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Chapter19 Harmonic Motion

People often create habits that are repetitive because 

certain repetitive motions have regular comfortable 

rhythms. Babies like the feel of the back and forth 

motion of a rocking chair. It seems to make them feel 

happy and puts them to sleep.      We see back and 

forth motion in many situations. Earth spins you 

around every 24 hours. Maybe this explains why we 

are often very comfortable with motions that have 

regular rhythms.

We see back-and-forth motion in many situations. A 

swing, the pendulum of a grandfather clock, and a 

rocking chair all have this kind of motion. Motion that 

repeats is called harmonic motion. Offered a choice to 

sit in a regular chair or a rocking chair, you might pick 

the rocking chair. For one thing, rocking back and 

forth is more fun than sitting still.

Harmonic motion includes motion that goes around 

and around. Earth orbiting the sun, the planet spinning 

on its axis, and a ferris wheel are all examples of this 

kind of harmonic motion.

Objects or systems that make harmonic motions are 

called oscillators. Think about where you see 

oscillators or oscillating systems in your school and 

home. Look around your classroom — where do you 

see oscillators? Where do you see back-and-forth 

motion or motion that goes around and around?

Key Questions

How many examples of 
harmonic motion exist in an 
amusement park?

What do two “out of phase” 
oscillators look like?

How is harmonic motion related 
to playing a guitar?
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Figure 19.1: (A) Real-life situations such 

as riding a bicycle can include both linear 

motion and harmonic motion. (B) A person on 

a swing is an example of harmonic motion in 

action.

Vocabulary

harmonic motion, cycle, oscillation, 
oscillator, vibration, period, 
frequency, hertz, amplitude, 
damping

Objectives

Identify a cycle of harmonic 
motion.

Recognize common oscillators.

Know the relationship between 
period and frequency.

Understand how to identify and 
measure amplitude.

19.1 Harmonic Motion

The forward rush of a cyclist pedaling past you on the street is called linear motion. Linear motion

gets us from one place to another whether we are walking, riding a bicycle, or driving a car

(Figure 19.1). The pedaling action and turning of the cyclist’s wheels are examples of harmonic

motion. Harmonic motion is motion that repeats.

Motion in cycles

What is a cycle? In earlier chapters we used position, speed and acceleration to describe

motion. For harmonic motion we need some new ideas that describe the

“over-and-over” repetition. The first important idea is the cycle. A cycle is a

unit of motion that repeats over and over. One spin of a bicycle wheel is a

cycle and so is one turn of the pedals. One full back-and-forth swing of a

child on a playground swing is also one cycle (Figure 19.1).

Looking at

one cycle

A pendulum’s cycle is shown in the diagram below. Each box in the diagram

is a snapshot of the motion at a different time in the cycle. 

The cycle of a

pendulum

The cycle starts with (1) the swing from left to center. Next, the cycle

continues with (2) center to right, and (3) back from right to center. The cycle

ends when the pendulum moves (4) from center to left because this brings the

pendulum back the the beginning of the next cycle. The box numbered “5” is

the same as the one numbered “1” and starts the next cycle. Once a cycle is

completed, the next cycle begins without any interruption in the motion.



415UNIT 7 VIBRATIONS, WAVES AND SOUND

CHAPTER 19: HARMONIC MOTION

Where do you find harmonic motion? 

Oscillators The word oscillation means a motion that repeats regularly. Therefore, a

system with harmonic motion is called an oscillator. A pendulum is an

oscillator; so is your heart and its surrounding muscles. Our solar system is a

large oscillator with each planet in harmonic motion around the sun. An atom

is a small oscillator because its electrons vibrate around the nucleus. The term

vibration is another word used for back and forth. People tend to use

“vibration” for motion that repeats fast and “oscillation” for motion that

repeats more slowly. 

Earth is part

of harmonic

motion systems

Earth is a part of several oscillating systems. The Earth-sun system has a cycle

of one year, which means Earth completes one orbit around the sun in a year.

The Earth-moon system has a cycle of approximately 28 days. Earth itself has

several different cycles (Figure 19.2). It rotates on its axis once a day, making

the 24-hour cycle of day and night. There is also a wobble of Earth’s axis that

cycles every 22,000 years, moving the north and south poles around by

hundreds of miles. There are cycles in weather, such as the El Niño Southern

Oscillation, an event that involves warmer ocean water and increased

thunderstorm activity in the western Pacific Ocean. Cycles are important; the

lives of all plants and animals depend on seasonal cycles.

Music Sound is a traveling vibration of air molecules. Musical instruments and stereo

speakers are oscillators that we design to create sounds with certain cycles that

we enjoy hearing. When a stereo is playing, the speaker cone moves back and

forth rapidly (Figure 19.3). The cyclic back-and-forth motion pushes and pulls

on air, creating tiny oscillations in pressure. The pressure oscillations travel to

your eardrum and cause it to vibrate. Vibrations of the eardrum move tiny

bones in the ear setting up more vibrations that are transmitted by nerves to the

brain. There is harmonic motion at every step of the way, from the musical

instrument’s performance to the perception of sound by your brain. 

