Publishing Search Logs — A Comparative Study
of Privacy Guarantees

Michaela Gotz
Ashwin Machanavajjhala
Guozhang Wang
Xiaokui Xiao
Johannes Gehrke

Abstract—Search engine companies collect the “database of intentions”, the histories of their users’ search queries. These search
logs are a gold mine for researchers. Search engine companies, however, are wary of publishing search logs in order not to disclose

sensitive information.

In this paper we analyze algorithms for publishing frequent keywords, queries and clicks of a search log. We first show how methods
that achieve variants of k-anonymity are vulnerable to active attacks. We then demonstrate that the strong guarantees provided by
e-differential privacy unfortunately does not provide any utility for this problem. We then propose a novel Algorithm ZEALOUS and
show how to set its parameters to achieve (e, §)-probabilistic privacy. We also constrast our analysis of ZEALOUS with an analysis by

Korolova et al. [19] that achieves (€, ¢’)-indistinguishability.

In a large experimental study using search quality and search efficiency to measure utility, we compare ZEALOUS and previous work
that achieves k-anonymity. Our results show that ZEALOUS yields comparable utility to k—anonymity while at the same time achieving

much stronger privacy guarantees.

1 INTRODUCTION

Civilization is the progress toward a society of privacy. The
savage’s whole existence is public, ruled by the laws of his
tribe. Civilization is the process of setting man free from men.
— Ayn Rand.

My favorite thing about the Internet is that you get to go
into the private world of real creeps without having to smell
them. — Penn Jillette.

Search engines play a crucial role in the navigation
through the vastness of the Web. Today’s search engines
do not just collect and index webpages, they also collect
and mine information about their users. They store
the queries, clicks, IP-addresses, and other information
about the interactions with users in what is called a
search log. Search logs contain valuable information that
search engines use to tailor their services better to their
users’ needs. They enable the discovery of trends, pat-
terns, and anomalies in the search behavior of users,
and they can be used in the development and testing
of new algorithms to improve search performance and
quality. Scientists all around the world would like to
tap this gold mine for their own research; search en-
gine companies, however, do not release them because
they contain sensitive information about their users, for
example searches for diseases, lifestyle choices, personal
tastes, and political affiliations.

The only release of a search log happened in 2007
by AOL, and it went into the annals of tech history

as one of the great debacles in the search industry. !
AOL published three months of search logs of 650,000
users. The only measure to protect user privacy was
the replacement of user-ids with random numbers —
utterly insufficient protection as the New York Times
showed by identifying a user from Lilburn, Georgia [5],
whose search queries not only contained identifying
information but also sensitive information about her
friends’ ailments.

The AOL search log release shows that simply replac-
ing user-ids with random numbers does not prevent
information disclosure, and other ad-hoc methods have
been studied and found to be similarly insufficient, such
as the removal of names, age, zip codes and other iden-
tifiers [16] and the replacement of keywords in search
queries by random numbers [20].

In this paper, we perform a comparison study of
formal methods of limiting disclosure when publishing
frequent keywords, queries, and clicks of a search log.
These methods we study vary in the guarantee of disclo-
sure limitations they provide and in how much useful
information they retain. We first describe two negative
results. We show that existing proposals to achieve k-
anonymity [25] in search logs [1], [23], [14], [15] are
insufficient in the light of attackers who can actively
influence the search log. We then turn to differential pri-
vacy [10], a much stronger privacy guarantee; however,

1. http:/ /en.wikipedia.org/wiki/AOL\search\data\scandal
describes the incident, which resulted in the resignation of AOL'’s
CTO and an ongoing class action lawsuit against AOL resulting from
the data release.

we show that it is impossible to achieve good utility with
differential privacy.

We then describe Algorithm ZEALOUS?, developed
independently by Korolova et al. [19] and us [12] with
the goal to achieve relaxations of differential privacy.
Korolova et al. showed how to set the parameters of
ZEALOUS to guarantee (e,d)-indistinguishability [9],
and we here offer a new analysis that shows how to
set the parameters of ZEALOUS to guarantee (e, J)-
probabilistic differential privacy [22] (Section 4.2), a much
stronger privacy guarantee as our analytical comparison
shows.

