate GA and QA, which are the best ap-

proaches based on our empirical results presented in previ-

ous sections. The hybrid method consists of two main stages. 

In the first stage, GA is applied for exploring the solution 

space until it cannot further improve the solution for a period 

of time that is equivalent to one fifth of the total allowed 

CPU elapse time. Upon the termination of GA, all  candidate  

Table 3. The Minimum Costs Obtained Using the Lingo Package and the Used CPU Time 

 

r n d Minimum Cost CPU Time 

9 6 0.3 372  36 sec 

  0.5 471  1 min 14 sec 

  0.8 399  1 min 37 sec 

12 6 0.3 769  5 min 16 sec 

  0.5 925  18 min 52 sec 

  0.8 954  23 min 18 sec 

18 6 0.3 1164  30 min 56 sec 

  0.5 2220  7 hr 22 min 56 sec 

  0.8 2859  8 hr 38 min 10 sec 

15 10 0.3 941  1 hr 52 min 32 sec 

  0.5 1414  22 hr 15 min 53 sec 

 others  unknown  1 day 
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solutions in the last population and the best solution obtained 

up to that point are sorted in the increasing order of their 

costs. The top 5% of the sorted solutions are then used to 

train the Q-learning network to derive the initial Q value 

Table 4. The Average Costs and Offsets Obtained Using the Three Metaheuristics, Namely the Simulated Annealing (SA), Genetic 

Algorithm (GA), and Q-Learning Algorithm (QA), Given a Long CPU Elapse Time 

 

 SA  GA  QA 
r n d 

Cost Offset% Cost Offset% Cost Offset% 
CPU Time 

9 6 0.3 372 0.00% 372 0.00% 372 0.00%  

  0.5 482 0.00% 482 0.00% 482 0.00%  

  0.8 419 0.00% 419 0.00% 419 0.00%  

12 6 0.3 805 0.00% 805 0.00% 805 0.00%  

  0.5 969 0.10% 968 0.00% 968 0.00% 100 seconds 

  0.8 989 0.00% 989 0.00% 989 0.00%  

18 6 0.3 1257 0.00% 1257 0.00% 1257 0.00%  

  0.5 2230 0.00% 2230 0.00% 2230 0.00%  

  0.8 2992 0.00% 2992 0.00% 2992 0.00%  

15 10 0.3 957 0.21% 955 0.00% 955 0.00%  

  0.5 1494 1.41% 1473 0.00% 1473 0.00%  

  0.8 1969 0.41% 1961 0.00% 1961 0.00%  

20 10 0.3 1768 0.28% 1763 0.00% 1763 0.00%  

  0.5 2772 1.52% 2730 0.00% 2730 0.00% 500 seconds 

  0.8 4926 2.05% 4825 0.00% 4825 0.00%  

30 10 0.3 4262 2.86% 4140 0.00% 4140 0.00%  

  0.5 7419 3.61% 7151 0.00% 7225 1.02%  

  0.8 14509 4.45% 13864 0.00% 13958 0.67%  

30 20 0.3 4995 3.82% 4804 0.00% 4804 0.00%  

  0.5 8424 3.16% 8158 0.00% 8180 0.27%  

  0.8 12426 4.94% 11812 0.00% 11973 1.34%  

40 20 0.3 8545 2.19% 8358 0.00% 8362 0.05%  

  0.5 14582 4.31% 13953 0.00% 14248 2.07% 1000 seconds 

  0.8 23628 2.35% 23073 0.00% 23454 1.62%  

60 20 0.3 20467 1.81% 20096 0.00% 20559 2.25%  

  0.5 33980 1.97% 33309 0.00% 33820 1.51%  

  0.8 58806 2.91% 57092 0.00% 57227 0.24%  

45 30 0.3 11290 2.33% 11027 0.00% 11068 0.37%  

  0.5 21277 1.29% 21003 0.00% 21137 0.63%  

  0.8 31340 3.32% 30299 0.00% 31120 2.64%  

60 30 0.3 19951 1.12% 19727 0.00% 19790 0.32%  

  0.5 37224 0.96% 36868 0.00% 37165 0.80% 2000 seconds 

  0.8 59334 1.88% 58217 0.00% 58671 0.77%  

90 30 0.3 50964 1.55% 50173 0.00% 50991 1.60%  

  0.5 89202 1.30% 88044 0.00% 88081 0.04%  

  0.8 146430 1.65% 144017 0.00% 144072 0.04%  

Average offset   1.66%  0.00%  0.51%  
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estimates. The training process is also performed using the 