Color Light is the result of harmonic motion of the electric and magnetic fields

(chapter 18). The colors that you see in a picture come from the vibration of

electrons in the molecules of paint. Each color of paint contains different

molecules that oscillate with different cycles to create the different colors of

light you see (chapter 24). 

Figure 19.2: The Earth-sun-moon system 

has many different cycles. The year, month, 

and day are the result of orbital cycles.

Figure 19.3: As a speaker cone moves 

back and forth, it pushes and pulls on air, 

creating oscillating changes in pressure that 

we can detect with our ears. The dark blue 

bands in the graphic represent high pressure 

regions and the white bands represent low 

pressure regions.
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Figure 19.4: The cell phone you use has an 

electronic oscillator at millions of cycles per 

second.

Figure 19.5: You hear music from your car 

radio when the oscillator in your radio 

matches the frequency of the oscillator in the 

transmission tower connected to the radio 

station.

Describing harmonic motion

Oscillators in

communications

Almost all modern communication technology relies on harmonic motion.

The electronic technology in a cell phone uses an oscillator that makes more

than 100 million cycles each second (Figure 19.4). When you tune into a

station at 101 on the FM dial, you are actually setting the oscillator in your

radio to 101,000,000 cycles per second.

Period is the

time for one

cycle

The time for one cycle to occur is called the period. The cycles of “perfect”

oscillators always repeat with the same period. This makes harmonic motion

a good way to keep time. For example, a clock pendulum with a period of one

second will complete 60 swings (or cycles) in one minute. A clock keeps

track of time by counting cycles of an oscillator. 

Frequency is the

number of cycles

per second

The term frequency means the number of cycles per second. FM radio (the

“FM” stands for frequency modulation) uses frequencies between 95 million

and 107 million cycles per second. Your heartbeat has a frequency between

one-half and two cycles per second. The musical note “A” has a frequency of

440 cycles per second. The human voice contains frequencies mainly

between 100 and 2,000 cycles per second.

A hertz equals

one cycle per

second

The unit of one cycle per second is called a hertz. You hear music when the

frequency of the oscillator in your radio exactly matches the frequency of the

oscillator in the transmission tower connected to the radio station

(Figure 19.5). A radio station dial set to 101 FM receives music broadcast at a

frequency of 101,000,000 hertz or 101 megahertz. Your ear can hear

frequencies of sound in the range from 20 Hz to between 15,000 and

20,000 Hz. The Hz is a unit that is the same in both the English and metric

systems.
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Keeping “perfect” time

The world’s most accurate clock, 

the NIST-F1 Cesium Fountain 

Atomic Clock in Boulder, Colorado, 

keeps time by counting cycles of 

light waves emitted by a cluster of 

cesium atoms. This clock can run 

for more than 30 million years and 

not gain or lose a single second!

The cesium atoms are cooled to 

near absolute zero by floating 

them in a vacuum on a cushion of 

laser light. The very low 

temperature is what makes the 

clock so stable and accurate. At 

normal temperatures the 

frequency of light waves would be 

affected by the thermal motion of 

the cesium atoms. Near absolute 

zero the thermal motion is all but 

eliminated. .

Calculating harmonic motion

Frequency is

the inverse

of period

Frequency and period are inversely related. The period is the time per cycle.

The frequency is the number of cycles per time. For example, if the period of a

pendulum is 2 seconds, its frequency is 0.5 cycles per second (0.5 Hz).

 

Calculating 
frequency

The period of an oscillator is 15 minutes. What is the frequency of this oscillator 

in hertz?

1. Looking for: You are asked for the frequency in hertz.

2. Given: You are given the period in minutes.

3. Relationships: Convert minutes to seconds using the conversion factor 1 

minute/60 seconds; Use the formula: f = 1/T; 

4. Solution:

Your turn...

a. The period of an 

oscillator is 2 minutes. What is the frequency of this oscillator in hertz? 

Answer: 0.008 Hz 

b. How often would you push someone on a swing to create a frequency of 

0.20 hertz? Answer: every 5 seconds

c. The minute hand of a clock pendulum moves 1/60 of a turn after 30 cycles. 

What is the period and frequency of this pendulum? Answer: 60 seconds 

divided by 30 cycles = 2 seconds per cycle; the period is 2 seconds and the 

frequency is 0.5 Hz.

60 sec 1
15 min 900 sec; 0.0011Hz

1min 900 sec
f× = = =
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Figure 19.6: Small amplitude versus large 

amplitude.

Figure 19.7: A pendulum with an 

amplitude of 20 degrees swings 20 degrees 

away from the center.

Amplitude

Amplitude

describes the

size of a cycle

You know the period is the time to complete a cycle. The amplitude

describes the “size” of a cycle. Figure 19.6 shows a pendulum with small

amplitude and large amplitude. With mechanical systems (such as a

pendulum), the amplitude is often a distance or angle. With other kinds of

oscillators, the amplitude might be voltage or pressure. The amplitude is

measured in units appropriate to the kind of system you are describing.

How do you

measure

amplitude?