Our paper concludes with an extensive experimental
evaluation, where we compare the utility of various al-
gorithms that guarantee anonymity or privacy in search
log publishing. Our evaluation includes applications that
use search logs for improving both search experience and
search performance, and our results show that ZEAL-
OUS’ output is sufficient for these applications while
achieving strong formal privacy guarantees.

We believe that the results of this research enable
search engine companies to make their search log avail-
able to researchers without disclosing their users’ sen-
sitive information: Search engine companies can ap-
ply our algorithm to generate statistics that are (e,0)-
probabilistic differentially private while retaining good
utility for the two applications we have tested. Beyond
publishing search logs we believe that our findings are
of interest when publishing frequent itemsets, as ZEAL-
OUS protects privacy against much stronger attackers
than those considered in existing work on privacy-
preserving publishing of frequent items/itemsets [21].

The remainder of this paper is organized as follows.
We start with some background in Section 2 and then de-
scribe our negative results 3. We then describe Algorithm
ZEALOUS and our analysis of ZEALOUS in Section 4,
and we compare our analysis with a previous analysis
in Section 4.1.

2 PRELIMINARIES

In this section we introduce the problem of publishing
frequent keywords, queries, clicks and other items of a
search log.

2.1

Search engines such as Bing, Google, or Yahoo log inter-
actions with their users. When a user submits a query
and clicks on one or more results, a new entry is added
to the search log. Without loss of generality, we assume
that a search log has the following schema:

Search Logs

(USER-ID, QUERY, TIME, CLICKS),

where a USER-ID identifies a user, a QUERY is a set of
keywords, and CLICKS is a list of urls that the user
clicked on. The user-id can be determined in various

2. Zearch Log Publising

ways; for example, through cookies, IP addresses or user
accounts. A user history or search history consists of all
search entries from a single user. Such a history is usually
partitioned into sessions containing similar queries; how
this partitioning is done is orthogonal to the techniques
in this paper. A query pair consists of two subsequent
queries from the same user that are contained in the
same session.

We say that a user history contains a keyword k if there
exists a search log entry such that & is a keyword in the
query of the search log. A keyword histogram of a search
log S records for each keyword k the number of users
¢t whose search history in S contains k. A keyword
histogram is thus a set of pairs (k,c;). We define the
query histogram, the query pair histogram, and the click
histogram analogously. We classify a keyword, query,
consecutive query, click in a histogram to be frequent if its
count exceeds some predefined threshold 7; when we do
not want to specify whether we count keywords, queries,
etc., we also refer to these objects as items.

With this terminology, we can define our goal as
publishing frequent items (utility) without disclosing
sensitive information about the users (privacy). We will
make both the notion of utility and privacy more formal
in the next section.

2.2 Disclosure Limitations for Publishing Search
Logs

A simple type of disclosure is the identification of a
particular user’s search history (or parts of the history)
in the published search log. The concept of k-anonymity
has been introduced to avoid such identifications.

Definition 1 (k-anonymity [25]): A search log is k-
anonymous if the search history of every individual is
indistinguishable from the history of at least k — 1 other
individuals in the published search log.

There are several proposals in the literature to achieve
different variants of k-anonymity for search logs. Adar
proposes to partition the search log into sessions and
then to discard queries that are associated with fewer
than k different user-ids. In each session the user-id
is then replaced by a random number [1]. We call the
output of Adar’s Algorithm a k-query anonymous search
log.

Motwani and Nabar add or delete keywords from
sessions until each session contains the same keywords
as at least k£ — 1 other sessions in the search log [23],
following by replaying the user-id by a random number.
We call the output of this algorithm a k-session anonymous
search log. He and Naughton generalize keywords by
taking their prefix until each keyword is part of at
least k search histories and publish a histogram of the
partially generalized keywords [14]. We call the out-
put a k-keyword anonymous search log. Efficient ways to
anonymize a search log are also discussed in work by
Yuan et al. [15].

