Algebra and Trigonometry II

9.1 - The Ellipse

Obtaining Conic Sections by Intersecting a Plane and a Cone

Parabola
Hyperbola

Definition of an Ellipse

An Ellipse can be elongated in any direction. We will limit our discussions to ellipses elongated vertically and horizontally.

Sum of Red line $=$ Sum of Blue Line

Definition of an Ellipse

An ellipse is the set of all points, P, in a plane the sum of whose distances from two fixed points, F_{1} and F_{2}, is constant (see Figure 7.3). These two fixed points are called the foci (plural of focus). The midpoint of the segment connecting the foci is the center of the ellipse.

The line segment that joins the vertices is the major axis; the midpoint of the major axis is the center of the ellipse. The line segment whose endpoints are on the ellipse and that is perpendicular to the major axis is called the minor axis.

Standard Form of the Equation of an Ellipse

Standard Forms of the Equations of an Ellipse

The standard form of the equation of an ellipse with center at the origin, and major and minor axes of lengths $2 a$ and $2 b$ (where a and b are positive, and $a^{2}>b^{2}$) is

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1 \quad \text { or } \quad \frac{x^{2}}{b^{2}}+\frac{y^{2}}{a^{2}}=1 .
$$

Figure 7.6 illustrates that the vertices are on the major axis, a units from the center. The foci are on the major axis, c units from the center. For both equations, $b^{2}=a^{2}-c^{2}$. Equivalently, $c^{2}=a^{2}-b^{2}$.

Figure 7.6(a) Mujor axis is horizontal with length $2 a$.

Figure 7.6(b) Major axis is vertical with length $2 a$.

- $a^{\prime \prime}$ is half the length of the major axis
$\cdot b^{\prime \prime}$ is half the length of the minor axis
$b^{2}=a^{2}-c^{2} \quad$ or $\quad c^{2}=a^{2}-b^{2}$
$\pm \mathrm{C}^{\prime \prime}$ is the ycoordinate of the foci if the major axis is vertical
$\pm \mathrm{c}^{\prime \prime}$ is the xcoordinate of the foci if the major axis is horizontal

X-Intercepts: Set $y=0$
$\frac{x^{2}}{a^{2}}=1$
$x^{2}=a^{2}$
$x= \pm a$

Y-Intercepts: Set $x=0$
$\frac{y^{2}}{b^{2}}=1$
$y^{2}=b^{2}$
$y= \pm b$

Using the Standard Form of the Equation of an Ellipse

Technology

We graph $\frac{x^{2}}{9}+\frac{y^{2}}{4}=1$ with a graphing utility by solving for y.

$$
\begin{aligned}
& \frac{y^{2}}{4}=1-\frac{x^{2}}{9} \\
& y^{2}=4\left(1-\frac{x^{2}}{9}\right) \\
& y= \pm 2 \sqrt{1-\frac{x^{2}}{9}}
\end{aligned}
$$

Notice that the square root property requires us to define two functions. Enter

$$
y_{1}=2 \boxed{\sqrt{ }}(1 \square x \triangle 2 \square 9)
$$

and

$$
y_{2}=-y_{1} .
$$

To see the true shape of the ellipse, use the ZOOM SOUARE feature so that one unit on the y-axis is the same length as one unit on the x-axis.

$|-5,5,1|$ by $\{-3,3,1 \mid$

Ellipse with the Major Axis on the X-Axis

$$
\frac{x^{2}}{9}+\frac{y^{2}}{4}=1
$$

$$
\begin{aligned}
& a^{2}=9 \text {. This is } \\
& \text { the larger of the } \\
& \text { two dononiastor. }
\end{aligned}
$$

$$
\begin{aligned}
& b^{2}=4 \text {. This is } \\
& \text { the smaller of the } \\
& \text { two denunisators. }
\end{aligned}
$$

$$
\frac{x^{2}}{3^{2}}+\frac{y^{2}}{2^{2}}=1
$$

Endpoists of the nyjor exiz are 3 anits to the right and laft of the esster.

Endpoists of the miest aris are 2 anits ep and dowa fram the cester.

Ellipse with the Major Axis on the Y-axis
$b^{2}=16$. This is
the analler of the two desomiestors.

$$
a^{2}=25 \text {. This is }
$$ the larger of the two denomisators.

$$
\frac{x^{2}}{4^{2}}+\frac{y^{2}}{5^{2}}=1
$$

Endpoints of the minor sxis are 4 units to the right and loft of the ctater.