The amplitude is the maximum distance the oscillator moves away from its

equilibrium position. For a pendulum, the equilibrium position is hanging

straight down in the center. For the pendulum in Figure 19.7, the amplitude is

20 degrees, because the pendulum moves 20 degrees away from center in

either direction.

Damping Friction slows a pendulum down, as it does all oscillators. That means the

amplitude slowly gets reduced until the pendulum is hanging straight down,

motionless. We use the word damping to describe the gradual loss of

amplitude of an oscillator. If you wanted to make a clock with a pendulum,

you would have to find a way to keep adding energy to counteract the

damping of friction.

19.1 Section Review

1. Which is the best example of a cycle: a turn of a bicycle wheel or a slide down a ski slope? 

2. Describe one example of an oscillating system you would find at an amusement park.

3. What is the relationship between period and frequency?

4. Every 6 seconds a pendulum completes one cycle. What are the period and frequency of this
pendulum?
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Figure 19.8: Typical graphs for linear 

motion (top) and harmonic motion (bottom). 

Graphs of linear motion do not show cycles. 

Harmonic motion graphs show repeating 

cycles.

Vocabulary

phase

Objectives

Recognize the difference between 
linear motion and harmonic 
motion graphs.

Interpret graphs of harmonic 
motion.

Determine amplitude and period 
from a harmonic motion graph.

Recognize when two oscillators 
are in phase or out of phase.

19.2 Graphs of Harmonic Motion

Harmonic motion graphs show cycles (Figure 19.8). Even without seeing the actual motion, you can

look at a harmonic motion graph and figure out the period and amplitude. You can also quickly

sketch an accurate harmonic motion graph if you know the period and amplitude.

Reading harmonic motion graphs

Repeating

patterns

The most common type of graph puts position on the vertical (y) axis and time

on the horizontal (x) axis. The graph below shows how the position of a

pendulum changes over time. The repeating “wave” on the graph represents

the repeating cycles of motion of the pendulum. 

Finding the

period

This pendulum has a period of 1.5 seconds so the pattern on the graph repeats

every 1.5 seconds. If you were to cut out any piece of the graph and slide it

over 1.5 seconds it would line up exactly. You can tell the period is 1.5 seconds

because the graph repeats itself every 1.5 seconds.

Showing

amplitude

on a graph

The amplitude of harmonic motion can also be seen on a graph. The graph

below shows that the pendulum swings from +20 centimeters to -20

centimeters and back. Therefore, the amplitude of the pendulum is 20

centimeters. Harmonic motion graphs often use positive and negative values to

represent motion on either side of a center (equilibrium) position. Zero usually

represents the equilibrium point. Notice that zero is placed halfway up the y-

axis so there is room for both positive and negative values. This graph is in

centimeters but the motion of the pendulum could also have been graphed

using the angle measured relative to the center (straight down) position.
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Figure 19.9: The cycle is the part of the 

graph that repeats over and over. The yellow 

shading shows one cycle for each of the 

graphs above.

Figure 19.10: The amplitude is one-half 

the distance between the highest and lowest 

points on the graph. In this graph of harmonic 

motion, the amplitude is 20 centimeters.

Determining period and amplitude from a graph

Calculating

period

from a graph

To find the period from a graph, start by identifying one complete cycle. The

cycle must begin and end in the same place in the pattern. Figure 19.9 shows

how to choose the cycle for a simple harmonic motion graph and for a more

complex one. Once you have identified a cycle, you use the time axis of the

graph to determine the period. The period is the time difference between the

beginning of the cycle and the end. Subtract the beginning time from the

ending time, as shown in the example below.

Calculating

amplitude

from a graph

On a graph of harmonic motion, the amplitude is half the distance between

the highest and lowest points on the graph. For example, in Figure 19.10, the

amplitude is 20 centimeters. Here is the calculation:

[20 cm - (- 20 cm)] ÷ 2 = [20 cm + 20 cm] ÷ 2 = 40 cm ÷ 2 = 20 cm.
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Figure 19.11: The harmonic motion of a 

rotating turntable is illustrated by the back-

and-forth motion of the shadow of the peg. 

Circular motion and phase

Phase How do you describe where a pendulum is in its cycle? Saying the pendulum

is at a 10 degree angle is not enough. If the pendulum started at 10 degrees,

then it would be at the start of its cycle. If the pendulum started at 20 degrees it

would be part way through its cycle and could be near the start or the end. The

phase tells you exactly where an oscillator is in its cycle. Phase is measured

relative to the whole cycle, and is independent of amplitude or period.

Cycles of

circular motion

are 360°

The most convenient way to describe phase is to think in terms of angles and

circular motion. Circular motion is a kind of harmonic motion because rotation

is a pattern of repeating cycles. The cycles of circular motion always measure

360 degrees. It does not matter how big the wheel is, each full turn is 360

degrees. Because circular motion always has cycles of 360 degrees, we use

degrees to measure phase.

