
Constructing functional programs for grammar analysis problems

Johan Jeuring

Chalmers University of Technology and University of Göteborg

S-412 96 Göteborg, Sweden

email: johanj@cs.chalmers.se

Doaitse Swierstra

Utrecht University

P.O.Box 80.089, 3508 TB Utrecht, The Netherlands

email: doaitse@cs.ruu.nl

Abstract

This paper discusses the derivation of functional programs for gram-
mar analysis problems, such as the EMPTY problem and the REACH-
ABLE problem. Grammar analysis problems can be divided into
two classes: top-down problems such as FOLLOW and REACH-
ABLE, which are described in terms of the contexts of nontermi-
nals, and bottom-up problems such as EMPTY and FIRST, which
do not refer to contexts. In a previous paper we derive a program
for bottom-up grammar analysis problems. In this paper we de-
rive a program for top-down grammar analysis problems by trans-
forming the specification of an arbitrary top-down problem into
a program. The existence of a solution is guaranteed provided
some natural conditions are satisfied. Furthermore, we describe
a general transformation that applies to both classes of grammar
analysis problems. The result of this transformation is a program
that avoids unnecessary computations in the computation of a fixed
point. Constructor classes, which are used to abstract from the no-
tions bottom-up and top-down, are an essential ingredient of the
latter derivation.

1 Introduction

Grammar analysis is performed in many different situations: Yacc
tests whether or not its input grammar is LALR(1), parser genera-
tors contain functions for determining whether or not a nonterminal
can derive the empty string (EMPTY) as part of determining the set
of all symbols that can appear as the first symbol of a derived string
(FIRST), and for determining the set of symbols that can appear
as the first symbol following a string derived by a given nonter-
minal (FOLLOW). Other, similar, problems arise when analysing
attribute dependencies in attribute grammars: determine the inher-
ited attributes upon which a synthesised attribute depends (IS), and,
conversely, determine the synthesised attributes upon which an in-
herited attribute depends (SI). Such problems are called grammar

analysis problems. More examples of grammar analysis problems
can be found in [16] and [18].

Grammar analysis problems can be divided into two classes:
bottom-up and top-down. The difference between these classes
is that the required information for a nonterminal in a top-down
problem depends on the possible contexts of that nonterminal in a

derivation from the start-symbol, whereas in a bottom-up problem
the property we are interested in depends on the parse tree hanging
under the nonterminal instance, and the contexts of the nonterminal
can be ignored. Often the output of a bottom-up problem is used in
a top-down problem. The specification of a grammar analysis prob-
lem determines the class to which it belongs: EMPTY, FIRST, and
IS are bottom-up grammar analysis problems, the FOLLOW and SI
problems belong to the top-down class.

Grammar analysis problems are described by sets of mutually
recursive equations, and the solution is a fixed point of this equa-
tional system. Möncke and Wilhelm [16] observe this, and give
several solutions, depending on the conditions that are satisfied, for
such problems. One of the goals of this paper is to derive the solu-
tions given by Möncke and Wilhelm.

In a previous paper [7] we study bottom-up grammar analysis
problems. We derive a function of which the fixed point gives the
solution of a bottom-up grammar analysis problem. This function
is obtained by applying correctness preserving transformations to
components of the expression occurring in the specification of the
problem. The laws we apply are familiar laws for list-comprehen-
sions (monads) [21], maps, and foldrs [1, 12]. Sufficient conditions
for guaranteeing the existence of a fixed point emerge as a byprod-
uct of this derivation. An important advantage of a derivation of a
program is that it is clear why and where conditions are imposed
upon the components of the program.

In this paper we study top-down grammar analysis problems.
We derive a function of which the fixed point gives the solution of
a top-down grammar analysis problem. The derivation is similar
to the derivation for bottom-up grammar analysis problems, be it
much simpler. The solution obtained corresponds to the iterative
techniques in program flow analysis [17], and can be traced back
among others to Kildall [11].

Furthermore, we apply a general transformation to the resulting
fixed point solutions for bottom-up and top-down grammar analysis
problems. In a first, naive, formulation of the fixed point computa-
tion each step consists of two parts: the first part moves the infor-
mation from the old approximation to the right positions, guided
by the productions of the grammar, and the second part does the
actual computation of the new approximation. The first step can be
done once, before the iteration, and thus the fixed point is computed
much faster. This transformation is a general technique which ap-
plies to all computations of fixed points where the input has to be
arranged in order to compute the new information. This transfor-
mation may be compared to the transformation in which a constant
expression (in our case a constant computation) is moved out of the
body of a loop. Two essential ingredients of this transformation are
constructor classes [9], and anamorphisms [13].

Since we use constructor classes, we have used Gofer [10] to
implement the functions we have derived. Incorporating the func-

tions for solving grammar analysis problems in parser generators
such as a functional version of Yacc [20], Ratatosk [15], and Happy [5]
would reduce the amount of code used in these parser generators.
The complete code constructed in this paper is available by ftp
from ftp.cs. chalmers.se. The code can be found in the
file pub/users/ johanj/ga.gs.

This paper is organised as follows. Section 2 defines the datatypes
and functions that are used in manipulating grammars in Gofer.
Section 3 introduces some of the results used in the calculation of
fixed points. Section 4 defines both top-down and bottom-up gram-
mar analysis problems, and gives some examples. Section 5 de-
rives a program that can be used to solve top-down grammar anal-
ysis problems. Section 6 briefly reviews the solution to bottom-up
grammar analysis problems as described in [7]. Section 7 applies
the transformation that avoids rearranging the information to the
programs for solving bottom-up and top-down grammar analysis
problems. Section 8 concludes the paper.

2 Datatypes and functions for grammars in Gofer

This section defines various functions and datatypes in Gofer which
are used in analysing and representing grammars.

