

Peng Wang’s Interim Project Report May 2003 Page 1 of 29

MSc in Machine Learning and Data Mining Project

Interim Project Report

A Search Engine Based on the

Semantic Web

Peng Wang

CS Supervisor: Peter Flach

External Supervisor: Simon Price

May, 2003

Peng Wang’s Interim Project Report May 2003 Page 2 of 29

TABLE OF CONTENTS

1. Introduction 3

2. Background 4

2.1 Introduction to URI 4

2.2 Introduction to HTTP 4

2.3 XML 5

2.4 RDF 8

2.5 DAML 12

2.6 Ontology Matching 15

2.7 Similarity Measures 19

2.8 Toolkits 22

3. Project Plan

3.1 Aims and Objectives 23

3.2. Initial Design 23

3.3 Project Schedule 26

4. Bibliography

5. References

Peng Wang’s Interim Project Report May 2003 Page 3 of 29

Part I

1. Introduction

Definition: “The Semantic Web is the representation of data on the World Wide Web. It is a

collaborative effort led by W3C with participation from a large number of researchers and

industrial partners. It is based on the Resource Description Framework (RDF), which

integrates a variety of applications using XML for syntax and URIs for naming.” – W3C

Semantic Web [1]

The concept of the Semantic Web was brought by Tim Berners-Lee who is the inventor of the

WWW, URIs, HTTP, and HTML. Today’s Web is a human-readable Web where information

cannot be easily processed by machine. The efforts of the Semantic Web are to make a

machine processable form for expressing information.

Nowadays, there are a huge amount of resources on the Web, which raises a serious problem

of accurate search. This is because data in HTML files is useful in some contexts but

meaningless under other conditions. In addition, HTML cannot provide description of data

encapsulated in it. For example, we want to find an address’ details and know its postcode.

Since the names of the postcode system are different in many countries and the Web doesn’t

represent this relationship, we may not get what we expect. By contrast, in the Semantic Web,

we can indicate this kind of relationship such as zip code is equivalent to postcode. So when

the majority of data on the Web are presented in this form, it is difficult to use such data on a

large scale [3]. Another shortcoming is that today’s Web lacks an efficient mechanism to share

the data when applications are developed independently. Hence, it is necessary to extend the

Web to make data machine-understandable and integrated and reusable across various

applications [1].

To make the Semantic Web work, well-structured data and rules are necessary for agents to

roam the Web [2]. XML and RDF are two important technologies: we can create our own

structures by XML without indicating what they mean; RDF uses sets of triples which express

basic concepts [2, 5]. DAML is the extension of XML and RDF.

The aim of this project is to develop a search engine based on ontology matching within the

Semantic Web. It uses the data in Semantic Web form such as DAML or RDF. When the user

input a query, the program accepts the query and transfers it to a machine learning agent.

Then the agent measures the similarity between different ontologies, and feedback the

matched item to the user.

The following sections are organized into 4 parts: Section 2 gives the background knowledge

Peng Wang’s Interim Project Report May 2003 Page 4 of 29

of some relative techniques such as HTTP, XML, RDF, DAML and ontology. The project plan

is given in Section 3, including the aims, the objectives, the initial design and project schedule.

Section 4 and Section 5 are bibliographies and references respectively.

2. Background Knowledge

2.1 Introduction to URI - Uniform Resource Identifier

URIs are strings that can identify resources in the Web [5]. By using URIs, we can use the

same simply naming way to refer to resources under different protocols: HTTP, FTP,

GOPHER, EMAIL etc [5]. URLs (Uniform Resource Locator), a widely used type of URIs,

are very commonly used in the web, which are addresses of resources. Although often

referred to as URLs, URIs can also refer to concepts in the Semantic Web [9], e.g. suppose

you have a book with the title “Machine Learning”, then its URI will look like this:

http://www.cs.bris.ac.uk/home/pw2538/book/title#machinelearning

Here are some other examples of URIs:

uuid:04b749bf-3bb2-4dba-934c-c92c56b709df is a UUID, which stands for a Universal

Unique Identifier. UUID can be got by combining the time and the address of your Ethernet

card or a random number, which is then a unique identifier [9].

mailto:pw2538@bristol.ac.uk identifies the mail address of a person.

Note that everything on the Web has a unique URI.

2.2 Introduction to HTTP

The Hypertext Transfer Protocol (HTTP) is a generic and stateless protocol for distributed,

collaborative, hypermedia information systems [13]. It allows performing operations on

resources which are identified by URIs. It has been widely used for more than one decade and

now comes to version 1.1. It has four main methods:

a. Get means get the information that is identified by the request URI [14]. Usually it is the

action we take when browsing sites and clicking hyperlinks -- we ask the web server for

the resources that is identified by Request-URLs.

b. Post means make a request to the web server so that the server accepts the resources

encapsulated in the request, which will be the new subordinate of the resource identified

by the Request-URI in the Request-Line [14]. Usually it is what we do when filling and

sending the HTML form to the server to buy something like CDs, books etc. -- making a

http://www.cs.bris.ac.uk/home/pw2538/book/title#machinelearning
mailto:pw2538@bristol.ac.uk

Peng Wang’s Interim Project Report May 2003 Page 5 of 29

request of the server.

c. Put means make a request that sends updated information about a resource if the resource

identified by the Request-URI exists, otherwise the URI will be regarded as a new

resource [14]. The main difference between the POST and PUT requests lies in the

different meaning of the Request-URI. In a POST request, the URI is to identify the

resource that will handle the enclosed entity. As for the PUT request, the user agent

knows what URI is its aim and the web server cannot redirect the request to other

resources. Unfortunately most web browsers don’t implement this functionality, which

makes the Web, to some extent, a one-way medium [9].

d. Head is similar to GET except that the server don’t return a message-body in the response.

The benefit of this method is that we can get meta-information about the entity implied by

the request without transferring the entity-body itself. We can use this method to check if

hypertext links are valid, or if the content is modified recently [14].

By using HTTP, Semantic Web can benefit all these functionalities for free. In addition,

almost all HTTP servers and clients support all these features.

2.3 XML

Extensible Markup Language (XML) is a subset of SGML (the Standard Generalized Markup

Language) [12], i.e. it is totally compatible with SGML. But it is simple and flexible. It ’s

original aim to tackle the problems of large-scale electronic publishing. However, it is also

very important in data exchange on the Web. Despite its name, XML is not a markup

language but a set of rules to build markup languages [17].