Phase is

measured in

degrees

To see how degrees apply to harmonic motion that is not circular (such as a

pendulum), imagine a peg on a rotating turntable (Figure 19.11). A bright light

casts a shadow of the peg on the wall. As the turntable rotates, the shadow

goes back and forth on the wall (A and B in Figure 19.11). If we make a graph

of the position of the shadow, we get a harmonic motion graph (C). One cycle

passes every 360 degree turn of the turntable. A quarter cycle has a phase of 90

degrees, half a cycle has a phase of 180 degrees and so on (Figure 19.11).

Two oscillators

“in phase”

The concept of phase is most important when comparing two or more

oscillators. Imagine two identical pendulums. If you start them together, their

graphs look like the picture below. We say these pendulums are in phase

because their cycles are aligned. Each is at the same phase at the same time.
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Figure 19.12: The two pendulums are 90 

degrees out of phase.

Figure 19.13: The two pendulums are 180 

degrees out of phase.

Harmonic motion that is out of phase

Out of phase

by 90 degrees

If we start the first pendulum swinging a little before the second one, the

graphs look like Figure 19.12. Although, they have the same cycle, the first

pendulum is always a little bit ahead of the second. Notice that the graph for

pendulum number 1 reaches its maximum 90 degrees before the graph for

pendulum number 2. We say the pendulums are out of phase by 90 degrees, or

one-fourth of a cycle (90 degrees is one-fourth of 360 degrees).

Out of phase

by 180 degrees

When they are out of phase, the relative motion of oscillators may differ by a

little or by as much as half a cycle. Two oscillators that are 180 degrees out of

phase are one-half cycle apart. Figure 19.13 shows that the two pendulums

are always on opposite sides of the cycle from each other. When pendulum

number 1 is all the way to the left, pendulum number 2 is all the way to the

right. This motion is illustrated on the graph by showing that “peaks” of

motion (positive amplitude) for one pendulum match the “valleys” of motion

(negative amplitude) for the other.

19.2 Section Review

1. What is the difference between a graph of linear motion and a graph of harmonic motion?

2. A graph of the motion of a pendulum shows that it swings from +5 centimeters to -5
centimeters for each cycle. What is the amplitude of the pendulum?

3. A pendulum swings from -10 degrees to +10 degrees. What is the amplitude of this
pendulum?

4. A graph of harmonic motion shows that one cycle lasted from 4.3 seconds to 6.8 seconds.
What is the period of this harmonic motion?

5. A graph of harmonic motion shows that the motion lasted for 10 seconds and it included
5 cycles. What is the period of this harmonic motion?

6. Sketch the periodic motion for two oscillators that are 45 degrees out of phase.

7. If one oscillator were out of phase with another oscillator by 45 degrees, what fraction of a
360-degree cycle would it be out of phase? 1/8, 1/4, 1/2, or 3/4?
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19.3 Properties of Oscillators

Why does a pendulum oscillate? A car on a ramp just rolls down and does not oscillate. What

properties of a system determine whether its motion will be linear motion or harmonic motion?  You

will learn the answers to these questions in this section. You will also learn how to change the

period of an oscillator by changing the ratio of a few important variables. 

Restoring force and equilibrium

Different kinds of

systems

If you set a wagon on a hill and let it go, the wagon rolls down and does not

come back. If you push a child on a swing, the child goes away from you at

first, but then comes back. The child on the swing shows harmonic motion

while the wagon on the hill does not. What is the fundamental difference

between the two situations? 

Equilibrium Systems that have harmonic motion always move back and forth around a

central or equilibrium position. You can think of equilibrium as the system at

rest, undisturbed, with zero net force. A wagon on a hill is not in equilibrium

because the force of gravity is not balanced by another force. A child sitting

motionless on a swing is in equilibrium because the force of gravity is

balanced by the tension in the ropes. 

Restoring forces Equilibrium is maintained by restoring forces. A restoring force is any force

that always acts to pull the system back toward equilibrium. If the child on the

swing is moved forward, gravity creates a restoring force that pulls her back,

toward equilibrium. If she moves backward, gravity pulls her forward, back to

equilibrium again (Figure 19.14). Systems with restoring forces are the ones

that move in harmonic motion.

Figure 19.14: Restoring force keeps a 

pendulum swinging. Restoring force is related 

to weight and the lift force (or tension) of the 

string of a pendulum.

Vocabulary

equilibrium, restoring force, natural 
frequency, periodic force, resonance

Objectives

 Understand the role of restoring 
force in how oscillators work.

 Learn the relationship between 
amplitude and period for a 
pendulum.

 Recognize simple oscillators.
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Harmonic motion in machines

Natural harmonic motion results 

from restoring forces and inertia.  

However, harmonic motion can 

also be forced. When a machine is 

involved, cycles of motion can be 

created using an energy source to 

push or rotate parts. Mechanical 

systems usually do not depend on 

a restoring force or inertia to keep 

going.

For example, the piston of a car 

engine goes up and down as the 

crank turns. The piston is in 

harmonic motion, but the motion is 

caused by the rotation of the 

crankshaft and the attachment of 

the connecting rod. Gasoline 

provides the energy to keep this 

harmonic motion system going.

Inertia and mass

Inertia causes

an oscillator

to go past

equilibrium

The restoring force of gravity always pulls a pendulum towards equilibrium.