2.1 Laws for functions on lists

The datatype list is a prominent datatype in the subsequent sections,
and we will use a number of properties that are satisfied by strict
functions defined on the datatype list. Map-distributivity says that
the composition of two maps is a map again, i.e., for all functions
f and g:

map f . map g = map (f . g) (1)

Furthermore, the result of mapping the identity function over an
argument is the argument itself, so map id= id. These equalities
say that map is a functor. Function foldr can be distributed over
++ in the following way:

foldr f e (x++y) = foldr f (foldr f e y) x(2)

Furthermore, for associative function f with unit e, we have

foldr f e (x++y) = f (foldr f e x) (foldr f e y)

A function can be pushed through a foldr, obtaining an extra occur-
rence of map, if the following conditions hold. If h distributes over
f, i.e., h (f x y) = f (h x) (h y), and h e = e, then

h . foldr f e = foldr f e . map h (3)

Proofs of these equalities can be found in Bird and Wadler [3], or
in the Bird-Meertens calculus [1, 12].

An important functional programming construct we use is list-

comprehension. For example,

? [(x,y) | x <- [1,2], y <- [3,4]]
[(1,3),(1,4),(2,3),(2,4)]

We will use the following laws for list-comprehensions [21] in
some calculations.

[t | t <- ts] = ts (4)

[f t | q] = map f [t | q] (5)

[t | p,q] = concat [[t | q] | p] (6)

where function concat :: [[a]] -> [a] concats a list of
lists.

2.2 Terminals and nonterminals

The class Symbol has two functions isT and isN, which deter-
mine whether a symbol is a terminal or a nonterminal, respectively.

class Symbol s where
isN :: s -> Bool
isT :: s -> Bool
isT = not . isN

For example, the type of characters can be defined as an instance of
Symbol by

instance Symbol Char where
isN c = ’A’ <= c && c <= ’Z’

2.3 Grammars

A context-free grammar consists of sets of nonterminals, terminals,
productions, and a start-symbol. In Gofer, we combine the sets of
terminals and nonterminals into a set of symbols on which the func-
tions isN and isT are defined. The type of symbols is a parameter
of the definition of a context-free grammar. We represent a context-
free grammar in Gofer by a pair, the first component of which de-
notes the start-symbol, and the second componentof which denotes
the productions of the grammar. The start-symbol is a symbol, and
the productions of a grammar are a set of pairs the left-component
of which is a symbol, and the right component of which is a list of
symbols. A context-free grammar is a value of the type Grammar
s, which is defined by

type Grammar s = (s, Table s [s])

type Table a b = [(a,b)]

(-!-) :: Eq a => Table a b -> a -> b
t -!- v = head [b | (a,b) <- t, a == v]

(-:=-) :: Eq a =>
a -> b -> Table a b -> Table a b

i -:=- v = \t -> [(a,if a==i then v else b)
| (a,b) <- t
]

dom :: Eq a => Table a b -> [a]
dom t = nub [a | (a,b) <- t]

Consider the grammar with the following productions.

S → Aa | Sb

A → [] | aBc

B → S

where [] denotes the empty string. This grammar is encoded as a
value ex of type Grammar Char as follows.

ex = (’S’,[(’S’,[’A’,’a’])
,(’S’,[’S’,’b’])
,(’A’,[])
,(’A’,[’a’,’B’,’c’])
,(’B’,[’S’])
]

)

Function rhss takes a grammar and a nonterminal nt and returns
the right-hand sides of the productions of nt. It is defined by

rhss :: Eq s => Grammar s -> s -> [[s]]
rhss g nt = [rhs | (z,rhs) <- snd g, z == nt]

For example,rhss ex ’A’= [[],[’a’,’B’,’c’]]. Func-
tion nts takes a grammar, and returns the list of nonterminals of
the grammar. We assume that for each nonterminal there exists at
least one production. Let function nub remove duplicates from a
list, then function nts is defined by

nts :: Eq s => Grammar s -> [s]
nts g = dom (snd g)

For example, nts ex = SAB.

2.4 Contexts

A naive way to determine the terminals that can follow a nonter-
minal in a derivation, is to generate all the contexts of a nontermi-
nal. A context of a nonterminal is a path from the start-symbol to
the nonterminal, representing a derivation starting with the start-
symbol. This path is a sequence of right-hand sides of produc-
tions together with an indication which of the nonterminals will be
rewritten. Each element of this path is represented as a triple: the
part of the right-hand side to the left of the nonterminal that will be
rewritten, the nonterminal that will be rewritten, and the part of the
right-hand side to the right of the nonterminal that will be rewrit-
ten. The concatenation of these three values is a right-hand side of
a production of the grammar. For example, one of the contexts of
nonterminal ’B’ from grammar ex is the following list.

[([’a’],’B’,[’c’])
,([],’A’,[’a’])
,([],’S’,[])
]

Function contexts takes a grammar g and a nonterminal nt,
and returns the list of all contexts ending in nt. This function is
specified in set notation as follows.

contexts g s = {([], s, [])}

contexts g nt = { (l, nt, r) | x ← contexts n nt’

, l ++ [nt
′′] ++ r ← rhss nt’

, nt == nt
′′}

Here, s is the start-symbol of the grammar. The definition as a
functional program of contexts uses a function cs, which given
a grammar g, an integer n, and a nonterminal nt, returns the list of
all contexts of length at most n+1 ending in nt.