Stronger disclosure limitations try to limit what an
attacker can learn about a user. Differential privacy
guarantees that an attacker learns roughly the same
information about a user whether or not the search
history of that user was included in the search log [10]
Differential privacy has previously been applied to con-
tingency tables [4], learning problems [6], [18], synthetic
data generation of commuting patterns [22] and more.

Definition 2 (e-differential privacy [10]): An algorithm A
is e-differentially private if for all search logs S and S’
differing in the search history of a single user and for all
output search logs O:

Pr[A(S) = 0] <e“Pr[A(S") = O].

This definition ensures that a user has no reason to worry
about the published search log since that output search
log could have also arisen from a search log S” in which
the search history of that user was omitted. We will refer
to search logs that only differ in the search history of a
single user as neighboring search logs. Note that similar
to the variants of k-anonymity we could also define
variants of differential privacy by looking at neighboring
search logs that differ only in the content of one session,
one query or one keyword. However, we chose to focus
on the strongest definition in which an attacker does not
learn much about her based on our whole search history.

Differential privacy is a very strong guarantee and in
some cases it can be too strong to be practically achiev-
able. We will review two relaxations that have been pro-
posed in the literature. Machanavajjhala et al. proposed
the following probabilistic version of differential privacy.

Definition 3 (probabilistic differential privacy [22]): An
algorithm A satisfies (e, 6)-probabilistic differential privacy if
for all search logs S we can divide the output space € into
to sets Q1,9 such that

(1) Pr[A(S) € Q2] <6, and
for all neighboring search logs S’ and for all O € Qy:
(2)e “Pr[A(S") = O] < Pr[A(S) = O] < e Pr[A(S") = O]

This definition guarantees that algorithm A achieves
e-differential privacy with high probability (> 1 —).
The set € contains all outputs that are considered
privacy breaches according to e-differential privacy; the
probability of such an output is bounded by .

The following relaxation has been proposed by Dwork
et al. [9].

Definition 4 (indistinguishability [9]): An algorithm A is
(€, 6)-indistinguishable if for all search logs S, S’ differing in
one user history and for all subsets O of the output space 2

Pr[A(S) € O] < e Pr[A(S") € O] + 6

We will compare these two definitions in Section 5. In
particular, we will show that probabilistic differential

privacy implies indistinguishability, but the converse
does not hold. We show that there exists an algorithm
that is (¢’, §’)-indistinguishable yet blatantly non-(e, §)-
probabilistic differentially private for any e and any
6 <1

2.3 Utility Measures

We will compare the utility of algorithms producing san-
itized search logs both theoretically and experimentally.

2.3.1 Theoretical Utility Measures

For simplicity, suppose we want to publish all items
(such as keywords, queries, etc.) with frequency at least
7 in a search log; we call such items frequent items; we
call all other items infrequent items. Consider a discrete
domain of items D. Each user contributes a set of these
items to a search log S. We denote by f;(5) the frequency
of item d € D in search log S. We drop the dependency
from S when it is clear from the context.

We define the inaccuracy of a (randomized) algorithm
as the expected number of items it gets wrong, i.e., the
number of frequent items that are not included in the
output, plus the number of infrequent items that are
included in the output. We do not expect an algorithm
to be perfect. It may make mistakes for items with
frequency very close to 7, and thus we do not take
these items in our notion of accuracy into account. We
formalize this “slack” by a parameter £, and given £, we
introduce the following new notions. We call an item d
with frequency fq > 7 + £ a very frequetn item and an
item d with frequency fq < 7 — & a very infrequent item.
We will measure the inaccuracy of an algorithm then
only using its inability to retain the very frequent items
and its inability to filter out the very infrequent items.