Why doesn’t the pendulum just stop at equilibrium? Newton’s first law of

motion explains why. According to the first law, an object in motion tends to

stay in motion. The pendulum has inertia that keeps it moving forward.

Inertia causes the pendulum to overshoot its equilibrium position every time.

The result is harmonic motion.

Inertia is

common to all

oscillators

All systems that oscillate on their own (without a motor) have some property

that acts like inertia and some type of restoring force. Harmonic motion

results from the interaction of the two effects: inertia and restoring force.

Increasing mass

may increase the

period

You can make a simple oscillator with a steel

washer and two rubber bands (picture). What

happens to the period if you increase the mass by

adding more washers? The restoring force from the

rubber band is the same. If the mass increases, then

(by Newton’s second law) the acceleration

decreases proportionally. That means the oscillator

moves slower and the period gets longer. 

How mass

affects the

period

Changing the mass of a pendulum does not affect its period. That is because

the restoring force on a pendulum is created by gravity. Like free fall, if you

add mass to a pendulum the added inertia is exactly equal to the added force

from gravity. The acceleration is the same and therefore the period stays the

same.
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Period and natural frequency

Natural

frequency

A pendulum will have the same period each time you set it in motion. Unless

you change the pendulum itself (such as changing its length) it will always

swing with the same period. The natural frequency is the frequency (or

period) at which a system naturally oscillates. Every system that oscillates has

a natural frequency.

Why natural

frequency is

important

Microwave ovens, musical instruments, and cell phones are common devices

that use the natural frequency of an oscillator. For example, the strings of a

guitar are tuned by adjusting the natural frequency of vibrating strings to

match musical notes (Figure 19.15). All objects can oscillate, and that means

everything in the universe has a natural frequency. In fact, most things have

several natural frequencies because they can oscillate in different ways. 

Natural

frequency

The natural frequency depends on the balance

between restoring force and inertia (mass).

Any change that affects this balance will also

change the natural frequency. The natural

frequency of a pendulum depends on the

length of the string. If you make the string

longer, the restoring force is spread out over a

proportionally greater distance. The period of

the pendulum gets longer. Tuning a guitar

changes the natural frequency of a string by

changing its tightness (or tension). Changing

the mass changes the natural frequency only if

restoring force is not due to gravity.

 Periodic force You can keep a swing (pendulum) swinging for a long time by pushing it at the

right time every cycle. A force that is repeated over and over is called a

periodic force. A periodic force has a cycle with an amplitude, frequency

and period, just like an oscillator. To supply energy to an oscillator you need to

use a periodic force. A constant force will not have the same effect. If you

push once per cycle (periodic force) the amplitude of a swing increases

(Figure 19.16). If you applied a constant force of the same strength, the swing

would move in the direction of your force and stay there, motionless.

Figure 19.15: A guitar uses the natural 

frequency of strings to make musical notes. 

Here, the musician plays the musical note A. 

As a result, the string vibrates at 440 hertz. 

Figure 19.16: Each push of a swing at the 

right time increases the amplitude (height) of 

the swing. Each push is a periodic force.
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Figure 19.17:  A jump rope is a good 

example of resonance. If you shake it at the 

right frequency, it makes a big wave motion. If 

your frequency is too fast or too slow, the rope 

will not make the wave pattern at all.

Figure 19.18: When you push someone on 

a swing, you are using resonance. Small or 

big pushes at the right time in a swing’s 

motion will make a person swing higher. If the 

periodic force (the push) is applied at the 

wrong time, the swing does not swing at all.

Resonance

Force and

natural

frequency

Newton’s second law (a = F/m) tells you how much acceleration you get for a

given force and mass. While the second law is still true for harmonic motion,

there is a new and important difference. Harmonic motion is motion that

oscillates back and forth. What happens if the force is periodic and oscillates

back and forth too? When you shake one end of a rope up and down in a

steady rhythm you are applying a periodic force to the rope (Figure 19.17).

The rope behaves very differently depending on the frequency at which you

shake it up and down! If you shake it at just the right frequency the rope

swings up and down in harmonic motion with a large amplitude. If you don’t

shake at the right frequency, the rope wiggles around but you don’t get the

large amplitude no matter how strong a force you apply.

Resonance Resonance occurs when a periodic force has the same frequency as the

natural frequency of the system. If the force and the motion have the same

frequency, each cycle of the force matches a cycle of the motion. As a result

each push adds to the next one and the amplitude of the motion grows. You

can think about resonance in three steps: the periodic force, the system, and

the response. The response is what the system does when you apply the

periodic force (Figure 19.18). In resonance, the response is very large

compared to the strength of the force, much larger than you would expect.

Resonance occurs when:

� there is a system in harmonic motion, like a swing;

� there is a periodic force, like a push;

� the frequency of the periodic force matches the natural frequency of the

system.