contexts :: (Symbol s,Eq s) =>
Grammar s -> s -> [[([s],s,[s])]]

contexts g nt = cs g infty nt

infty :: Int
infty = 1+infty

cs :: (Symbol s,Eq s) =>
Grammar s -> Int -> s -> [[([s],s,[s])]]

cs g 0 nt = [[([],fst g, [])]], nt == fst g
= [], otherwise

cs g (n+1) nt =
cs g n nt ++ ncs
where
ncs = [(l,nt,r):xs

| ((l,nt,r),nt’) <- ancs g nt
, xs <- cs g n nt’
]

ancs :: (Symbol s,Eq s) =>
Grammar s -> s -> [(([s],s,[s]),s)]

ancs g nt = [((l,nt,r),nt’)

| nt’ <- nts g
, rhs <- rhss g nt’
, (l,nt’’,r) <- splitr rhs
, nt’’ == nt
]

splitr :: Symbol s => [s] -> [([s],s,[s])]
splitr [] = []
splitr (x:xs) =

map (\(l,n,r) -> (x:l,n,r)) (splitr xs)
++ if isN x then [([],x,xs)] else []

Using laws for list-comprehensions,ncs, which appears in the left-
hand side expression for cs g (n+1) nt, can be rewritten as
follows. Abbreviate the first qualifier in the list-comprehension for
ncs by q, (l,nt,r) by lnr, and cs g n nt’ by cnn.

ncs

= definition of ncs; abbreviations above

[lnr:xs | q, xs <- cnn]

= law (6) for list-comprehensions

concat [[lnr:xs | xs <- cnn] | q]

= law (5) for list-comprehensions

concat
[map (lnr:) [xs | xs <- cnn] | q]

= law (4) for list-comprehensions

concat [map (lnr:) cnn | q])

2.5 Parse trees

A naive way to determine whether or not the empty string can be
derived from a nonterminal (the EMPTY problem), is to examine
all sentences derivable from the given nonterminal. A derivation
using productions of a context-free grammar corresponds with a
parse tree or derivation tree, i.e., an element of the datatype Rose
s, where the datatype Rose is defined by

data Rose a = Node a [Rose a]

All sentencesderivable from a nonterminal can be obtained from all
parse trees with the nonterminal in the top. Function generate
of type

generate :: (Symbol s,Eq s) =>
Grammar s -> s -> [Rose s]

generates all parse trees with a given nonterminal in the top. Note
that there may be infinitely many parse trees with a given nonter-
minal in the top. Function generate generates parse trees in
increasing order of height, and is defined in terms of infty, in a
similar fashion as function contexts. The definition of gener-
ate is omitted. Function sentence takes a rose tree, and returns
the sentence of which the rose tree is a derivation. Function sen-
tence is defined by

sentence :: Symbol s => Rose s -> [s]
sentence (Node a x) =

if isT a
then [a]
else concat (map sentence x)

3 Lattices and CPOs

In Section 4 we will specify grammar analysis problems in terms
of the functions contexts and generate. The specifications
are nonterminating functions because of the occurrence of infty

in the definitions of contexts and generate. To obtain termi-
nating grammar analysis functions we will apply the Fixed Point

Fusion Theorem in Section 5. This section introduces the fixed
point fusion theorem and other necessary machinery.

3.1 Lattices

A partial order on a set a is a reflexive, antisymmetrical, and tran-
sitive binary relation on a. A partially ordered set or poset is a pair
(a,≤) consisting of a set a together with a partial order ≤ on a. If
it exists, bottom is the least element of a poset. Given elements
x, y from a, x ‘join‘ y, is the least element in a that is greater
than both x and y. Note that the join of two elements is uniquely
defined when it exists. Function lub returns the least upperbound

of a subsetb of a.

lub = foldr join bottom

Function lub need not be defined for every subset b of a. Let
(a,≤) be a poset. If for all elements x and y their join x ‘join‘
y exists, then (a,≤) is called a join semilattice. Since we assume
join is associative, and bottom is the unit of join, function
lub satisfies

lub (x ++ y) = lub x ‘join‘ lub y

In Gofer we define semilattices by means of a class.

class Semilattice a where
join :: a -> a -> a
bottom :: a

instance Semilattice Bool where
join = (||)
bottom = False

instance (Eq a, Ord a) => Semilattice [a] where
join = \ a b -> sort (nub (a ++ b))
bottom = []

Provided a is a semilattice, a third instance of the class Semi-
lattice is the datatype Lift a, where Lift a is defined as
follows.

data Lift a = U a | D

instance Semilattice a => Semilattice (S a)
where
join = \x y -> case x of

D -> y
U a -> case y of

D -> U a
U b -> U (joinf a b)

bottom = D

The types [a] and Lift [a] give two possibilities to implement
sets as a semilattice. The difference between these types is that[a]
has the empty set as bottom, whereas Lift [a] has a bottom
below the empty set. Jones [8] gives a more extensive introduction
to computing with lattices.

3.2 CPOs

Let b be a subset of a poset. b is said to be directed if every finite
subset of b has a lub. A poseta is a complete partial order or CPO

if it contains a bottom element, and if each directed subset of a
has a lub. An element x of a is a fixed point of function f ::
a -> a if f x == x. It is a least fixed point if for any other
fixed point y of f we have x ≤ y. A function f :: a -> b is

monotonic if it respects the ordering on a, i.e., x ≤ y implies f
x ≤ f y. A function f :: a -> b is continuous if it respects
lubs of directed subsets, i.e., if b ⊆ a is a directed subset, then f
(lub b) = lub (map f b).

Let (a,≤) be a CPO with bottom ⊥, and g :: a -> a a
continuous function. It follows from the CPO Fixed Point Theo-
rem I [4] that function g has a least fixed point µg, defined by µg
= lub [gn⊥ | n <- [0..]]. The Fixed Point Fusion The-
orem (or Plotkin’s Lemma) is used to reason about fixed points.
This theorem reads as follows.

f ⊥ = ⊥ ∧ f · h = g · f ⇒ f µh = µg

We use the Fixed Point Fusion Theorem and the CPO Fixed
Point Theorem I as follows. Consider the function (+1). Define
infty = µ(+1). Taking h = (+1) and writing 0 for the bot-
tom ⊥ of natural numbers, we get, applying the Fixed Point Fusion
Theorem,

f 0 = ⊥ ∧ f (n+1) = g (f n) ⇒ f infty = µg

Other applications of a calculus of extreme fixed points can be
found in [14] and [19]

If c is a semilattice, and function g :: c -> c is mono-
tonic, then µg exists, and µg = lfp g bottom, where function
lfp is defined by

lfp f x = x, f x == x
= lfp f (f x), otherwise

We have the following equality for lfp f x.

lfp f x = firstequal xs (7)

where xs = x:map f xs

where function firstequal returns the first element that occurs
twice in a row in a list.