Definition 5 ((A, S)-inaccuracy): Given an algorithm A
and an input search log S, the (A, S)-inaccuracy with slack
& is defined as

E[l{d € A(9)|fa(S) <7 =& U{d & A(S)|fa(S) > 7+ }]

The expectation is taken over the randomness of the
algorithm. As an example, consider the simple algorithm
that always outputs the empty set; we call this algorithm
the Baseline Algorithm. On input S the Baseline Algorithm
has an inaccuracy equal to the number of items with
frequency greater or equal than 7 + &.

For the results in the next sections it will be useful
to distinguish the error of an algorithm on the very
frequent items and its error on the very infrequent items.
We can rewrite the inaccuracy as:

> 1-Prlde A(S)]+ > Pr[d € A(S)]

d:fa(S)>T+E€ deD:fq(S)<T—¢

Thus, the (A, S)-inaccuracy with slack £ can be rewritten
as the inability to retain the frequent items plus the
inability to filter out the very infrequent items. For
example, the baseline algorithm has an inaccuracy of 0

on the very infrequent items and an inaccuracy equal to
the number of very frequent items on the very frequent
items.

Definition 6 (c—accurate): An algorithm A is c-accurate
for very frequent items, if for any input search log S and
any very frequent item d in S, there is at least ¢ probability
that d is in the output of the algorithm.

2.3.2 Experimental Utility Measures

Traditionally, the utility of a privacy-preserving algo-
rithm has been evaluated by comparing some statistics of
the input with the output to see “how much information
is lost.” The choice of suitable statistics is a difficult
problem as these statistics need to mirror the sufficient
statistics of applications that will use the sanitized search
log, and for some applications the sufficient statistics are
hard to characterize. To avoid this drawback, Brickell et
al. [7] measure the utility with respect to data mining
tasks and they take the actual classification error of an
induced classifier as their utility metric.

In this paper we take a similar approach. We use
two real applications from the information retrieval com-
munity: Index caching, as a representative application
for search performance, and query substitution, as a
representative application for search quality. For both
application the sufficient statistics are histograms of
keywords, queries, or query pairs.

Index Caching. Search engines maintain an inverted
index which, in its simplest instantiation, contains for
each keyword a posting list of identifiers of the docu-
ments in which the keyword appears. This index can
be used to answer search queries, but also to classify
queries for choosing sponsored search results. The index
is usually too large to fit in memory, but maintaining
a part of it in memory reduces response time for all
these applications. We use the formulation of the index
caching problem from Baeza-Yates [3]. We are given a
keyword search workload, a distribution over keywords
indicating the likelihood of a keyword appearing in a
search query. It is our goal to cache in memory a set
of posting lists that for a given workload the cache
maximizes the cache-hit-probability over all keywords
while not exceeding the storage capacity. Here the hit-
probability is the probability that the posting list of a
keyword can be found in memory given the keyword
search workload.

Query Substitution. Query substitutions are suggestions
to rephrase a user query to match it to documents or
advertisements that do not contain the actual keywords
of the query. Query substitutions can be applied in query
refinement, sponsored search, and spelling error cor-
rection [17]. Algorithms for query substitution examine
query pairs to learn how users re-phrase queries. We use
an algorithm developed by Jones et al. [17].

In Sections 3.1 to 4 we will analyze various algorithms
in terms of their disclosure limitation guarantees and

their theoretical utility. Then, in Section 7 we will ex-
perimentally compare the utility of these algorithms.

3 NEGATIVE RESULTS

In this section, we discuss the deficiency of two existing
privacy models for search log publication. Section 3.1
focuses on k-anonymity, and Section 3.2 investigates
differential privacy.

3.1 Insufficiency of Anonymity

k-anonymity and its variants prevent an attacker from
uniquely identifying the user that corresponds to a
search history in the sanitized search log. Nevertheless,
even without unique identification of a user, an attacker
can still infer the keywords or queries used by the user,
as demonstrated in the following example.