2.3.1 Markup language

“Markup is information added to a document that enhances its meaning in certain ways, in

that it identifies the parts and how they relate to each other.” - Erik T. Ray, Page 10 [17].

Markup language is kind of mechanism organizing the document with a set of symbols, e.g.

this article is labeled with different fonts for headings. Markup use similar methods to achieve

its aims. Markup is important to implement machine-readable documents since a program

need to treat different part of a document individually.

2.3.2 Why XML

HTML cannot provide arbitrary structure and it is bound with a set of semantics [18], which

result in weak flexibility. By contrast, XML is a meta-language which can build markup

languages. XML itself does not specify preconceived semantics and predefined tag sets [18],

so the semantics of XML will be defined by other applications. As for SGML, it is too

Peng Wang’s Interim Project Report May 2003 Page 6 of 29

complicate to be implemented in web browsers although it can do everything XML can do.

2.3.3 XML Documents

XML documents are similar to HTML documents, bound with some tags. For example:

Figure 2.3.3.1: An example of XML document

A XML document is composed of pieces called elements which are the most common form

of markup. Elements are always enclosed with a start-tag, <element> and an end-tag

</element> if it is not empty.

Attributes are associate name-value pairs which lie in the elements. For example, <book

genre="philosophy"> is a <book> element where the genre attribute has the value philosophy.

Attributes must be quoted with single or double quotes in XML documents.

<?xml version='1.0'?>

<!-- This file represents a fragment of a book store inventory database -->

<bookstore>

 <book genre="science">

 <title>Machine Learning</title>

 <author>

 <first-name>Tim</first-name>

 <last-name>Mitchell</last-name>

 </author>

 <price>28.99</price>

 </book>

 <book genre="travel">

 <title> Family Fun Vacation Guides </title>

 <author>

 <first-name>Jill</first-name>

 <last-name>Mross</last-name>

 </author>

 <price>12.57</price>

 </book>

 <book genre="philosophy">

 <title>The Gorgias</title>

 <author>

 <name>Plato</name>

 </author>

 <price>9.99</price>

 </book>

</bookstore>

Peng Wang’s Interim Project Report May 2003 Page 7 of 29

2.3.4 Namespaces

We can expand our vocabulary by namespaces which are groups of element and attribute

names. Suppose, if you want to include a symbol encoded in another markup language in an

XML document, you can declare the namespace that the symbol belongs to. In addition, we

can avoid the situation that two XML objects in different namespaces with the same name

have different meaning by the feature of namespaces [17]. The solution is to assign a prefix

that indicates which namespace each element or attribute comes from [17]. The syntax is

shown below:

ns-prefix:local-name

2.3.5 XML Schemas

XML itself does not do anything, i.e., it is just structure and store information. But if we need

a program to process the XML document, there must be some constraints on sequence of tags,

nesting of tags, required elements and attributes, data types for elements and attributes,

default and fix values for elements and attributes and so on. XML Schema is an XML based

alternative to Document Type Definition (DTD) [19]. There are some features of XML

Schemas that overweigh DTD:

a. XML Schemas support data types, which brings a lot of benefits, e.g. easy to validate the

correctness of data, easy to work with databases, easy to convert data between different

types.

b. XML Schemas have the same syntax as XML so that it can benefit all features of XML.

c. XML Schemas secure data communication since it can describe the data in a

machine-understandable way.

d. XML Schemas are extensible because they are actually XML and then share this feature

of XML.

e. Well-formed is not enough since it also may contain some semantic confusion which can

be caught by XML Schemas.

2.3.6 Well-Formed and Valid Documents

An XML document is well-formed only if it meets all following requirements:

a. There is one, and only one, root element [18].

b. Each tag must be closed [18].

c. “Tag names are case-sensitive” [18].

A well-formed XML document is valid only if it refers to a proper DTD or XML Schema so

that the document obeys the constraints of that DTD or XML Schema. [18].

Peng Wang’s Interim Project Report May 2003 Page 8 of 29

2.4 RDF

2.4.1 Metadata

Metadata is information about information [20], which is widely used in real-world for

searching. For example, you want to borrow some books on computer from a library. Usually

a library will provide a lookup system which allows you to list books by author, title, subject

and so on. This list contains lots of useful information: author, title, ISBN, date and most

important, location of the book. You need some information (the book's location) you want to

know and you use metadata (information about information, in this case: author, title and

subject) to get it. However, metadata is not necessary [20]: you can lookup the book you want

to find one by one among all books in the library. Obviously this is not a wise way. In

addition, the use of metadata is not just for searching although searching is the most common

aim of metadata. There is some other useful information behind the scenes, which are

important to business.

2.4.2 What is RDF?

Resource Description Framework is a framework for processing metadata [20] and it

describes relationships among resources with properties and values [23]. It is built on the

following rules:

a. Resource: Everything described by RDF expressions is called a resource [22]. Every

resource has a URI and it may be an entire web page or a part of a web page [20, 22]

b. Property: “A property is a specific aspect, characteristic, attribute, or relation used to

describe a resource” – W3C, Resource Description Framework (RDF) Model and Syntax

Specification [22]. Note that a property is also a resource since it can have its own

properties.

c. Statements: A statement combines a resource, a property and a value [22]. These three

individual parts are known as the “subject”, “predicate” and “object” [20]. For example,

“The Author of http://www.cs.bris.ac.uk/home/pw2538/index.html is Peng Wang” is a

statement. Note that value can be either a string or another resource [22].

2.4.3 Examples

Statements can be represented as a graph in RDF.

First consider a simple example:

Peng Wang is the author of the resource http://www.cs.bris.ac.uk/home/pw2538/index.html

This sentence has the following parts:

http://www.cs.bris.ac.uk/home/pw2538/index.html
http://www.cs.bris.ac.uk/home/pw2538/index.html

Peng Wang’s Interim Project Report May 2003 Page 9 of 29

Subject (Resource) http://www.cs.bris.ac.uk/home/pw2538/index.html

Predicate (Property) Author

Object (literal) “Peng Wang”

Figure 2.4.3.1: Divide the sentence into 3 parts

Figure 2.4.3.2: Simple node and arc diagram

The direction of the arrow is always from the subject to the object of the statement. And the

graph can be read in the way: "<subject> HAS <predicate> <object>" [22], i.e.

“http://www.cs.bris.ac.uk/home/pw2538/index.html has the author Peng Wang”.