4 Grammar analysis problems

Although in some grammar analysis problems only a property of
the start-symbol of the grammar is sought, we define a grammar
analysis problem to be a problem which requires finding infor-
mation about all nonterminals of the grammar. This section for-
mally defines grammar analysis problems. The first subsection
gives some examples of grammar analysis problems. The second
subsection defines grammar analysis problems.

4.1 Examples of grammar analysis problems

Part of determining whether or not a grammar is LL(1) consists of
solving the grammar analysis problems EMPTY, FIRST, and FOL-
LOW. We also define the REACHABLE problem.

EMPTY

Given a grammar g and a nonterminal nt from g, the expression
empty g nt is a boolean expressing whether or not it is possible
to derive the empty string from nt, using the productions from
g. Conventionally, if =*=> is the usual derivation relation using
productions from grammar g, then

empty g nt = nt =*=> []

Note that the argument g is implicitly present in =*=> in the right-
hand side expression. Using function generate instead of the
derivation relation, empty g nt is defined as a functional pro-
gram by

empty g nt =
[] /= [xs

| xs <- generate g nt
, sentence xs == []
]

Note that evaluating the expression empty g nt may result in a
nonterminating computation.

FIRST

Given a grammar g and a nonterminal nt from g, the expression
first g nt is the set of terminals that can appear as the first
element of a string of terminals derivable from nt. Conventionally,
function first is specified by

first g nt = [a | nt =*=> a:x, isT a]

Again using function generate, it is defined as a functional pro-
gram by

first g nt =
nub [head (sentence xs)

| xs <- generate g nt
, sentence xs /= []
]

REACHABLE

Given a grammar g, reachable g nt is a boolean expressing
whether or not it is possible to reach nt from the start-symbol.
Conventionally, function reachable is specified by

reachable g nt = S =*=> x ++ [nt] ++ y

where S is the start-symbol from g. In the definition as a functional
program of function reachable we use function contexts in-
stead of the derivation relation.

reachable g nt =
[] /= [xs | xs <- contexts g nt]

Applying equality (4) we obtain that reachable g nt equals
[] /= contexts g nt.

FOLLOW

Given a grammar g and a nonterminal nt from g, the expression
follow g nt is the set of terminals that can follow on nt in a
derivation starting with the start-symbol S from g. Function fol-
low is conventionally specified by

follow g nt = [a | S =*=> x++[nt,a]++y, isT a]

The specification as a functional program of function follow uses
a function rc, which takes a context of a nonterminal nt, and re-
turns the symbols to the right of nt in this specific context. These
functions are defined by

follow g nt =
nub [foldr h [] (rc xs)

| xs <- contexts g nt
]

where
rc = foldr (\(l,nt,r) xs -> r ++ xs) []
h s x = [s], isT s

= first g s ++ x, empty g s
= first g s, otherwise

Bottom-up versus top-down

The definitions in the first two examples given above require find-
ing information about a nonterminal, and do not refer to the con-
text in which such a nonterminal appears. These two examples are
bottom-up grammar analysis problems. The definitions in the last
two examples explicitly refer to the context in which the nonter-
minal appears. These examples are top-down grammar analysis
problems.

4.2 Grammar analysis problems

We formalise the notion of a grammar analysis problem. As ex-
plained above, there exist two kinds of grammar analysis problems.

For the EMPTY problem it is required to determine for all non-
terminals nt from a grammar g whether or not it is possible to
derive the empty string from nonterminal nt. A non-executable
specification for this problem reads as follows. Given a nontermi-
nal nt apply a property function p to each derivation tree with nt
in the root. Function p determines whether or not the string repre-
sented by the derivation tree is empty,

p x = sentence x == []

Note that function p corresponds with the guard occurring in the
list-comprehension in the definition as a functional program ofempty
g nt. To determine whether or not it is possible to derive the
empty string from nonterminal nt, combine the list of results ob-
tained by applying function p to all derivation trees with nt in the
root. Function combine corresponds to the function ([] /=);
the expression in front of the list-comprehension in the definition
of empty g nt.

combine = foldr (||) False

combine equals the lub on the semilattice Bool.
For the FOLLOW problem it is required to determine for all non-

terminals nt from a grammar g the set of terminals that can follow
on nt in a derivation starting with the start-symbol from g. A non-
executable specification for this problem reads as follows. Given a
nonterminal nt apply a property function p to each context of nt.
Function p determines the terminals that can follow upon nt in a
derivation that starts with the derivation represented by the context.

p = foldr h [] . rc
where
rc = foldr (\(l,nt,r) xs -> r ++ xs) []
h s x = [s], isT s

= first g s ‘join‘ x, empty g s
= first g s, otherwise

where join is the join of the semilattice [a]. To determine the
set of all terminals that can follow on nt, apply function combine
to the list of results returned by applying function p to all contexts.
Function combine takes the union of these lists:

combine = foldr cup []

Again, function combine equals the lub of a semilattice, namely
the semilattice [a]. Note that we could have used the semilattice
Lift [a] instead of the semilattice [a].

Generalising the patterns above, we now define a grammar anal-
ysis problem.

