
Homework 7 - Due April 16th
First Contact TA: Ryan Johnson (rajohnso@cs.wisc.edu)

1) (5 points)
Write a symbol table (see pg 187) for the following program:

 .ORIG x3000
 AND R0, R0, #0
 ADD R2, R0, #10
 LD R1, MASK
 LD R3, PTR1
LOOP LDR R4, R3, #0
 AND R4, R4, R1
 BRz NEXT
 ADD R0, R0, #1
NEXT ADD R3, R3, #1
 ADD R2, R2, #-1
 BRp LOOP
 STI R0, PTR2
 HALT
MASK .FILL x8000
PTR1 .FILL x4000
PTR2 .FILL x5000

2) (5 Points)
Describe what the LC-3 assembly program in #1 does.

3) (5 Points)
Do problem 7.2 in the textbook.

4) (15 Points)
In this and the next homework, you will work with a TicTacToe game that runs in
PennSim. In it's current state, the game is playable, however some functionality is
missing. We want the game to detect when a player has been “blocked,” or in other
words, when one player makes a move that prevents the other player from winning. For
example, if player X has two Xs in the top row and then the O player places an O in the
third open space, the O player has blocked the X player. To complete this problem, you
will write code, plug it into the game, and test it for correctness.

Download the TicTacToe zip file here: tictactoe.zip

The zip file contains a directory called tictactoe. Inside of the directory are three files:

•lc30s.asm: This is the LC-3 operating system discussed in the PennSim guide.
•main.asm: This is the file containing the tictactoe game. This is the file you must edit.

•tictactoe.script: This is a script file that will greatly simplify your testing of your code.
See below for instructions on how to use it.

When you open main.asm in your text editor, you will see clearly marked where you
should add your code. The existing code sets register R0 to 0 before executing the
RET instruction. For correct functionality, you must change the existing code to do the
following: If the current player has blocked the other player (i.e. stopped the other player
from possible winning in their next move), you must set R0 to 1 before executing the
RET instruction. If the current playerʼs move does is not a blocking move, set R0 to 0
before executing the RET instruction.

For grading, you must submit a copy of your main.asm to the dropbox. Additionally, you
must submit a screenshot of PennSim of one of the players blocking the other player.
To show correct functionality in the screen shot, place a breakpoint at the RET
statement as marked in the code and take the screen shot when the PC stops at that
point. Make sure your include the register values in the screenshot so we can see that
R0 contains 1.

The easiest way to run, debug, and test your program is to place the tictactoe directory
in the same directory as PennSim. When you open up PennSim, run the following
command: script tictactoe/tictactoe.script. This will reset PennSim, load the lc3os, load
the main tictactoe code, and set a breakpoint at the end of the CheckBlock function.
Each time you change your code, running the script will allow you to quickly rerun the
game from the beginning.

Here are some more info to help you complete the problem:

Immediately before the location where you will input your code, the register R1 is loaded
with the current player's most recent mark and R2 is loaded with the marks of the
opposing player. In this game, marks are stored as a 9-bit code, with each of the 9 bits
corresponding to one location on the board. The least significant bit corresponds to
location 1. To illustrate, if the board is as follows:

Then the 9-bit code for the X player will be 000000111b, 007h. The 9-bit code for the O
player will be 010001000b, 088h.

A block will only occur when there are three marks in a row (two of one type and the
third and most recent being of another). There are eight possible patterns of three
marks in a row TicTacToe. Since this is a relatively small number, the easiest way of
checking for three marks in a row is as follows: combine the other playerʼs marks with
the current players most recent marks in a single 9-bit code. Then compare the
combined code with each of the possible blocking patterns looking for a match. If one
matches, then the it is a blocking move. For example, if the X player's code is
001000011b and the O player makes the move 000000100b, combining the two results
in 001000111b. If we compare this with one of the blocking move patterns, 007h, we
see that there is a match. Thus we would load R0 with 1.