If we assign a URI to the author property:

http://www.cs.bris.ac.uk/home/pw2538/terms/author

In order to represent briefly, we make some prefixes to avoid writing URI references

completely. There are some well-known QName prefixes;

prefix rdf:, namespace URI: http://www.w3.org/1999/02/22-rdf-syntax-ns#

prefix rdfs:, namespace URI: http://www.w3.org/2000/01/rdf-schema#

prefix daml:, namespace URI: http://www.daml.org/2001/03/daml+oil#

prefix xsd:, namespace URI: http://www.w3.org/2001/XMLSchema#

Here we use a prefix pwterms to represent our own URI references

Prefix pwterms:, namespace URI: http://www.cs.bris.ac.uk/home/pw2538/terms

Figure 2.4.3.3: RDF for a Simple RDF Statement

1. <?xml version="1.0"?>

2. <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

3. xmlns:pwterms=" http://www.cs.bris.ac.uk/home/pw2538/terms">

4. <rdf:Description rdf:about="http://www.cs.bris.ac.uk/home/pw2538/index.html">

5. <pwterms:author>Peng Wang</pwterms:author>

6. </rdf:Description>

7. </rdf:RDF>

http://www.cs.bris.ac.uk/home/pw2538

/index.html
Peng Wang

Author

http://www.cs.bris.ac.uk/home/pw2538/index.html
http://www.cs.bris.ac.uk/home/pw2538/index.html
http://www.cs.bris.ac.uk/home/pw2538/terms/author
http://www.w3.org/1999/02/22-rdf-syntax-ns#
http://www.w3.org/2000/01/rdf-schema#
http://www.daml.org/2001/03/daml+oil#
http://www.w3.org/2001/XMLSchema#
http://www.cs.bris.ac.uk/home/pw2538/terms
http://www.w3.org/1999/02/22-rdf-syntax-ns#
http://www.cs.bris.ac.uk/home/pw2538/terms
http://www.cs.bris.ac.uk/home/pw2538/index.html
http://www.cs.bris.ac.uk/home/pw2538

Peng Wang’s Interim Project Report May 2003 Page 10 of 29

Now consider a more complicate example:

The individual referred to by student id pw2538 is named Peng Wang and has the email

address pw2538@bristol.ac.uk. This individual is the author of the resource

http://www.cs.bris.ac.uk/home/pw2538/index.html.

Figure 2.4.3.4: Structured value with identifier

Figure 2.4.3.5: RDF for a complicate RDF Statement

http://www.cs.bris.ac.uk/People/

pw2538/terms/email
http://www.cs.bris.ac.uk/People/

pw2538/terms/name

http://www.cs.bris.ac.uk/home

/pw2538/index.html

http://www.cs.bris.ac.uk/People/pw2538

Peng Wang pw2538@bristol.ac.uk

http://www.cs.bris.ac.uk/People/

pw2538/terms/author

1. <?xml version="1.0"?>

2. <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

3. xmlns:pwterms=" http://www.cs.bris.ac.uk/home/pw2538/terms">

4. <rdf:Description about="http://www.cs.bris.ac.uk/home/pw2538/index.html">

5. < pwterms:author rdf:resource="http://www.cs.bris.ac.uk/People/pw2538"/>

6. </rdf:Description>

7. <rdf:Description about="http://www.cs.bris.ac.uk/People/pw2538">

8. <pwterms:Name>Peng Wang</pwterms:Name>

9. <pwterms:Email>pw2538@bristol.ac.uk</pwterms:Email>

10. </rdf:Description>

11. </rdf:RDF>

mailto:pw2538@bristol.ac.uk
http://www.cs.bris.ac.uk/home/pw2538/index.html
http://www.cs.bris.ac.uk/People/
http://www.cs.bris.ac.uk/People/
http://www.cs.bris.ac.uk/home
http://www.cs.bris.ac.uk/People/pw2538
mailto:pw2538@bristol.ac.uk
http://www.cs.bris.ac.uk/People/
http://www.w3.org/1999/02/22-rdf-syntax-ns#
http://www.cs.bris.ac.uk/home/pw2538/terms
http://www.cs.bris.ac.uk/home/pw2538/index.html
http://www.cs.bris.ac.uk/People/pw2538
http://www.cs.bris.ac.uk/People/pw2538
mailto:pw2538@bristol.ac.uk

Peng Wang’s Interim Project Report May 2003 Page 11 of 29

2.4.4 Why Not Just Use XML?

Since RDF is based on XML and XML can also represent the statements in a natural way,

why not just use XML instead of using a new language RDF [20]? However, XML has some

shortcoming when dealing with metadata:

a. In XML documents, the order of elements is often very important and meaningful [20].

However, in metadata, this is redundant; for instance, we don’t care whether a book is

listed first when we look up in the library [20]. Furthermore, it will reduce the

performance and efficiency if maintaining the correct order of data items [20].

b. XML allows mixed structures like

Figure 2.4.4.1: Partial XML document with mixture structure

So data structures in XML will include the mixture of trees, graphs, and character strings

[20]. In general, it requires more computation when dealing with these complicate

structures. By contrast, RDF is more straightforward.

2.4.5 RDF Schemas

Although RDF can easily describe resources, we still need a mechanism to figure out what a

specific term means and how it should be used [3, 10]. This is the function of the RDF

vocabulary description language, RDF Schema. RDF Schema is a simple data-typing model

for RDF [3] so that we can describe groups of related resources and the relationships among

these resources [10, 23]. For example, we can say “pupil” is a type of “student” and “student”

is a subclass of “people”.

Resources can be divided into “classes” which is composed of instances [23]. A class itself is

also a resource which is usually identified by RDF URI References and can be described by

RDF properties [23]. We often use the prefix “rdfs:” to indicate the term is RDF Schema term.

“rdfs:Resource” is the root class of everything in RDF Schema. “rdf:type” is an instance of

rdf:Property (class of RDF properties), and it means that a resource is an instance of a class.

The property rdfs:subClassOf is an instance of rdf:Property that is used to state a class is a

subclass of the other. Figure 2.4.5.1 shows that “Animal” is the super-class in this RDF

document, i.e. “Dog”, “Cat”, “Donkey” and “PersianCat” are all subclasses of “Animal”.

Although “PersianCat” class doesn’t directly indicate this relation, the relationship can be got

from: “PersianCat” is the subclass of “Cat” and “Cat” is the subclass of “Animal”, then

“PersianCat” is also the subclass of “Animal”. This is similar to the feature inheritance in the

<Description>

Here, XML allows mixture of text and child properties; for example, its width

(<Width>30</ Width >) and height (<Height>20</Height>).