Definition 1 A grammar analysis problem analyses a grammar g
with respect to property function p : t a b -> c, where [t
a b] is the result type of function generate or contexts, and
c is an instance of the class Semilattice. It is an expression of

the form analyse td p g for top-down problems, and anal-
yse bu p g for bottom-up problems.

tabulate :: [a] -> (a -> b) -> Table a b
tabulate l f = l ’zip’ map f l

nttab :: Eq a =>
Grammar s -> (s -> a) -> Table s a

nttab g = tabulate (nts g)

analyse_td p g = nttab g (lub.map p.contexts g)
analyse_bu p g = nttab g (lub.map p.generate g)

The four example problems given above are expressed as grammar
analysis problems as follows.

empties = analyse_bu ((==[]) . sentence)
firsts = analyse_bu (take 1 . sentence)
reachables = analyse_td (const True)
follows g = analyse_td (foldr h [] . rc) g

where
rc = foldr (\(l,nt,r) xs -> r ++ xs) []
h s x = [s], isT s

= first g s ‘join‘ x, empty g s
= first g s, otherwise

5 Deriving a program for top-down grammar analysis

The execution of the expressions analyse bu p g and ana-
lyse td p g does not terminate because of the occurrence of
infty in the definition of functions generate and contexts.
This section derives an always terminating program that returns the
value of analyse td p g. This program is obtained by means
of the theory given in Section 3.

contexts g is defined ascs g infty. Replacing the con-
stant infty by a variable n in function cs results in the following
equality for function analyse td:

analyse_td p g = tdn infty
where tdn n = nttab g (lub.map p.cs g n)

We use the CPO fixed point theorems to find the value of tdn in-
fty in finite time. If there exists a semilattice d with a bottom,
such that tdn 0 = bottom, and such that

tdn (n+1) = step (tdn n) (8)

for a monotonic function step :: d -> d, then tdn infty
equals the least fixed point of function step.

5.1 The semilattice

Each grammar analysis problem has a property function p :: t
a b -> c, where c is a semilattice the elements of which corre-
spond to the properties of individual symbols. We now construct
a new semilattice d in which the properties for all the symbols are
combined. We use c to construct the desired semilattice (d,≤). El-
ements of d are lists of pairs, of which the first components are the
nonterminals of the given grammar, and of which the second com-
ponent are elements of the semilattice c. ≤ on d is the straightfor-
ward extension of ≤ on c. The bottom of d is called bottoms td
and is equal to tdn 0.

bottoms td = (s -:=- p [([],s,[])]) (9)

(nttab g (const bottom))

where s = fst g

Notice that bottom td depends implicitly on grammar g.

5.2 The derivation

We further reduce condition (8). Abbreviate lub . map p by
af (for ‘analyse function’). If there exists a function stepf such
that

af (cs g (n+1) nt) = stepf (tdn n) nt(10)

then we have the following equality for tdn (n+1).

tdn (n+1) = nttab g (stepf (tdn n))

Abstracting from tdn n, we define function step by

step x = nttab g (stepf x) (11)

Note that function step is monotonic if function stepf is mono-
tonic in its first argument. So it remains to construct a monotonic
function stepf such that equality (10) holds. For that purpose we
manipulate the left-hand side of equation (10), heading towards an
expression in terms of tdn n. An easy calculation shows that

af (cs g (n+1) nt) = af (cs g n nt) ‘join‘ af ncs

where ncs appears in the definition of cs g (n+1) nt. The
left-hand argument of operator ‘join‘ can be expressed in terms
of tdn n, since we have

af (cs g n nt) = tdn n -!- nt

where operator -!- is defined in Section 2. We proceed with the
right-hand argument of join.

af ncs

= equality for ncs

af (concat [map (lnr:) cnn | q])

= af . concat = lub . map af

lub (map af [map (lnr:) cnn | q])

= law (5) for list-comprehensions

lub [(af . map (lnr:)) cnn | q]

= assume af . map (x:) = k x . af

lub [k lnr (af cnn) | q]

Remembercnn abbreviatescs g n nt’. Since af cnn can be
expressed in terms of tdn n:

af cnn = tdn n -!- nt’

it follows that if there exists a function k of type

k :: ([s],s,[s]) -> c -> c

such that af . map (x:) = k x . af, then function
stepf can be defined by

stepf x nt = (x -!- nt) ‘join‘
lub [k lnr (x -!- nt’)

| (lnr,nt’) <- ancs g nt
]

Function stepf is monotonic in its first argument if function k is
monotonic in its second argument. We have proved the following
theorem.

Theorem 1 If there exists a function k such that

af . map (x:) = k x . af (12)

and k is monotonic in its second argument, then

analyse td p g = lfp step bottoms td

where function step is defined in terms of function stepf in

equation (11), and bottoms td is defined in equation (9).

Using this theorem we redefine function analyse td such that
it takes function k as an argument instead of predicate p. Func-
tion analyse td takes three arguments: a function k satisfying
the conditions of the above theorem, a value v which equals p
[([],fst g,[])] (needed in the definition of bottoms td)
and a grammar g.

analyse_td ::
(Symbol s, Semilattice c, Eq (Table s c)) =>
(([s],s,[s]) -> c -> c) ->
c -> Grammar s -> Table s c

analyse_td k v g = lfp step bottoms_td

5.3 Applications

The previous subsection derives a program for top-down grammar
analysis problems, provided there exists a function k such that af
. map (x:) = k x . af, and k is monotonic in its second
argument. We verify these conditions for the two example top-
down problems.

