\qquad
Practice for Finals - Logs Due Friday, April 30

1. Find the domain and range of the function whose graph is shown.

d: all real \#s
$r: r y \geq 0$
2. Which function represents exponential growth?
F. $y=9\left(\frac{1}{3}\right)^{x}$
G. $y=4 x^{4}$
H. $y=12\left(\frac{1}{5}\right)^{x} \quad$ J. $y=10(2)^{x}$
3. The graph of which exponential function passes through the points $(0,4)$ and $(1,24)$?
A. $y=4(6)^{x}$
B. $y=3(8)^{x}$
C. $y=2(2)^{x}$
D. $y=10(3)^{x}$

$$
\left(x^{2}\right)^{5}=x^{10}
$$

5. Solve $2^{3 m-4}>4 . \quad 2^{3 m-4}>2^{2}$
$3 m-4>2$ $3 m>6$ $m>2$
6. Write the equation $4^{3}=64$ in logarithmic form.

$$
\log _{4} 64=3
$$

7. Write the equation $\log _{12} 144=2$ in exponential form.

$$
12^{2}=144
$$

8. Evaluate $\log _{2} 8$.

$$
2^{x}=8
$$

$x=3$
9. Solve $\log _{3} n=2$.

$$
3^{2}=n
$$

11. Solve $\log _{6} 10+\log _{6} x=\log _{6} 40$.

$$
\log _{6} 10 x=\log _{6} 40
$$

$10 x=40$

$$
x=4
$$

12. Solve $4^{x}=20$. Round to four decimal places.

$$
\log _{4} 20=x \quad \frac{\log 20}{\log ^{4} 4}=x
$$

$$
x \approx 2.1610
$$

13. Express $\log _{9} 22$ in terms of common logarithms.
A. $\log \frac{22}{9}$
B. $\log 198$
C. $\frac{\log 22}{\log 9}$
D. $\frac{\log 9}{\log 22}$
14. AUTOMOBILES Lydia bought a car for $\$ 20,000$. It is expected to depreciate at a rate of 10% per year. What will be the value of the car in 2 years? Use $y=a(1-r)^{t}$ and round to the nearest dollar.

$$
y=p=P(1+r)^{t} \quad y=20,000(1--10)^{2}=\$ 16,200
$$

15. ART Martin bought a painting for $\$ 5,000$. It is expected to appreciate at 4% per year. How much will the painting be worth in 6 years? Use $y=a(1+r)^{t}$ and round to the nearest cent.

$$
\begin{gathered}
y=5000(1+.04)^{6} \\
y=\$ 6326.60
\end{gathered}
$$

1.

Evaßule $64+2 \log _{3} 9+\log _{1} 25$

$$
\begin{aligned}
& 3 \log _{2} 64=x \\
& 2^{x}=64^{3} \\
& 2^{x}=\left(2^{6}\right)^{3}
\end{aligned}
$$

$$
18+4+(-2)=20 \quad x=18
$$

$2 \log _{3} 9=x$

$$
\begin{array}{ll}
3^{x}=9^{2} & \log _{\frac{1}{5}} 25=x \\
3^{x}=3^{4} & \frac{1}{5} x=25 \\
x=4 & 5^{-x}=5^{2}
\end{array}
$$

$$
-x=2
$$

Demonstrate your knowledge by giving a clear, concise solution to each problem. Be sure to include all relevant drawings and justify your answers. You may show your solutions in more than one way or investigate beyond the requirements of the problem.
2. a. Solve the exponential equation $3^{5 x}=9^{x+6}$ by rewriting the equation so that each side has the same base.

$$
3^{5 x}=3^{2(x+6)}
$$

$$
\begin{aligned}
& 5 x=2 x+12 \\
& 3 x=12 \\
& x=4
\end{aligned}
$$

$$
\log _{\text {b. Sole the equation } 3^{5 x}} 9^{x+a t t a} \text { usia }
$$

$$
\begin{aligned}
& \frac{5 x \log 3}{\log 3}=\frac{(x+6) \log 9}{\log 3} \frac{5 x}{x+6}=\frac{\log 9}{\log 3} \frac{5 x}{(x+6)}=2 \quad \begin{array}{l}
5 x=2 x+12 \\
3 x=12 \\
x=4
\end{array}
\end{aligned}
$$

$$
\begin{gathered}
5 x \log 3=x \log 9+6 \log 9 \\
x(5 \log 3-\log 9)=6 \log 9 \\
x=\frac{(6 \log (9))}{(5 \log (3)-\log (9))}=4
\end{gathered}
$$