</Description>

Peng Wang’s Interim Project Report May 2003 Page 12 of 29

Object-Oriented Programming theory.

Figure 2.4.5.1: The Animal Class Hierarchy in RDF/XML

2.5 DAML

The DARPA Agent Markup Language (DAML) Program started in 2000. DAML combines

many language components of the Ontology Inference Layer (OIL) soon after it was started.

The result of these efforts is DAML+OIL, a more robust language for general knowledge

representation than RDF and RDFS. DAML is not a W3C standard, but many people in W3C

participated in this program. DAML is kind of extension of RDF and RDFS, but it is not a

<?xml version="1.0"?>

<rdf:RDF

 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#">

<rdf:Description rdf:ID="Animal">

 <rdf:type rdf:resource="http://www.w3.org/2000/01/rdf-schema#Class"/>

</rdf:Description>

<rdf:Description rdf:ID="Dog">

 <rdf:type rdf:resource="http://www.w3.org/2000/01/rdf-schema#Class"/>

 <rdfs:subClassOf rdf:resource="#Animal"/>

</rdf:Description>

<rdf:Description rdf:ID="Cat">

 <rdf:type rdf:resource="http://www.w3.org/2000/01/rdf-schema#Class"/>

 <rdfs:subClassOf rdf:resource="#Animal"/>

</rdf:Description>

<rdf:Description rdf:ID="Donkey">

 <rdf:type rdf:resource="http://www.w3.org/2000/01/rdf-schema#Class"/>

 <rdfs:subClassOf rdf:resource="#Animal"/>

</rdf:Description>

<rdf:Description rdf:ID="PersianCat">

 <rdf:type rdf:resource="http://www.w3.org/2000/01/rdf-schema#Class"/>

 <rdfs:subClassOf rdf:resource="#Cat"/>

</rdf:Description>

</rdf:RDF>

http://www.w3.org/1999/02/22-rdf-syntax-ns#
http://www.w3.org/2000/01/rdf-schema#
http://www.w3.org/2000/01/rdf-schema#Class
http://www.w3.org/2000/01/rdf-schema#Class
http://www.w3.org/2000/01/rdf-schema#Class
http://www.w3.org/2000/01/rdf-schema#Class
http://www.w3.org/2000/01/rdf-schema#Class

Peng Wang’s Interim Project Report May 2003 Page 13 of 29

data model. It not only provides stronger abilities to express constraints in schemas but also

can build general knowledge representation, i.e. it is also an ontology language.

2.5.1 Introduction to DAML

DAML extends RDF and RDFS by adding more support for data typing and semantics. These

improvements lie in the enhancement of properties and classes.

a. Properties: DAML add a primitive “DatatypeProperty” that allows strict data types that

defined in XML Schemas or user-defined data types e.g. float number, integer and so on.

In DAML, a property can have multiple ranges, which brings rich flexibilities.

Furthermore, DAML allows we declare a unique property, i.e. there are no two instances

with same value. This is the function of a primitive “daml:UniqueProperty”. We can also

describe the relation between two properties that are equivalent by either

“daml:samePropertyAs” or “daml:equivalentTo”. In addition, there are more powerful

features in properties in DAML, with which we can express relations such as “inverse”,

“transitivity”. If A is the employer of B, then B is the employee of A. The properties

“employer” and “employee” are the inverse of each other. This relation can be expressed

with “daml:inverseOf”. The “transitivity” means that if A is a subset of B, and B is a

subset of C, then A must be a subset of C. The property “daml:TransitiveProperty” is

used to express this relation. More interestingly, DAML provides “daml:onProperty”,

“daml:hasValue”, “daml:hasClass” and “daml:toClass” to restrict classes to a set of

resources based on particular properties. Then we can make the rules for a specific class

so that a resource can be a member of the class if and only if its properties must satisfy

the requirements. “daml:onProperty” identifies the property to be checked. We can

define property restrictions by its value with “daml:hasValue”, i.e. the property must

have a particular value. “daml:hasClass” can be used to define property restrictions by

the class of the values of a property, instead of its value. By contrast, “daml:toClass” is

more restrictive since it requires that all the property values for a resource must be a

particular class. However, a resource without property given “daml:onProperty” can also

satisfy the condition. So this feature must be used very carefully.

b. Classes: “daml:Class” is a subclass of “rdfs:Class” and DAML adds many wonderful

features in it. We can build more expressiveness description of resources with these

features. We can define an enumeration that cannot be implemented in RDF. In DAML,

“daml:oneOf” element defines an enumeration. We can also define a closed list by

declaring “daml:oneOf” to be the “daml:collection” parse type. Additionally, we can

build some relations such as “disjoint”, “union” and “intersection”. Both

“daml:disjointWith” and “daml:disjointUnionOf” can be used to assert there are no

instances in common among classes. Non-exclusive boolean combinations of classes can

be expressed with “daml:unionOf”. The “daml:intersectionOf” property can express

intersection of the sets.

Peng Wang’s Interim Project Report May 2003 Page 14 of 29

2.5.2 Why DAML

RDF is very straightforward to implement, which is both its advantage and disadvantage. It is

not enough when we want more strict data typing and a consistent expression for

enumerations and so on. For example, we want to describe a book sold by Amazon. Below is

the RDF and RDFS form.

Figure 2.5.2.1: Book Example with RDF and RDFS

The disadvantage of the above form is that literals can be any string, but we expect that pages

must be a positive integer. Compared with RDF and RDFS, DAML allow us to use a more

accurate data type (defined in XSD) to describe data. Apart from these advantages, there are

many DAML data sets open to public on the Web.