REACHABLE

The property function p for the REACHABLE problem is the func-
tion const True. The semilattice we are working in here is the
semilattice of lists of pairs of which the first component is a sym-
bol and the second component is a boolean. It is easy to prove
that equality (12) holds if we define function k by k x y = y.
Furthermore, this function is trivially monotonic in its second ar-
gument. It follows that:

reachables = analyse_td (\x y -> y) True

FOLLOW

The property function p for the FOLLOW problem is defined in
Section 4. We have to find a function k such that

lub . map p . map ((l,n,r):)
=

k (l,n,r) . lub . map p

We calculate a definition of function k in two steps. We start with
showing that there exists a function k’ such thatp . ((l,n,r):)
= k’ r . p, and then we show that lub . map (k’ r)
= k’ r . lub. Taken together, these two equalities prove the

above equality.

p ((l,n,r):xs)

= definition of p

foldr h [] (rc ((l,n,r):xs))

= definition of rc

foldr h [] (r ++ rc xs)

= foldr distributes over ++ (2)

foldr h (foldr h [] (rc xs)) r

= definition of p

foldr h (p xs) r

It follows that if we define function k’ by

k’ r s = foldr h s r

then p . ((l,n,r):) = k’ r . p. For the proof of the
second equality lub . map (k’ r) = k’ r . lub, we
apply equality (3). For this purpose we have to show that k’ r
(x ‘join‘ y) = (k’ r x) ‘join‘ (k’ r y), and
that k’ r bottom = bottom. The former equality is proven

by induction on r. In the induction proof we use the fact that func-
tion h distributes over join:

h z (x ‘join‘ y) = (h z x) ‘join‘ (h z y)

The latter equality and the above definition of function k’ cannot
be satisfied together. The problem is that we can not distinguish
between the empty set and bottom. This subtle difference is im-
portant when there are nonterminals that cannot be reached from
the start-symbol. Therefore, we use the semilattice Lift [a] in-
stead of the semilattice [a]. Function p is now defined by p =
foldr h (U []) . rc, and never returns the value B. There-
fore, we can define k’ r D = D, and we can apply equality (3)
to obtain the desired equality. Function k defined by

k (l,n,r) D = D
k (l,n,r) s = foldr h s r

is monotonic in its second argument if function h is monotonic in
its second argument, which is true. It follows that:

follows g =
analyse_td k (U []) g
where
k (l,n,r) D = D
k (l,n,r) s = foldr h s r
h s x = U [s], isT s

= U (fg -!- s) ‘join‘ x, eg -!- s
= U (fg -!- s), otherwise

eg = empties g
fg = firsts g

6 Bottom-up grammar analysis

In [7] we derive a program for bottom-up grammar analysis prob-
lems that satisfy a number of properties. We repeat the main result
of that paper.

Theorem 2 Suppose there exists a function k such that

p (Node s xs) = k s (tabulate xs p)

k s = foldr f e

where f is monotonic in both of its arguments, e is the unit of f,
and both fl y and fr x, defined by

fl y = \x -> f x y
fr x = \y -> f x y

distribute over join. Then

analyse bu p g = lfp step bottoms bu

where bottoms bu is defined by

bottoms_bu = nttab g (const bottom)

and function step is defined in equation (11). Function stepf,

which is used in the definition of function step, is defined by

stepf x nt = (x -!- nt) ‘join‘
lub [k nt (j x rhs)

| rhs <- rhss g nt
]

j x rhs = let f s = if isN s
then x -!- s
else k s []

in map (\(a,b) -> (a,f b)) rhs

Using this theorem we redefine function analyse bu such that it
takes a function k that satisfies the conditions of the above theorem
as an argument, instead of predicate p.

analyse_bu ::
(Symbol s, Semilattice c, Eq (Table s c)) =>
(s -> Table s c -> c) ->
Grammar s -> Table s c

analyse_bu k g = lfp step bottoms_bu

6.1 Applications

Applying the above theorem to the EMPTY problem and the FIRST

problem gives the following results.

empties =
analyse_bu (\s xs -> if isT s then False

else and (map snd xs))

firsts g = analyse_bu k g
where
k s xs = [s], isT s

= foldr j [] xs, isN s
j (s,y) x = y, isT s

= y ‘join‘ x, eg -!- s
= y, otherwise

eg = empties g

7 More efficient fixed point computations

The fixed point solutions to top-down grammar analysis problems
and bottom-up grammar analysis problems given by Theorems 1
and 2, respectively, can both be written as the least fixed point of
a function that for each nonterminal first arranges the elements of
the previous approximation of the result, and then evaluates the
arranged values for each nonterminal. In each iteration of func-
tion lfp the function step arranges information describing the
approximations computed thus far, and then computes a new ap-
proximation based on these values. Since the arrangement involves
many evaluations of the operator (-!-), this is a costly part of the
overall computation. However, arranging the input is completely
independent of the value of the input. It is therefore desirable to
‘factor out’ the arranging function arr from function lfp. Thus
we obtain a computation of a fixed point in which arr is evaluated
once instead of at each next step of the computation of the fixed
point. The gain in efficiency of this arranging transformation is lin-
ear, but it may be substantial. It corresponds directly to moving
constant expressions out of a loop, as found in most modern opti-
mising compilers for imperative languages. This section derives the
program, using constructor classes [9] to abstract from the notions
top-down and bottom-up in the calculations.

7.1 Rewriting the fixed point solutions

The fixed point solutions to top-down grammar analysis problems
and bottom-up grammar analysis problems given by Theorems 1
and 2, respectively, can both be rewritten as follows. We separate
the value independent and value dependent parts of the computa-
tion.

lfp (map (p2 eval) . arr) bottoms

where function p2 is defined by

p2 f = \(a,b) -> (a,f b)

Given a type t, functions arr and eval have the following types.

arr :: Table s c -> Table s (c,t (Sum (s,c) s))
eval :: (c,t (Sum (s,c) s)) -> c

Function arr takes the old approximations, and arranges the nec-
essary information for each nonterminal. For example, for bottom-
up problems it returns for each nonterminal a pair, consisting of the
old approximation for the nonterminal, and the list of right-hand
sides of the nonterminal, in which each element is an element of
the datatype Sum (s,c) s, i.e., each element is either a nonter-
minal together with its approximation, or a terminal.

data Sum a b = L a | R b

(-+-) :: (a -> b) -> (c -> d) ->
Sum a c -> Sum b d

f -+- g = \s -> case s of
L x -> L (f x)
R y -> R (g y)

Function eval takes the old approximation for a nonterminal and
a structure containing the information needed to compute the new
approximation, and returns the new approximation for the nonter-
minal.