Example 1 (active attack on k-anonymity): Assume that
an attacker wants to learn whether her neighbor (living
at address A;) has visited the cancer hospital (at address
Ay) recently. Towards this end, the attacker first creates
k — 1 accounts at the search engine, and then uses each
account to ask the query “from: A; to: Ay”, i.e., a query
that may have been used by her neighbor to find a good
route from her home to the hospital. Assume that, some
time later, the search engine released a k-anonymous
search log that contains k occurrence of the query “from:
A to: Ay”. Then, the attacker knows for sure that the
query must have been issued once by another individual,
who is likely to be her neighbor. Hence, the attacker can
infer that her neighbor had the intention to visit the local
cancer hospital.

3.2

In the following, we will illustrate the infeasibility of dif-
ferential privacy in search log publication. In particular,
we will showing that, under realistic settings, no differ-
ential private algorithm can produce a sanitized search
log with reasonable utility (we measure utility based on
the notion of accuracy introduced in Section 2.3.1). Our
analysis is based on the following lemma.

Impossibility of Differential Privacy

Lemma 1: Let S and S’ be two search logs, such that each
log involves U users, and each user has at most m items in S
and S'. Let D denote the domain of the items in S and S’, and
A be an e-differentially private algorithm that, given S, retains
a very frequent its d in S with probability p. Then, given S’,
A retains d with probability at least p/(eX1(55")</™) where
Li(8,8") = > 4ep 1fa(S) — fa(S")| denotes the L, distance
between S and S’.

Lemma 1 follows directly from the definition of e-
differential privacy. Based on Lemma 1, we have the
following corollary, which shows that any e-differentially
private algorithm that is accurate for very frequent items
must be inaccurate for very infrequent items.

Corollary 1: Consider an accuracy constant c, a thresh-
old 7, a slack § and a very large domain D of size >

2e2e(T7+8)/m 1
Um (c(T+¢) + T—E+1)7

number of items that a user may have in a search log. Let A
be an e-differentially private algorithm that is ¢ accurate for
the very frequent items. Then, for any input search log, the
inaccuracy of A is greater than the inaccuracy of an algorithm
that always outputs an empty set.

Proof: Consider an e-differentially private algorithm
A’ that is c-accurate for the very frequent items. Fix
some input S. We are going to show that for each very
infrequent item d in S the probability of outputting d is
at least c/(e€(7+€)/m). For each item d € D construct S/,
from S by changing 7 + £ of the items to d. That way
d is very frequent (with frequency at least 7 + ¢£) and
L1(S,5]) <2(1 +¢). By Definition 6, we have that

where m denotes the maximum

Pr[d € A'(S))] > c.

By Lemma 1 it follows that the probability of outputting
d is at least c/(e?(7+€)/™) for any input database. This
means that we can compute a lower bound on the
inability to filter out the very infrequent items in S by
summing up this probability over all possible values
d € D that are very infrequent in S. Note, that there
are at least D — Y™ many very infrequent items in S.

T—6+1
Therefore, the inability to filter out the very infrequent

(|’D\ - Un) c/(e?(+8/m) For large

—&+1
domains of size at least Um() the

items is at least

2e2¢(T+&)/m 1
c(T+E&) T—E&+1

inaccuracy is at least iIJ—Tg which is greater than the
inaccuracy of the baseline. O

To illustrate Corollary 1, let us consider a search log S
where each query contains at most 3 keywords selected
from a limited vocabulary of 900,000 words. Let D be
the domain of the consecutive query pairs in S. We
have |D| = 5.3 x 10%. Let 7 + & = 50,m = 10,U =
1,000,000, € = 1, as is a typical setting in practice. Then,
by Corollary 1, if an e-differentially private algorithm
A is 0.01-accurate for very frequent query pairs, then,
in term of overall inaccuracy (for both very frequent
and very infrequent query pairs), A must be inferior
to an algorithm that always outputs an empty set. In
other words, no differentially private algorithm can be
accurate for both very frequent and very infrequent
query pairs.