Q-learning algorithm presented in Table 1 except that in Step 

4 the algorithm assigns the next task according to the train-

ing solution that is fed into the network. In the second stage, 

QA is applied using the remaining CPU elapse time to report 

the final best solution when it terminates. The proposed hy-

brid method takes advantage of the exploration power of GA 

to derive better initial Q value estimates, and provides diver-

sification of candidate global best solutions to prevent get-

ting trapped in local minima. Then the intensification power 

of QA is used to guide the search in the candidate solution 

areas found by GA and derive the best solution quickly. 

 

Fig. (3). The cost offsets in the variance of CPU elapse time. 

•  Off-Line Performance 

 Table 5 shows the costs obtained using HYB given short 

and long CPU time, respectively, and the corresponding off-

sets to the minimal cost obtained using the three original 

metaheuristics. It is found that the proposed HYB method 

either outperforms or performs equally well as the three 

metaheuristic algorithms for all problem instances. Depend-

ing on the problem complexity, the cost offset to the minimal 

cost of the three metaheuristics varies from 0.0% to –1.33% 

for short CPU time and 0.0% to –0.97% for long CPU time, 

respectively. Note that a negative value of cost offset indi-

cates the derived cost by HYB is smaller. The average offset 

is –0.31% if the short CPU time periods are given. For the 

cases with long CPU time periods, HYB obtains an average 

offset of –0.18%. 

•  On-Line Performance 

 Fig. (4) shows a typical run of the cost variations with 

short CPU elapse time for all testing methods. We observe 

that QA intensifies the search toward the neighborhood of 

the best-so-far solution and the cost drops quickly at the 

early stage. However, it is hardly improved after this period. 

On the other hand, GA provides diversified initialization and 

may improve the solution if the CPU elapse time is long 

enough. The cost obtained by SA is also improved with the 

increment of CPU elapse time, but at a slower rate than GA. 

The proposed HYB method first applies GA and thus be-

haves similarly like GA within this period. Then HYB uses 

the top 5% candidate solutions in the last GA population and 

the best-so-far solution to train the Q-learning  network and  

 

switches to the QA process. The solution of HYB is im-

proved dramatically after this transition and finally yields a 

much better result because QA now can derive a better solu-

tion by exploiting the knowledge learned from GA. 

  

Fig. (4). The cost variations with short CPU elapse time. 

 

Fig. (5). The cost variations with long CPU elapse time. 

 Fig. (5) illustrates the results corresponding to the ex-

periment with long CPU elapse time. We observe that GA 

outperforms SA and QA if the allowed CPU elapse time is 

long enough. However, the proposed HYB method, which 

takes advantage of GA and QA, can still derive the best so-

lution among all. 

•  t-Test Analysis 

 To further confirm the relative performances of the vari-

ous algorithms, we conduct the matched pair t-test for sig-

nificance on cost difference. Table 6 displays the t-test on 

the cost difference between every pair of two different algo-

rithms for the 36 testing instances. In summary, the order of 

these algorithms from the best to the worst is HYB, QA, GA, 

and SA if the short CPU time is specified, while the order 

changes to HYB, GA, QA, and SA for the case of long CPU 

time. Since the confidence coefficient is 1.689 for the 95% 

confidence interval over 36 samples, we also observe that all 

of the cost differences are statistically significant except for 

the one case of SA vs GA for the short CPU elapse time. 