A jump rope is a

example of

resonance

Like a swing, a jump rope depends on resonance. If you want to get a jump

rope going, you shake the ends up and down. By shaking the ends, you are

applying a periodic force to the rope. However, if you have tried to get a jump

rope going, you have noticed that you have to get the right rhythm to get the

rope moving with a large amplitude (Figure 19.17). The extra-strong

response at 1 hertz is an example of resonance and happens only when the

frequency (rhythm) of your periodic force matches the natural frequency of

the jump rope.
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Simple oscillators

A mass on a

spring

You know from experience that springs resist being extended or compressed.

Figure 19.19 shows how the restoring force from a spring always acts to return

it to equilibrium. A system of a mass on a spring is a simple oscillator. When

the spring is compressed, it pushes back on the mass. When the spring is

extended, it pulls on the mass. The system is an oscillator because the push-

pull of the spring is a restoring force and the mass supplies the inertia. An

example of a mass on a spring is a car (mass) and its shock absorbers (springs).

Wheels on springs can oscillate up and down over bumps without the whole

car having to move up and down too. Along with springs, shock absorbers also

have high friction dampers that quickly slow any oscillation down. A car that

keeps bouncing after going over a bump has shock absorbers with dampers

that are worn out and not providing enough friction.

A vibrating

string

An example of a vibrating string oscillator is a rubber band stretched between

two rods (Figure 19.20). If the middle of the rubber band is pulled to the side,

it will move back toward being straight when it is released. Stretching the

rubber band to the side creates a restoring force. When the rubber band is

released, inertia carries it past being straight and it vibrates. Vibrating strings

tend to move much faster than springs and pendulums. The period of a

vibrating string can be one-hundredth of a second (0.01 second) or shorter. 

Mass on a

vibrating string

You can modify the rubber band oscillator by adding a bead to the middle of a

stretched rubber band (Figure 19.20). The bead adds extra mass (inertia) to

this simple oscillator. How would adding a bead to a rubber band change the

natural frequency? Notice that gravity is not directly involved in the back and

forth movement of this oscillator.

19.3 Section Review

1. Identify the restoring force for a pendulum, a mass on a spring, and a vibrating string.

2. You change the amplitude of a pendulum from 10 centimeters to 30 centimeters. How does
this change affect the period of the pendulum? Justify your answer. 

3. Is a person jumping on a trampoline an oscillator? Justify your response.

4. If you wanted to increase the period of a pendulum, how would you change its length?

Figure 19.19: A mass on a spring is an 

oscillating system. When the spring is 

compressed, it pushes back on the mass to 

return to equilibrium. When the spring is 

extended, it pulls the mass back toward 

equilibrium.

Figure 19.20: A stretched rubber band is a 

good example of a vibrating string (A). You 

can modify this simple oscillator by adding a 

bead to the rubber band (B).
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Skyscrape rs  an d H arm o n ic Mo tio n

The John Hancock Tower is one of 

the tallest skyscrapers in 

New England. This 60-story 

building is 240.7 meters (790 feet) 

tall and was completed in 1976. With 

10,344 windowpanes, the most 

striking feature of this building is 

that it is completely covered in glass!

While this skyscraper was being 

built in 1972 and 1973, a disaster 

struck—windowpanes started falling 

out from all over the building and 

crashing to the ground. So many fell 

out that, with the boarded up window 

holes, the Hancock Tower was 

nicknamed the “plywood palace.” 

Some people said the windows fell 

out because the building swayed too much in the wind—they 

thought the problem was due to the natural harmonic motion of the 

skyscraper.

W hy do e s  a skyscrape r sw ay?

Just like trees which experience harmonic motion in strong winds, 

skyscrapers also sway side to side. Skyscrapers or any buildings, 

even though made of steel and concrete, begin to vibrate when the 

wind blows or an earthquake occurs. All buildings have a 

fundamental frequency of vibration. For example, the fundamental 

frequencies for buildings range as follows: 10 hertz for one-story 

buildings, 2 hertz for a three- to five-story buildings, 0.5 to 1 for tall 

buildings (10 to 20 stories high), and 0.17 hertz for skyscrapers.

On the top floor of some skyscrapers, with a strong wind, the 

amplitude of their side-to-side motion (“sway”) can be several feet. 

Therefore, engineers have carefully designed skyscrapers to handle 

a large swaying motion. Engineers strive to keep the amplitude very 

small so that the people inside will not be disturbed. When the 

falling windowpanes of the Hancock Tower were blamed on the 

building’s sway, engineers were quick to point out that the John 

Hancock Tower was designed to sway slightly. Engineers did not 

think the sway of this building was causing the falling windows.

Swaying is a form of simple harmonic motion. Swaying starts with 

a disturbing or force such as the wind pushing on the side of the 

building. A restoring force keeps the motion always accelerating 

back towards its equilibrium point. In a skyscraper, the equilibrium 

point is when the building is perfectly straight. For a skyscraper, the 

restoring force is provided by the mass of the structure of the 

skyscraper. The Hancock Tower has a stiff backbone made up of 

steel columns and beams in the skyscraper’s core. That extra 

sturdiness allows the building to bend slightly and then ease back 

towards its center point. Some skyscrapers get their restoring force 

from hollow, rigid tubes at the perimeter of the structure. The 

advantage of the tubes is that they are a strong core design, with 

less weight.