4 ACHIEVING PRIVACY

In this section, we introduce an search log publishing
algorithm called ZEALOUS that has been independently
developed by Korolova et al. [19] and us [12]. ZEAL-
OUS ensures probabilistic differential privacy, and it fol-
lows a simple two-phase framework. In the first phase,
ZEALOUS generates a histogram of items in the input
search log, and then removes from the histogram the
items with frequencies below a threshold. In the second
phase, ZEALOUS adds noise to the histogram counts,

(Bob_73, “honda accord”, ...)
(Bob_73, “certified car”, ...)

(CarlRu, “free mp3”, ...)
< m keywords -

per user

Histogram I I I [

. free car hondacertified
filter | > 71

/
free car honda ied

add noise
free car honda

II O

free carfiond

Searchlog SL

J

filter

Al

Histogram

H
uy

filter | -
Y

Histogram s’

Fig. 1. Privacy—Preserving Algorithm.

and eliminates the items whose noisy frequencies are
smaller than another threshold. The resulting histogram
(referred to as the sanitized histogram) is then returned
as the output. Figure 1 depicts the steps of ZEALOUS.

Algorithm ZEALOUS for Publishing Frequent Items of
a Search Log
Input: Search log S, positive numbers m, A, 7, 7/

1. For each user u select a set s, of up to m distinct
items from u’s search history in 5.3

2. Based on the selected items, create a histogram
consisting of pairs (k, c), where k denotes an item
and ¢, denotes the number of users u that have k&
in their search history s,,. We call this histogram the
original histogram.

3. Delete from the histogram the pairs (k,c;) with
count ¢, smaller than 7.

4. For each pair (k,c;) in the histogram, sample a
random number n; from the Laplace distribution
Lap()\)4, and add 7 to the count ¢, resulting in
a noisy count: ¢ < cg + .

5. Delete from the histogram the pairs (k,¢;) with
noisy counts ¢é; < 7'

6. Publish the remaining items and their noisy counts.

In what follows, we will investigate the theoretical
performance of ZEALOUS in terms of both privacy
and utility. Section 4.1 and Section 4.2 discuss the pri-
vacy guarantees of ZEALOUS with respect to (e, 0)-
indistinguishability and (e, §)-probabilistic differential
privacy, respectively. Section 4.3 presents a quantitative
analysis of the privacy protection offered by ZEALOUS.
Sections 4.4 and 4.5 analyze the utility guarantees of
ZEALOUS.

3. These items can be selected in various ways as long as the
selection criteria is not based on the data. Random selection is one
candidate.

4. The Laplace distribution with scale parameter A has the probabil-

lz|

ity density function %e‘ X

' =200
0 =4.7x 10781
8 =5.2x 1085

Privacy Guarantee | 7/ = 100
A=1(e, =10) | 6=1.3x10"37
8 =14x10"4

A=5(,e =2) | §=32x10"3 §=6.5x10"12
8 =14x10"8 8 =29x10"17
TABLE 1

(¢', 0")-indistinguishability vs. (¢, 6)-probabilistic
differential privacy. U = 500k, m = 5.

4.1 Indistinguishability Analysis
Theorem 1 states how the parameters of ZEALOUS can
be set to obtain a sanitized histogram that provides
(€¢/,")-indistinguishability.

Theorem 1: [19] Given a search log S and positive

numbers m, 7, 7', and X\, ZEALOUS achieves (€',d')-
indistinguishability, if

A>2m/e and (1)

T=1,and 2)
log(28

T'Em(l— Ogilm)> . 3)

To publish not only frequent queries but also their
clicks, Korolova et al. [19] suggest to first determine the
frequent queries and then publish noisy counts of the
clicks to their top-100 ranked documents. In particular,
if we use ZEALOUS to publish frequent queries in a
manner that achieves (¢, §')-indistinguishability, we can
also publish the noisy click distributions of the top-
100 ranked documents for each of the frequent queries,
by simply adding Laplacian noise to the click counts
with scale 2m/¢’. Together the sanitized query and click
histogram achieves (2¢/, §’)-indistinguishability.