The type t is the type Bu for bottom-up problems and the type
Td for top-down problems. Since we want to use maps on these
datatypes, we let them be instances of the constructor class Func-
tor.

data Bu a = Bu [[a]]
data Td a = Td [(([a],a,[a]),a)]

instance Functor Bu where
map f (Bu xs) = Bu (map (map f) xs)

instance Functor Td where
map f (Td xs) =

let g (ys,n,zs) = (map f ys,f n,map f zs)
h ((ys,n,zs),n’) = (g (ys,n,zs),f n’)

in Td (map h xs)

The functions arr and eval are defined as follows for bottom-up
and top-down problems, respectively. We assume these functions
are defined in the context of a grammar g and an analysis function
k.

arr_bu s = nttab g (\nt -> (s -!- nt,h nt))
where h nt = map (s -!!-) (Bu (rhss g nt))

(-!!-) :: (Symbol s,Eq s) =>
Table s c -> s -> Sum (s,c) s

l -!!- s = if isN s then L (s,l -!- s) else R s

eval_bu (c,Bu xs) = c ‘join‘ lub (map k xs)

arr_td s = nttab g (\nt -> (s -!- nt,h nt))
where h nt = map (s -!!-) (Td (ancs g nt))

eval_td (c,Td xs) = c ‘join‘ lub (map k xs)

At the end of this section we will define function analyse ::
Functor t => ... t ... which takes functions arr and
eval as arguments. Thus constructor classes allow us to abstract
from the notions bottom-up and top-down. In the remaining calcu-
lations of this section we will only use the type variable t.

7.2 Factoring out function arr

Each computation step of function lfp arranges its input. How-
ever, arranging the input is completely independent of the value of
the input. It is therefore desirable to ‘factor out’ function arr from
function lfp.

The first transformation we apply is introducing streams in the
fixed point computation. For this purpose we use function to and

from. Function to takes a list of pairs consisting of a nonterminal
and a stream of approximations for the nonterminal, and returns a
stream of lists of pairs of nonterminals and approximation values.
It is a kind of transpose function. Function from is a left- and
right-inverse of function to.

to :: [(a,[c])] -> [[(a,c)]]
to xs = map (p2 head) xs:to (map (p2 tail) xs)

from :: [[(a,c)]] -> [(a,[c])]
from (x:xs) = x ‘cons‘ (from xs)

cons = zipWith (\(a,c) (b,cs) -> (a,c:cs))

Function to is a list anamorphism; function from is a list cata-

morphism [13]. For these functions we have

to . from = id (13)

from . to ≤ id (14)

The proofs of these equations are by coinduction, and use proper-
ties of anamorphisms [13, 14] and zips [2, 6]. They are omitted
for reasons of space. Functions to and from are introduced in the
fixed point computation as follows.

lfp f x

= equality for fixed points (7)

firstequal xs
where xs = x:map f xs

= to . from = id (13)

firstequal (to fx)
where fx = from xs

xs = x:map f (to fx)

= removing xs

firstequal (to fx)
where fx = from (x:map f (to fx))

= definition of from

firstequal (to fx)
where fx = x ‘cons‘ from (map f (to fx))

We proceed with the subexpression map f . to from the right-
hand argument of operator ‘cons‘. We assume that f equals the
composition of functions map (p2 eval) . arr.

map f . to

= definition of f

map (map (p2 eval) . arr) . to

= map-distributivity (1)

map (map (p2 eval)) . map arr . to

= assume equality (15) below

map (map (p2 eval)) .
to . map (p2 uzip . p3 tos) . arr

where function p3 is defined by

p3 f = \(a,(b,c)) -> (a,(b,f c))

and function uzip is the function uncurry zip. The equality
used in the above calculation pushes function arr through function
to.

map arr.to = to.map (p2 uzip.p3 tos).arr(15)

The function tos is very similar to function to. It is an anamor-
phism that takes a t-structure containing streams to a stream of
t-structures, where t may be either the type Bu or the type Td.

tos :: Functor t =>
t (Sum (s,[c]) s) -> [t (Sum (s,c) s)]

tos xs = map (i head) xs:tos (map (i tail) xs)
where i f = (p2 f) -+- id

We could have combined the definitions of to and tos in one
definition, but the occurrence of Sum in the type for tos makes
the resulting functions rather awkward.

For each instance t of the class Functor for which we want
to apply the results of this section we have to prove equality (15).
Again, these proofs are by coinduction, and omitted. We proceed
the above calculation with the composition of functions from .
map (map (p2 eval)) . to . map (p2 uzip . p3 tos).
In the first step we apply the following equation, which combines
functions to and from with function map eval.

from . map (map (p2 eval)) . to

≤ (16)

map (p2 (map eval))

The proof of this equation, using amongst others equation (14), is
omitted.

from . map (map (p2 eval) . to
. map (p2 uzip . p3 tos)

≤ equation (16)

map (p2 (map eval)).map (p2 uzip.p3 tos)

= map distributivity; property of p2

map (p2 (map eval . uzip) . p3 tos)

This concludes the derivation. We have found that we can write
lfp f x as follows.

firstequal (to fx)
where
fx = let h = p2 (map eval . uzip) . p3 tos

in x ‘cons‘ map h (arr fx)

Since function eval is defined equally in terms of map k for top-
down problems and bottom-up problems, we replace the argument
eval by an argument corresponding to map k (replacing eval
by function k itself makes it more complicated to describe the type
of function analyse below). The resulting function analyse is
given in the following theorem.