Endpoints of tha major aris are 5 anits ap sad down fram the sester.

Example - Graph and locate the foci.

Graph and locate the foci.

Example - $\frac{x^{2}}{16}+\frac{y^{2}}{4}=1$

Example - Write the standard equation of the ellipse pictured.

Translations of Ellipses

Standard form of Equations of Ellipses Centered at h,k

Equation	Center	Major Axis	Vertices	Graph
$\begin{aligned} & \qquad \frac{(x-h)^{2}}{a^{2}}+\frac{(y-k)^{2}}{b^{2}}=1 \\ & \begin{array}{c} \text { Eadpriets of major } \\ \text { axit mes a units right add } \\ a \text { uaits left of cestet. } \end{array} \end{aligned} a^{2}>b^{2}$ Foci are c units right and c units left of center, where $c^{2}=a^{2}-b^{2}$.	(h,k)	Parallel to the x-axis, horizontal	$\begin{aligned} & (h-a, k) \\ & (h+a, k) \end{aligned}$	
$\begin{gathered} \frac{(x-h)^{2}}{b^{2}}+\frac{(y-k)^{2}}{a^{2}}=1 \\ \begin{array}{c} \text { Endpoiats of the mjor. } \\ \text { xis sut } a \text { uits shent ud } \\ a \text { aeits hulos the cunter. } \end{array} \end{gathered}$ Foci are c units above and c units below the center, where $c^{2}=a^{2}-b^{2}$	(h,k)	Parallel to the y-axis, vertical	$\begin{aligned} & (h, k-a) \\ & \left(h_{\mathrm{r}} k+a\right) \end{aligned}$	

$\mathbf{8 | P a g e}$
Hannah Province - Mathematics Department Southwest Tn Community College

How to Use the Center to find the Endpoints of the Axes

Example - Graph $\frac{(x+2)^{2}}{9}+\frac{(y-1)^{2}}{4}=1$
Where are the foci?
Where are the vertices, and endpoints of the minor axis.

Example - Write the equation of an ellipse given the following information.

 Find the center of the ellipse, and the endpoints of the minor axis. Vertices: (-1,-3), (-1,5) Foci: (-1,-1),(-1,3)Completing the Square to find the Standard Form of the Ellipse

- x-terms are arranged in descending order.
- y-terms are arranged in descending order.
- the constant term appears on the right.

$\begin{aligned} 9 x^{2}+4 y^{2}-18 x+16 y-11 & =0 \\ \left(9 x^{2}-18 x\right)+\left(4 y^{2}+16 y\right) & =11 \end{aligned}$	This io the given equation, Group terms and add 11 to both sides.
$9\left(x^{2}-2 x+\square\right)+4\left(y^{2}+4 y+\square\right)=11$	To complete the square, soefficiente of x^{2} and y^{2}
We odtad $9-1$, of 9 , to the left silid. We also added $4 \cdot 4$, or 16 , to the left side.	must be 1. Factor out 9 and 4, respectively.
$9\left(x^{2}-2 x+1\right)+4\left(y^{2}+4 y+4\right)=11+9+16$	Complete each square by adding the square of half
9 nad 16, added on tha loft side, nest ales be saded on the right sile.	the coefficient of x and y. respectively.
$9(x-1)^{2}+4(y+2)^{2}=36$	Factor.
$9(x-1)^{2}+4(y+2)^{2} \quad 36$	
$\frac{(x)}{36}+\frac{(y+2)^{2}}{36}=\frac{3}{36}$	Divide both sides by 36.
$\frac{(x-1)^{2}}{4}+\frac{(y)}{9}=1$	Simplify.

Example - Convert the equation into standard form by completing the square. Where is the center, the vertices, foci and the endpoints of the minor axis.
$4 x^{2}+9 y^{2}+16 x-18 y=11$

11| Pa g e

Applications - Ellipses Have Many Applications

Example: The Victoria and Albert restaurant in the Grand Floridian Hotel at Disney World is an example of an elliptical room. Thus if one person whispers at one focus, another person can hear what is spoken if they are seated at the other focus. If the restaurant is 40 ft long and the ceiling is 10 ft high, find the standard form of the equation of the conic section. How far from the center of the room is the focus located?