The Citicorp Center in New York 

City was the first building to 

have a mechanical means for 

providing a restoring force to 

counteract swaying. A 410-ton 

concrete weight housed on the 

top floors of the building slides 

back and forth in opposition to 

the sway caused by wind. Thus, 

the restoring force in the Citicorp 

Center is accomplished by
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shifting the center of mass of the 

building so that gravity pulls the 

building back towards its 

“straight” or equilibrium position. 

The device used in the Citicorp 

Center is called a wind-

compensating damper or “tuned 

mass damper.”

William LeMessurier, an 

innovative engineer, installed the 

tuned mass damper in the Citicorp 

Center. LeMessurier was also 

involved in installing a tuned mass damper in the Hancock Tower. 

This device wasn’t necessary to stop windows from falling, but was 

used to keep the building from twisting as it swayed — a very 

disturbing affect felt by the people on the top floors of the building.

W hat is  the  talle s t bu ildin g in  the  w o rld?

The current world champion of skyscrapers (2004) is Taipei 101 

located in Taiwan. It is 508 meters tall (1,667 feet) with 101 floors 

above ground. Since both earthquakes and wind are concerns in 

Taiwan, the building’s engineers took extra precautions. The 800-

ton wind-compensating damper at the top of the building is a large 

spherical shape hung as a simple pendulum. The damper is visible 

to the public on the 88th and 89th floors where there is a restaurant! 

When the building begins to sway either due to wind or an 

earthquake, the damper acts as a restoring force. The Taipei 101 is 

built to withstand an earthquake greater than 7 on the Richter scale!

Other countries are currently constructing skyscrapers that will be 

even taller than Taipei 101. So, this world record holder will not be 

the tallest building for very long. With modern materials, and future 

innovations yet to come, the main limitation to the height of future 

skyscrapers is the cost to build such tall buildings!

The  re aso n  fo r the  fallin g w in do w s

The windows of the Hancock Tower fell out because of how the 

double-paned glass was bonded to the window frame. The bonding 

prevented the glass from responding to temperature changes and 

wind forces. Because the windows were held too rigidly by the 

bonding, the glass fractured easily and fell out. The modern John 

Hancock Tower sways slightly in the wind just like before, but 

without twisting thanks to the tuned mass damper. Also, the 

bonding of the windows has been fixed, and now the windows stay 

in place.

Questions: 

1. From the reading, why were the windows falling out of the 

John Hancock Tower?

2. Describe the sway of a building. Use the terms force and 

harmonic motion in your answer.

3. Research and write a brief report about William LeMessier’s 

work on the Citicorp Center.

4. Research the John Hancock Tower and find out what its 

tuned mass damper looks like and how it works.

5. Find out why Taipei 101 “beats” the Sears Tower as the 

world’s tallest building.
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Understanding Vocabulary

Select the correct term to complete the sentences.

Section 19.1

1. Frequency is measured in ____.

2. A ____ is the building block of harmonic motion and has a beginning
and an end.

3. The time it takes for one cycle is called the ____.

4. Motion that repeats itself over and over is called ____.

5. The number of cycles an oscillator makes per second is called the
____.

6. A pendulum, an atom, and the solar system are all examples of ____.

7. ____ describes the size of a cycle.

8. Swinging motion (back and forth motion that repeats) is an example
of a ____.

9. Friction causes ____ in an oscillator.

Section 19.2

10. The ____ of an oscillator describes where it is in the cycle.

Section 19.3

11. When the frequency of a periodic force matches the natural frequency
of the oscillating system, ____ occurs.

12. A guitar is tuned by adjusting the ____ of the vibrating string to
match a musical note.

13. The ____ is a force that always acts to pull an oscillator back toward
the center position.

Reviewing Concepts

Section 19.1

1. Identify the following as examples of harmonic motion, linear
motion, or both. Explain your answer.

a. A child moving down a playground slide one time

b. An ocean wave rising and falling

c. A car moving down the street

d. A ball bouncing up and down

2. A system with harmonic motion is called an oscillator. Oscillators can
be virtually any size. List at least one example of a very large
oscillator and a very small oscillator.

3. Describe a single cycle of harmonic motion for the following
situations:

a. A spinning merry-go-round

b. Earth’s orbit around the sun

c. A clock pendulum

4. Using a person on a swing as an example of harmonic motion,
describe these terms:

a. period

b. frequency

c. cycle

d. amplitude

5. Your favorite radio station is 106.7. What are the units on this number
and what do they mean in terms of harmonic motion?

6. What is the mathematical relationship between frequency and period
for a harmonic motion system?

7. Name a unit used to measure the following:

a. amplitude

b. frequency

c. period

d. mass

oscillators

frequency

natural frequency

damping

amplitude

phase

resonance

hertz

restoring force

harmonic motion

cycle

period

vibration
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Section 19.2

8. Describe how you would determine the period and amplitude of an
oscillator from a graph of its harmonic motion. You may use a
diagram to help you answer this question.

9. Two players dribble basketballs at the same time. How does the
motion of the basketballs compare if they are in phase? out of phase?