Theorem 3 Both of the types Bu and Td are instances of the class

Functor for which equation (15) holds. For these types we can
write lfp (map (p2 eval) . arr) bottoms as anal-
yse arr eval bottoms, where function analyse is defined
by:

analyse :: (Functor t, Eq [c], Semilattice c) =>
([(a,[c])] -> [(a,([c],t (Sum (a,[c]) b)))]) -

>
(t (Sum (a,c) b) -> [c]) ->
Table a c -> Table a c

analyse arr eval x = firstequal (to fx)
where
fx = let g (b,bs) = b ‘join‘ lub (eval bs)

h = p2 (map g . uzip) . p3 tos
in x ‘cons‘ map h (arr fx)

Using function analyse, we define functions analyse bu and
analyse td as follows.

analyse_bu eval g = analyse
arr_bu
eval

bottoms_bu
analyse_td eval g = analyse

arr_td
eval
bottoms_td

where value bottoms bu is defined in Theorem 2, and value
bottom td in equation (9). Although the gain in efficiency com-
pared with the programs in Sections 5 and 6 is linear, it may be
substantial. For example, computing follows for a grammar that
requires about forty iteration steps using the above definition of
analyse td is about twenty times faster than computing fol-
lows using the old definition of analyse td.

8 Conclusions

Using laws for monads, maps and folds, we have derived a pro-
gram for the top-down analysis of grammars. Together with the
program for bottom-up grammar analysis derived in [7], this con-
stitutes a complete description of programs for grammar analysis
problems. Furthermore, we have given a derivation that transforms
both programs for grammar analysis into a more efficient programs
by avoiding the repeated arranging of information in the compu-
tation of the fixed point. Constructor classes allow us to apply
this transformation to both programs in one go; without constructor
classes we would have had to perform the same derivation twice.
Anamorphisms and their properties are other essential ingredients
of this transformation.

References

[1] R.S. Bird. An introduction to the theory of lists. In M. Broy,
editor, Logic of Programming and Calculi of Discrete De-
sign, volume F36 of NATO ASI Series, pages 5–42. Springer–
Verlag, 1987.

[2] R.S. Bird. Lectures on constructive functional program-
ming. In M. Broy, editor, Constructive Methods in Comput-

ing Science, volume F55 of NATO ASI Series, pages 151–216.
Springer–Verlag, 1989.

[3] R.S. Bird and P. Wadler. Introduction to Functional Program-
ming. Prentice Hall International, 1988.

[4] B.A. Davey and H.A. Priestley. Introduction to Lattices and

Order. Cambridge University Press, 1990.

[5] Andy Gill and Simon Marlow. Happy manual. Published on
comp.lang.functional, 1993.

[6] J. Jeuring. Theories for Algorithm Calculation. PhD thesis,
Utrecht University, 1993. Parts of the thesis appeared in the
Lecture Notes of the STOP 1992 Summerschool on Construc-
tive Algorithmics.

[7] J. Jeuring and S.D. Swierstra. Bottom-up grammar anal-
ysis — a functional formulation —. In Donald Sannella,
editor, Proceedings Programming Languages and Systems-
ESOP ’94, pages 317–332. Springer-Verlag, 1994. LNCS
788.

[8] Mark P. Jones. Computing with lattices: An application
of type classes. J. Functional Programming, 2(4):475–503,
1992.

[9] Mark P. Jones. A system of constructor classes: overloading
and implicit higher-order polymorphism. In Proceedings of

the 6th ACM Conference on Functional Programming Lan-
guages and Computer Architecture, FPCA ’93, pages 52–61,
1993.

[10] Mark P. Jones. Gofer. Available via ftp on
ftp.cs.nott.ac.uk, 1995.

[11] G.A. Kildall. A unified approach to global program opti-
mization. In Symposium on Principles of Programming Lan-

guages, pages 194–206, 1973.

[12] L. Meertens. Algorithmics — towards programming as a
mathematical activity. In J.W. de Bakker, M. Hazewinkel, and
J.K. Lenstra, editors, Proceedings of the CWI Symposium on

Mathematics and Computer Science, volume 1 of CWI Mono-
graphs, pages 289–334. North–Holland, 1986.

[13] E. Meijer, M. Fokkinga, and R. Paterson. Functional pro-
gramming with bananas, lenses, envelopes, and barbed wire.
In J. Hughes, editor, Proceedings of the 5th ACM Conference

on Functional Programming Languagesand Computer Archi-
tecture, FPCA ’91, pages 124–144, 1991.

[14] Erik Meijer. Calculating compilers. PhD thesis, Nijmegen
University, 1992.

[15] Torben Mogensen. Ratatosk – a parser generator and scan-
ner generator for Gofer. Published on comp.lang.functional,
1993.

[16] Ulrich Möncke and Reinhard Wilhelm. Grammar flow analy-
sis. In Attribute Grammars, Applications and Systems, SAGA
’91, pages 151–186.Springer-Verlag, New York, 1991. LNCS
545.

[17] S.S. Muchnick and N.D. Jones, editors. Program Flow Anal-

ysis: Theory and Applications. Prentice Hall, 1981.

[18] M.J. Nederhof. Linguistic Parsing and Program Transforma-

tions. PhD thesis, University of Nijmegen, 1994.

[19] Mathematics of Program Construction Group (Eindhoven
Technical University). Fixed-point calculus. Information Pro-

cessing Letters, 53(3):131–136, 1995.

[20] Simon L. Peyton Jones. Yacc in Sasl – an exercise in
functional programming. Software–Practice and Experience,
15(8):807–820, 1985.

[21] P. Wadler. Comprehending monads. Mathematical Structures
in Computer Science, 2:461–493, 1992.