Figure 2.5.2.2: Book Example with DAML

<daml:DatatypeProperty rdf:ID="pages">

 <rdfs:label>Pages</rdfs:label>

 <rdfs:domain rdf:resource="#Book"/>

 <rdfs:range rdf:resource="http://www.w3.org/2000/10/XMLSchema#positiveInteger"/>

</daml:DatatypeProperty>

<rdfs:Class rdf:ID="Book">

 <rdfs:label>Book</rdfs:label>

 <rdfs:comment>A book sold by Amazon</rdfs:comment>

</rdfs:Class>

<rdfs:Property rdf:ID="pages">

 <rdfs:label>Pages</rdfs:label>

 <rdfs:domain rdf:resource="#Book"/>

 <rdfs:range rdf:resource="http://www.w3.org/2000/01/rdf-schema#Literal"/>

</rdfs:Property>

<Book rdf:ID="MachineLearning">

 <rdfs:label>Machine Learning</rdfs:label>

 <pages>432</pages>

</Book>

http://www.w3.org/2000/10/XMLSchema#positiveInteger
http://www.w3.org/2000/01/rdf-schema#Literal

Peng Wang’s Interim Project Report May 2003 Page 15 of 29

2.6 Ontology Matching

2.6.1 Ontology

The word “ontology” is borrowed from philosophy. Its original meaning is “the branch of

metaphysics that deals with the nature of being” -- The American Heritage
®
 Dictionary of the

English Language: Fourth Edition (2000). In AI domain, T. R. Gruber defined the term as

a specification of a conceptualization [29], i.e. it is a description of concepts and relationships

with a set of representational vocabulary. The aim of building ontologies is to share and reuse

knowledge.

2.6.2 Ontology Matching

Figure 2.6.2.1 Two Publication Ontologies

Since the Semantic Web is built distributively, there are many different ontologies that

describe the semantically equivalent things. Therefore it is necessary to map among elements

of these ontologies if we want to process information in the Web scale. An ontology can be

represented in taxonomy tree form where each node represents a concept with its attributes

[30]. Figure 2.6.2.1 shows two different publication ontologies. For example, the concept

publication on the left of Figure 2.6.2.1 has three attributes: author, title and year. The aim of

ontology matching is to map the semantically equivalent elements. For example,

“MastersThesis” maps to “MScThesis” in Figure 2.6.2.1. This is a one-to-one mapping [30],

the simplest type. We can also map the different types of elements, e.g. a particular relation

maps to a particular attribute. Mapping can be more complex if we want to map the

combination of some elements to a specific element. For example, “FullName” maps to the

combination of “FirstName” and “LastName”.

PhD

Thesis

Publications

Article Book Tech

Report

Thesis

Masters

Thesis

PhD

Thesis

Publications

Article Book Tech

Report

MSc

Thesis

author

title

year

abstract

keywords

note

title

year

Peng Wang’s Interim Project Report May 2003 Page 16 of 29

2.6.3 Approaches

Xiaomeng, in her position paper [33], provided an approach based on text categorization for

ontology mapping. We should compare each element of an ontology with each element of the

other ontology, and then determine a similarity metric per pair. Matched items are those

whose similarity values are greater than a certain threshold.

Since mapping assertion is the core output of the mapping process, a meta-model for mapping

is defined as Figure 2.6.3.1 shows. This meta-model means that “a mapping assertion is an

objectification of the relationship between two ontology elements and supports further

description of that relationship” [33]. It has a mapping type, a mapping degree, an assertion

source. Mapping degree is to rank the outputs, and mapping type is to indicate the relationship

between two ontology elements. The assertion source gives the reason why the particular

assertion is chosen.

Figure 2.6.3.1 Mapping Assertion Meta-model

(Modified from “A Text Categorization Perspective for Ontology Mapping” [33])

As the Figure 2.6.2.1 shows, an ontology can be regarded as a taxonomy tree of a domain and

each node in the taxonomy can be regarded as a category which has documents assigned to it.

Suppose there are two ontologies O1 and O2. A similarity measure),(ji basim is computed

Assertion

source

Mapping

assertion

Mapping

degree

Ontology

element

Mapping

type

similar narrower broader related-to

has

has has

is is is is

concerns element

concerns element

Peng Wang’s Interim Project Report May 2003 Page 17 of 29

for every node in A, where ia belongs to A and jb belongs to B. The node with the highest

similarity will be ranked on top.),(ji basim will be computed with some information

retrieval techniques.

Figure 2.6.3.2: Architecture of Ontology mapping in Xiaomeng’s perspective

(Modified from “A Text Categorization Perspective for Ontology Mapping” [33])

Figure 2.6.3.2 shows the workflow of this approach. First we use some text categorization

techniques (Naïve Bayes, Nearest Neighbour, for instance) to classify some documents to

concept nodes of the ontology. Then we use the two temporary ontologies as the input and use

some information retrieval techniques to produce the output.

In a paper published in WWW2002 [30], the authors gave a more specific approach – they

develop a system named GLUE. Similar to the previous approach, we must give the similarity

definitions. We can apply the notion of the joint probability distribution between any two

concepts in this approach if we make the assumption that each concept is modeled as a set of

instances. There are four probabilities in the distribution: P(A,B), P(A,¬B), P(¬A,B), and

P(¬A,¬B). Suppose an instance is randomly chosen from the universe, P(A,B) is the

probability that the instance belongs to A and B, P(A,¬B) is the probability that the instance

belongs to A but not to B, P(¬A,B) is the probability that the instance belongs to B but not to

A, and P(¬A,¬B) is the probability that the instance belongs to neither A nor B. There are two

similarity functions depending on different cases. In most cases, we can use (1), called the

Jaccard coefficient [30], as the similarity measure.

),(),(),(

),(

)(

)(
),(

BAPBAPBAP

BAP

BAP

BAP
BAJaccardsim

¬+¬+
==

 (1)

Text

Categorization

Text

Categorization

Mapper

O1

O2

User

input

Lingustic

Info

Mapping

Assertions

O1’

O2’

Peng Wang’s Interim Project Report May 2003 Page 18 of 29

Figure 2.6.3.3: The GLUE Architecture

(Modified from “Learning to Map between Ontologies on the Semantic Web” [30])

Figure 2.6.3.3 shows the architecture of this system. The aim of the Distribution Estimator is

to compute the probability distribution. It accepts two taxonomies O1 and O2 as input and

compute the joint probability distribution for every pair of concepts (belong to either ontology

respectively). The Distribution Estimator contains a set of base learners and a meta-learner.

There are two types of base learners: content learner and name learner.