10. Explain why circular motion, like the motion of a ferris wheel, is an
example of harmonic motion.

Section 19.3

11. If the length of the rope on a swing gets longer:

a. What happens to the period of the swing?

b. What happens to the frequency of the swing?

12. Pushing a child on a playground swing repeatedly at the natural
frequency causes resonance, which increases the amplitude of the
swing, and the child goes higher. If the pushes provide the periodic
force of the system, what provides the restoring force?

13. Identify the equilibrium position for the following situations.

a. A person on a swing

b. A person bungee jumping

c. A guitar string being plucked

14. What is resonance and how is it created? Give an example of a
resonant oscillating system in nature.

Solving Problems

Section 19.1

1. The wings of a honeybee move at a frequency of 220 Hz. What is the
period for a complete wing-beat cycle?

2. If a pendulum’s period is 4 seconds, what is its frequency?

3. What is the period of Earth spinning on its axis? What is its
frequency? (Hint: How long does it take for one spin?)

4. Jason’s heartbeat is measured to be 65 beats per minute. 

a. What is the frequency of heartbeats in hertz?

b. What is the period for each heartbeat in seconds?

5. In the table below, fill in the period and frequency for the second
hand, minute hand, and hour hand of a clock.

Section 19.2

6. The graph shows the motion of an oscillator that is a weight hanging
from a rubber band. The weight moves up and down. Answer the
following questions using the graph.

a. What is the period?

b. What is the frequency?

c. What is the amplitude?

d. If you count for 5 seconds, how many cycles would you count?

7. Make a graph of three cycles of motion for a pendulum that has a
period of 2 seconds and an amplitude of 5 centimeters.

8. Which of the following graphs illustrates the harmonic motion of two
children on swings 180 degrees out of phase. What fraction of a 360-
degree cycle are these two graphs out of phase: 1/8, 1/4, 1/2, or 3/4?

Section 19.3

9. The mass on a pendulum bob is increased by a factor of two. How is
the period of the pendulum affected?

Period (seconds) Frequency (hertz)

Second hand

Minute hand

Hour hand
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10. Describe how you might change the natural
frequency of the following oscillating systems.

a. a guitar string

b. a playground swing

c. a paddle ball game with a ball attached to a
paddle with an elastic

d. a diving board

11. How does decreasing the length of a pendulum affect its period?

Applying Your Knowledge

Section 19.1

1. The human heart is both strong and reliable. As a demonstration of
how reliable the heart is, calculate how many times your heart beats
in one day. Start by measuring the frequency of your pulse in beats
per minute and use the result for your calculation.

2. Ocean tides rise and fall based on
the position of the moon as it moves
around Earth. The ocean’s water is
pulled in the direction of the moon
by the moon’s gravity. The sun’s
gravity also affects the tides, but
because of its great distance from Earth, the effect is not as strong as
the moon’s. The graphic shows different positions of the moon
relative to Earth and the sun.

a. Which two positions of the moon result in greater tide
amplitudes (these are called spring tides)? Which two positions
result in smaller tide amplitude (these are called neap tides)?
Refer to the graphic above.

b. Challenge question: In many places on Earth there are two high
tides and two low tides each day. Why do you think this
happens?

3. The solar system is an oscillator with each of the planets in harmonic
motion around the sun. Give five examples of cycles that relate to the
solar system and also give the period and frequency of each example.
Use your library or the Internet to find the answers to this question.

4. A sewing machine makes sewing stitches, a repeating task, easier. As
a result, many parts of a sewing machine have harmonic motion. Find
a sewing machine to examine. List two parts of this machine that use
harmonic motion. If you don’t know the names of certain parts, make
a diagram of the machine to help you explain your answer. 

Section 19.2

5. The graphic shows the harmonic
motion of a pirate ship amusement
park ride. Use what you know about
kinetic and potential energy to answer
the following questions.

a. Where in its cycle does the pirate
ship have its highest potential
energy? its lowest potential energy?

b. Where in its cycle does pirate ship have its highest kinetic
energy? its lowest kinetic energy?

c. Make a graph of the amount of kinetic energy the ride has during
one cycle of motion. On the same graph, plot the amount of
potential energy during one cycle of motion. Use the point at
which the ride it at its highest as the starting point of the cycle. Is
this graph like a harmonic motion graph? Why or why not?

Section 19.3

6. Buildings are not completely stiff — they sway side-to-side at their
natural frequency. What do you think happens if the natural frequency
of a building matches the frequency of an earthquake? How could a
building’s natural frequency be changed?

7. The cycle of motion of a pendulum is created by the restoring force of
the weight of the bob. As with all motion, the harmonic motion of a
pendulum must follow Newton’s laws of motion.

a. Newton’s first law states that objects tend to keep doing what
they are doing. How does the first law apply to a pendulum?

b. Newton’s second law states that a = F × m. Which fact about the
motion of a pendulum does the second law explain: (1) that
changing the mass does not change the period, or (2) that
changing the length does change the period.

c. Name an action-reaction pair of the pendulum that illustrates
Newton’s third law.