Since the allowed CPU elapse time for deriving the optimal 

solution can vary significantly in different applications, it is 

beneficial to consider HYB as the candidate approach for it 

guarantees the best performance among these metaheuristics 

with a wide range of allowed CPU elapse time. 
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Table 5. The Average Costs Obtained Using the Hybrid Method (HYB) with their Offsets to the Minimal Costs from Tables 2 and 

4 

 

r n d 
Cost with Short 

CPU Time 

Offset to Minimal 

Cost in Table 2 

Cost with Long  

CPU Time 

Offset to Minimal 

Cost in Table 4 

9 6 0.3 372 0.00% 372 0.00% 

  0.5 482 0.00% 482 0.00% 

  0.8 419 0.00% 419 0.00% 

12 6 0.3 805 0.00% 805 0.00% 

  0.5 968 0.00% 968 0.00% 

  0.8 989 0.00% 989 0.00% 

18 6 0.3 1257 0.00% 1257 0.00% 

  0.5 2230 0.00% 2230 0.00% 

  0.8 2992 -0.74% 2992 0.00% 

15 10 0.3 955 0.00% 955 0.00% 

  0.5 1473 0.00% 1473 0.00% 

  0.8 1961 0.00% 1961 0.00% 

20 10 0.3 1763 0.00% 1763 0.00% 

  0.5 2730 0.00% 2730 0.00% 

  0.8 4825 0.00% 4825 0.00% 

30 10 0.3 4140 -0.10% 4140 0.00% 

  0.5 7229 -0.72% 7151 0.00% 

  0.8 13950 -1.01% 13819 -0.33% 

30 20 0.3 4804 -0.56% 4804 0.00% 

  0.5 8214 -0.50% 8153 -0.06% 

  0.8 12049 -0.51% 11791 -0.18% 

40 20 0.3 8401 -0.74% 8341 -0.20% 

  0.5 14265 -1.33% 13842 -0.80% 

  0.8 23308 -1.28% 22977 -0.42% 

60 20 0.3 20291 -1.19% 19994 -0.51% 

  0.5 33772 -0.14% 33292 -0.05% 

  0.8 57376 -0.05% 56779 -0.55% 

45 30 0.3 11087 -0.86% 10931 -0.88% 

  0.5 21217 -0.08% 20981 -0.10% 

  0.8 30833 -0.26% 30272 -0.09% 

60 30 0.3 19862 -0.29% 19537 -0.97% 

  0.5 37244 -0.15% 36782 -0.23% 

  0.8 59379 -0.22% 58125 -0.16% 

90 30 0.3 50855 -0.24% 49801 -0.75% 

  0.5 88144 -0.03% 87983 -0.07% 

  0.8 144228 -0.19% 143943 -0.05% 

Average offset   -0.31%  -0.18% 
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Table 6 The Matched Pair t-Test for Significance of Cost Differ-

ence Between Every Pair of Two Different Algorithms 

 

Short CPU Duration GA QA HYB 

SA -0.236 -2.020* -3.326* 

GA  -3.339* -4.608* 

QA   -3.801* 

Long CPU Duration GA QA HYB 

SA -4.333* -3.121* -4.462* 

GA   3.596* -3.390* 

QA   -3.928* 

*Statistically significant at the .05 level. 
 

5. CONCLUSIONS 

 In many problem domains, we are required to assign the tasks 

of an application to a set of distributed processors such that sys-

tem costs are minimized. Several versions of the task assignment 

problem (TAP) have been formally defined but, unfortunately, 

most of them have been known to be NP-complete. To our 

knowledge, there is little research discussing the comparative 

performances for solving TAP using different metaheuristics. In 

this paper, we have implemented simulated annealing (SA) algo-

rithm, genetic algorithm (GA), and Q-learning algorithm (QA) to 

help solve the TAP. The computational experience manifests that 

QA outperforms SA and GA when a short CPU elapse time is 

allowed, and GA turns out to be the best approach for long CPU 

time duration. Suggested by the empirical results, we proceed to 

devise a hybrid method (HYB) which first applies GA to explore 

potentially good areas in the solution space and uses the evolved 

quality solutions to train the Q-learning network. QA is then ap-

plied to intensify the search and find the final best solution. Ex-

perimental results show that HYB can derive the best quality so-

lutions among all the testing metaheuristic algorithms for a wide 

variation of CPU elapse time, and the cost difference to the other 

approaches is statistically significant. 
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