In this system, every instance has a name and a set of attributes, and the instance together

with its attributes is regarded as the “textual content” [30] of the instance. The content learner

uses the Naïve Bayes learning technique to categorize the textual content of the instance. In

order to make a prediction, the content learner computes the probability that an input instance

is an instance of a certain category, given its tokens. So let },,{ 1 kwwd = be the textual

content of an instance and kww ,,1 are its tokens. We need to compute)|(dAP which

can be rewritten as:

)(

)()|(

dP

APAdP
 (2)

where)(AP can be computed as the portion of the training instances belong to A, and)(dP

here can be skipped since it is a normalizing constant.)|(AdP can be computed as

Taxionomy O1 Taxionomy O2

Distribution

Estimator
Meta-Learner

Base Learner L1 Base Learner Lk ……

Relaxation Labeler

Similarity Estimator

Mappings for O1, Mappings for O2

Similarity Matrix Domain Knowledge

Similarity function Joint Distributions: P(A, B), P(A, not B), …

Peng Wang’s Interim Project Report May 2003 Page 19 of 29

)|()|()|()|(21 AwPAwPAwPAdP k= (3)

)(

)|(
)|(

An

Awn
AwP i

i = (4)

where)(An is the total number of token positions of all training instances that belong to A, and

)|(Awn i computes the frequency of iw (the number of times iw appears in all training

instances that belong to A). P(¬A,B) can be computed in a similar way. According to the

authors of this paper, the content learner can get a very good result when the size of textual

elements is large [30].

The name learner works the similar way with the content learner. The difference from the

content learner is that the name learner uses the full name of the input instance which is the

concatenation of concept names from the root to itself in the taxonomy tree. The meta-learner

combines the predication produced by the base learners by a weighted sum. The Similarity

Estimator is a simple layer where a similarity function is applied and output a similarity

matrix. The aim of the Relaxation Labeler is to seek the mapping configuration that best fits

the domain knowledge after taking the output of the Similarity Estimator.

2.7 Similarity Measures

As we state in previous sections, similarity measures play a very significant role in ontology

matching. Apart from the measures above, Alexander Maedche and Steffen Staab [35] present

a set of similarity measures which measures similarity between ontologies at two semiotic

levels – the lexical level and the conceptual level. It is different from the approaches we

discuss above. The previous approaches use the formal structures of ontologies and match the

concept nodes. However, all ontologies in real-world not only specify the conceptualization

by logical structures, but also refer to terms restricted by human natural languages use. So this

approach measures the similarity at two different levels.

Definition (Lexicon) [35]: The lexicon (X) is composed of a set of concept terms (
cX) and

relation terms (
rX).

rc XXX =

Definition (Core Ontology) [35]: A core ontology (O) is a tuple (A,P,D,X,F,G) where A is a

set of concept symbols, P is a set of relation symbols, D is a set of statements, L is a lexicon

and F,G are two reference functions. G is the reference function that links set of lexical entries

to the set of relations they refer to, and F will link to the set of concepts they refer to.

Peng Wang’s Interim Project Report May 2003 Page 20 of 29

2.7.1 Lexical Comparison Level

A lexical similarity measure for strings is defined as follows:

]1,0[
|)||,min(|

),(|)||,min(|
,0max),(∈

 −
=

ji

jiji

ji
LL

LLedLL
LLSM (5)

where ji LL , are two lexical entries,),(ji LLed is the edit distance [35] which is used to

weight the difference between two strings. Edit distance computes the minimum number of token

required to transform one string into another by means of insertions, deletions, and substitutions,

e.g. the edit distance between “MScThesis” and “MSc_Thesis” is 1 since it takes one step (insert a

character ”_”) to finish the transformation. The result computed by the above formula falls in the

range [0,1] where 1 represents good and 0 means bad. As for the lexical similarity measure for

concepts in ontologies, the formula can be regard as the average of string matching:

∑
Χ∈ Χ∈Χ

=ΧΧ
1

2

),(max
1

),(
1

21

i
jL

ji
L

LLSMSM (6)

where X is the lexicon that consists a set of lexical entries,
rc XXX = ,

cX is for concepts,

rX is for relations, 1Χ and 2Χ are two this kind of lexical sets of two ontologies.

),(21 ΧΧSM is an asymmetric measure, i.e.),(21 ΧΧSM is different from),(12 ΧΧSM .

2.7.2 Conceptual Comparison Level

a) Comparing taxonomies

There many approaches that compare the similarity of the two concepts between taxonomies,

but few of these approaches compare two taxonomies themselves. Given two concepts C1 and

C2 from two taxonomies H1 and H2, and a lexical entry
cc

XXL 21 ∈ that refer to C1 and

C2 via two reference functions F1 and F2, then the intensional semantics of C1(C2) are

composed of “semantic cotopy” (SC) of C1(C2).

{ }),(),(),(ijjiji CCHCCHACHCSC ∨∈= (7)

where H is the taxonomy, A is a set of concept symbols of the ontology. This formula can be

extended to sets as follows:

ni

in HCSCHCCSC
,,1

1),()},,,({
=

= (8)

The taxonomic overlap (TO) between taxonomy H1 and H2 can be computed with the

formula:

Peng Wang’s Interim Project Report May 2003 Page 21 of 29

{ } { }
{ } { }))),((())),(((

))),((())),(((
),,('

2

1

21

1

1

2

1

21

1

1

21
HLFSCFHLFSCF

HLFSCFHLFSCF
OOLTO

−−

−−

=

 (9)

where O1 and O2 are two ontologies, F is the reference function that links set of lexical entries

to the set of concepts they refer to. But there is another case:
c

XL 1∈ and
cXL 2∉ . In this

case, the taxonomic overlap can be computed as follows:

{ } { }
{ } { }

=
−−

−−

∈))),((())),(((

))),((())),(((
),,(''

2

1

21

1

1

2

1

21

1

1

21 max
2

HLFSCFHLFSCF

HLFSCFHLFSCF
OOLTO

CC

 (10)

Now we can get the average similarity for taxonomies:

∑
∈

=
cXL

c
OOLTO

X
OOTO

1

),,(
1

),(21

1

21 (11)

which is constrained with

∉
∈

=
c

c

XLifOOLTO

XLifOOLTO
OOLTO

221

221

21
),,(''

),,('
),,((12)

b) Comparing relations

Similar to the above comparison, we can compute the relation overlap (RO), i.e. the accuracy

two relations match. RO can be computed based on the geometric mean value of similarity

their domain concepts. Similar to taxonomies comparison, we define the upwards cotopy (UC)

in order to consider the similarity of concepts:

{ }),(),(jiji CCHACHCUC ∈= (13)

Then, similar to the definition of TO’, the concept match is defined as (14) shows:

)),(()),((

)),(()),((
),,,(

22

1

211

1

1

22

1

211

1

1

2211
HCUCFHCUCF

HCUCFHCUCF
OCOCCM

−−

−−

=

 (14)

RO’ of relations R1 and R2 can be defined as (15).

)),(,),(()),(,),((),,,(' 121122112211 ORrORrCMORdORdCMORORRO ⋅= (15)

Consider
rr XLXL 12 , ∈∈

∑
∈ ∈

=
})({

2211
})({

1

21

11
22

)},,,('{max
})({

1
),,(''

LGR
LGR

ORORRO
LG

OOLRO (16)

∑
∈ ∈

=
})({

2211

1

21

11
22

)},,,('{max
})({

1
),,('''

LGR
PR

ORORRO
LG

OOLRO (17)

where R1 and R2 are two relations we want to compare. G is the reference function that links

set of lexical entries to the set of relations they refer to. Since there are several different

Peng Wang’s Interim Project Report May 2003 Page 22 of 29

conditions, the author gives (15), (16) and (17) respectively. Then with combination of the

above definitions, we get RO for
c

XL 1∈

∉
∈

=
r

r

XLifOOLRO

XLifOOLRO
OOLRO

221

221

21
),,('''

),,(''
),,((18)

Similar to taxonomies, the average relation overlap is then defined grounded with the

condition (18):

∑
∈

=
rXL

r
OOLRO

X
OORO

1

),,(
1

),(21

1

21 (19)

Now we can see this method is more complex than the previous approaches, but it is very

interesting and creative.

2.8 Toolkits

2.8.1 Jena

HP has developed a toolkit named Jena for developing applications within the Semantic Web.

The toolkit contains a RDF/XML Parser (ARP), Jena relational database interface, integrated

query language (RDQL), a server for publishing RDF models on the web (Joseki [27]) and a

set of Java API for RDF. It has added support for DAML+OIL since version 1.2.

2.8.2 Sesame

Sesame [34] is an open source project which is an RDF Schema-based repository. It has

several useful features:

a) Data administration: add, delete data.

b) Export: exports the data in repository to RDF documents.

c) RQL engine: can be used to evaluate RQL queries.

2.8.3 DAMLJessKB

DAMLJessKB [32] is set of Java API for reasoning with DAML within the Semantic Web. It

is built based on Jena and Jess [31]. It now supports DAML, RDFS, RDF and XML Schemas.

It provides abilities such as reading DAML files, converting the information to the DAML

language, and making queries.

Peng Wang’s Interim Project Report May 2003 Page 23 of 29

Part II

3. Project Plan

3.1. Aims and Objectives

The main aim of this project is to develop a search engine based on ontology matching within

the Semantic Web. Since the Semantic Web is distributive, there are a lot of resource

descriptions where two concepts within different ontologies are equivalent, but they are

described in different terms. This project is to match those elements, and then bring a more

accuracy search result. This project can be divided into several sub-tasks.

a. A DAML builder and converter: This module is to covert data file into Semantic Web

(SW) form, and to generate the SW data file based on the certain ontology

semi-automatically.

b. A DAML crawler (optional): This agent is to travel the web and collect the DAML

content on the Web.

c. A query builder: A query builder is the bridge between the user and machine learning

agent. It accepts the input of the user and constructs a kind of “query language”. Then it

transfers the query to machine learning agent. It has a friendly interface that will also

ease the user input.

d. A machine learning agent: This module is the core of this project. Some machine

learning techniques involve this project in this layer. The agent will measure the

similarity of the elements and determine if they are equivalent. Then it will transfer the

output to a CGI-like program to return the result to the user.

3.2. Initial Design and Specification

Since a detailed design and specification of this project is not presented now, I can only give a

rough illustration. I don’t guarantee that all features here will be implemented and some

components may be changed, added or removed. The project has 3 main sub-tasks:

3.2.1 DAML Converter and Builder

I will prefer DAML to RDF as the semantic web data form in this project since there are

many data sets that open to public. Data will be stored in a relational database since the

response time is very important to a search engine. I will also use some artificial data if the

data on the Web is not suitable for my project. In this particular case, I will make an agent that

Peng Wang’s Interim Project Report May 2003 Page 24 of 29

will generate data in SW (Semantic Web) form automatically and convert data in Non-SW

form to SW form. This agent will be implemented by java with some DAML API. It has a

GUI user interface, and I will also implement a web interface if time is enough.

3.2.2 Query Builder

The aim of query builder is to ease the process of user input, especially when a user wants to

make a complex query. It will take the user requests and format them into a kind of “Query

Language” to agents. This part will be a cgi-like program, built with some jsp pages or

servlets.

Figure 3.2.2.1 Qurey Builder

3.2.3 Machine Learning Agent

This is the core of this project. The agent will accept the queries, match the contents against

the requests and measure the similarity among elements of two ontologies and determine if

they are matched candidates. Then it will bring the information back to the user.

Some machine learning techniques such as Naïve Bayes, involve in this layer. As we

mentioned in previous sections, there are several types of mapping. I will focus on one-to-one

mapping in this project, rather than complex types. Complex mapping may be dealt with if

there is time left, e.g. “Full Name” maps to the combination of “First Name” and “Last

Name”.

As for the similarity measures, I have not decide what type of measures I should use. This is

because almost all methods are not suitable for every domain or condition. So I will compare

several methods when developing and choose one that best fits my data sets, or may

UserInput QueryBuilder
Mahcine

Learning

Agent

Database

Peng Wang’s Interim Project Report May 2003 Page 25 of 29

implement a hybrid system.

3.2.4 DAML Crawler

DAML crawler is a program that collects DAML statements by traveling on the Web. The

main aim of the crawler is to collect DAML content on the Web periodically. This part is

optional since there are several existing crawlers on the Web and I can also use the existing

tools.

Figure 3.2.4.1 DAML Crawler

Database

Root URIs

Crawler Internet
DAML

content

rdfDB

Peng Wang’s Interim Project Report May 2003 Page 26 of 29

June July August September

Project Steps: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Final Design

1. Data sets survey

2. Compare several theories of similarity measures

3. Design the detailed program structure

Software Development

1. DAML converter

2. Machine Learning Agent

3. Query Builder

Testing

1. Unit Test & System Test

Documentation

1. Prepare Presentation

2. Final documentation

3. Prepare demostration

3.3 Project Schedule

Development
TestingFinal Design DocumentationMilestones

Peng Wang’s Interim Project Report May 2003 Page 27 of 29

Part III

4. Bibliography

1. The Semantic Web - ISWC 2002: First International Semantic Web Conference, Sardinia,

Italy, June 9-12, 2002 : proceedings / Ian Horrocks, James Hendler (eds.)

2. Advances in web-based learning: first international conference, ICWL 2002, Hong Kong,

China, August 17-19, 2002 : proceedings / Joseph Fong ... [et al.] (eds.)

5. References

[1] W3C Semantic Web, http://www.w3.org/2001/sw/

[2] Tim Berners-Lee, James Hendler, Ora Lassila, The Semantic Web, Scientific American,

http://www.sciam.com/article.cfm?articleID=00048144-10D2-1C70-84A9809EC588EF21

[3] Sean B. Palmer, The Semantic Web: An Introduction, 2001,

http://infomesh.net/2001/swintro/

[4] Eric Prudhommeaux, Presentation of W3C and Semantic Web, 2001,

http://www.w3.org/2001/Talks/0710-ep-grid

[5] Tim Berners-Lee, W3C Naming and Addressing Overview (URIs. URLs, ...),

http://www.w3.org/Addressing/

[6] W3C, W3C Resource Description Framework (RDF), http://www.w3.org/RDF/

[7] The DARPA Agent Markup Language (DAML), http://www.daml.org/

[8] AQ-Search Group (Jianghua Tu, Rui Feng, Zhuoyun Li, Wei Tong, Zaiqiang Liu and

Instructor --- Prof. Kokar), AQ-Search Project, 2002

[9] Aaron Swartz, The Semantic Web (for Web Developers), May 2001,

http://logicerror.com/semanticWeb-webdev

[10] Aaron Swartz, The Semantic Web In Breadth, May 2002,

http://logicerror.com/semanticWeb-long#acks

http://www.w3.org/2001/sw/
http://www.sciam.com/article.cfm?articleID=00048144-10D2-1C70-84A9809EC588EF21
http://infomesh.net/2001/swintro/
http://www.w3.org/2001/Talks/0710-ep-grid
http://www.w3.org/Addressing/
http://www.w3.org/RDF/
http://www.daml.org/
http://logicerror.com/semanticWeb-webdev
http://logicerror.com/semanticWeb-long#acks

Peng Wang’s Interim Project Report May 2003 Page 28 of 29

[12] Sandro Hawke, How the Semantic Web Works, April 2002,

http://www.w3.org/2002/03/semweb/

[13] W3C, HTTP Specifications and Drafts, http://www.w3.org/Protocols/Specs.html

[14] IETF, Hypertext Transfer Protocol -- HTTP/1.1 - Draft Standard RFC 2616,

http://www.ietf.org/rfc/rfc2616.txt

[15] W3C, Extensible Markup Language (XML), http://www.w3.org/XML/

[16] W3C, Extensible Markup Language (XML) 1.0 (Second Edition), 6 October 2000,

http://www.w3.org/TR/REC-xml

[17] Erik T. Ray, Learning XML, First Edition, January 2001, ISBN: 0-59600-046-4, 368

pages.

[18] R. Allen Wyke, Brad Leupen, Sultan Rehman, XML Programming, 2002, Microsoft

Press

[19] W3Schools (http://www.w3schools.com), XML Schema Tutorial, (2001)

http://www.w3schools.com/schema/schema_intro.asp

[20] Tim Bray, What is RDF? http://www.xml.com/lpt/a/2001/01/24/rdf.html

[21] W3C, RDF Primer, W3C Working Draft 23 January 2003,

http://www.w3.org/TR/2003/WD-rdf-primer-20030123/

[22] W3C, Resource Description Framework (RDF) Model and Syntax Specification, W3C

Recommendation 22 February 1999, http://www.w3.org/TR/1999/REC-rdf-syntax-19990222

[23] W3C, RDF Vocabulary Description Language 1.0: RDF Schema, W3C Working Draft 23

January 2003, http://www.w3.org/TR/rdf-schema/

[24] Roxane Ouellet, Uche Ogbuji, Introduction to DAML: Part I (2002),

http://www.xml.com/lpt/a/2002/01/30/daml1.html

[25] Roxane Ouellet, Uche Ogbuji, Introduction to DAML: Part II (2002),

http://www.xml.com/lpt/a/2002/03/13/daml.html

[26] Adam Pease, Why Use DAML? (10 April, 2002),

http://www.daml.org/2002/04/why.html

[27] http://www.joseki.org/

http://www.w3.org/2002/03/semweb/
http://www.w3.org/Protocols/Specs.html
http://www.ietf.org/rfc/rfc2616.txt
http://www.w3.org/XML/
http://www.w3.org/TR/REC-xml
http://www.w3schools.com
http://www.w3schools.com/schema/schema_intro.asp
http://www.xml.com/lpt/a/2001/01/24/rdf.html
http://www.w3.org/TR/2003/WD-rdf-primer-20030123/
http://www.w3.org/TR/1999/REC-rdf-syntax-19990222
http://www.w3.org/TR/rdf-schema/
http://www.xml.com/lpt/a/2002/01/30/daml1.html
http://www.xml.com/lpt/a/2002/03/13/daml.html
http://www.daml.org/2002/04/why.html
http://www.joseki.org/

Peng Wang’s Interim Project Report May 2003 Page 29 of 29

[28] Jena, http://www.hpl.hp.com/semweb/

[29] T. R. Gruber. A translation approach to portable ontologies. Knowledge Acquisition,

5(2):199-220, 1993.

[30] AnHai Doan, Jayant Madhavan, Pedro Domingos, Alon Halevy. Learning to Map

Between Ontologies on the Semantic Web. May 2002.

http://www2002.org/CDROM/refereed/232/

[31] Jess, http://herzberg.ca.sandia.gov/jess/

[32] DAMLJessKB, http://edge.mcs.drexel.edu/assemblies/software/damljesskb

[33] Xiaomeng Su, A Text Categorization Perspective for Ontology Mapping,

http://www.idi.ntnu.no/~xiaomeng/paper/Position.pdf

[34] Sesame, http://sesame.aidministrator.nl/

[35] Alexander Maedche and Steffen Staab, Comparing Ontologies — Similarity Measures

and a Comparison Study, March 2001,

http://www.aifb.uni-karlsruhe.de/~sst/Research/Publications/report-aifb-408.pdf

http://www.hpl.hp.com/semweb/
http://www2002.org/CDROM/refereed/232/
http://herzberg.ca.sandia.gov/jess/
http://edge.mcs.drexel.edu/assemblies/software/damljesskb
http://www.idi.ntnu.no/~xiaomeng/paper/Position.pdf
http://sesame.aidministrator.nl/
http://www.aifb.uni-karlsruhe.de/~sst/Research/Publications/report-aifb-408.pdf