4.2 Probabilistic Differential Privacy Analysis

Given values for ¢, §, 7 and m, the following theorem
tells us how to set the parameters A and 7’ to ensure
that ZEALOUS achieves (¢, d)-probabilistic differential
privacy.

Theorem 2: Given a search log S and positive numbers m,
7, 7', and N\, ZEALOUS achieves (e, §)-probabilistic differen-
tial privacy, if

A >2m/e, and

(4)

7' — 7 > max <—)\ln (2 - 26_%) ,—Aln ((]2;1/7)) ,
®)

where U denotes the number of users in S.

The proof of Theorem 2 can be found in Appendix A.1.

4.3 Quantitative Comparison of Prob. Diff. Privacy
and Indistinguishability for ZEALOUS

In Table 1, we illustrate the levels of (e d)-
indistinguishability and (¢, d)-probabilistic differential

privacy achieved by ZEALOUS for various noise and
threshold parameters. We fix the number of users to
U = 500k, and the maximum number of items from a
user to m = 5, which is a typical setting that will be
explored in our experiments. Table 1 shows the tradeoff
between utility and privacy: A larger X results in a
greater amount of noise in the sanitized search log (i.e.,
decreased data utility), but it also leads to smaller ¢ and
¢’ (i.e., stronger privacy guarantee). Similarly, when 7’
increases, the sanitized search log provides less utility
(since fewer items are published) but a higher level of
privacy protection (as § and ¢’ decreases).

Interestingly, given A and 7/, we always have § > ¢'.
This is due to the fact that (e, d)-probabilistic differ-
ential privacy has more stringent requires than (¢’,0’)-
indistinguishability, as will be discussed in Section 5.

4.4 Utility Analysis

Next, we analyze the utility guarantee of ZEALOUS in
terms of its accuracy (as defined in Section 2.3.1).

Theorem 3: Given parameters T = 7% —&, 7/ = 7%4-¢, noise
scale \, and a search log S, the inaccuracy of ZEALOUS with

slack & equals
" 1/2e7% + 370

d:fa(S)>7+¢& deD:fq(S)<T—¢

In particular, this means that ZEALOUS is (1 —1/ 2~ %)-
accurate for the very frequent items (of frequency > 7* +§)
and it provides perfect accuracy for the very infrequent items
(of frequency < 7* — &).

Proof: 1t is easy to see that the ZEALOUS’ accuracy
of filtering out infrequent items is perfect. Moreover, the
probability of outputting a very frequent item is at least

1-1/2e %
which is the probability that the Lap(\)-distributed noise
that is added to the count is at least —¢ so that a
very frequent item with count at least 7 + £ remains in
the output of the algorithm. This probability is at least
1/2. All in all it has higher accuracy than the baseline
algorithm on all inputs with at least one very frequent
item. O

4.5 Separation Result

Combining the analysis in Sections 3.2 and 4.4, we obtain
the following separation result between e-differential
privacy and (e, ¢)- probabilistic differential privacy.

Theorem 4 (Separation Result): Our (e,d)- probabilistic
differentially private algorithm ZEALOUS is able to retain
frequent items with probability at least 1/2 while filtering out
all infrequent items. On the other hand, for any e-differentially
private algorithm that can retain frequent items with non-zero
probability (independent of the input database), its inaccuracy
for large item domains is larger than an algorithm that always
outputs an empty set.

In the impossibility result of Section 3.2, we saw that
any differentially private algorithm that retains very
frequent items has to output an item with a certain
probability even when it is very infrequent. Given a
large item domain, such a procedure leads to a large
amount of very infrequent items in the sanitized search
log, which destroys the utility of the data. The reason
why ZEALOUS can deal better with large domains is
that, in its Step 3. it removes all items that are infrequent.

5 COMPARING INDISTINGUISHABILITY WITH
PROBABILISTIC DIFFERENTIAL PRIVACY

In this section we study the relationship between
(€,0)-probabilistic ~ differential privacy and (¢,¢')-
indistinguishability. First we will prove that probabilistic
differential privacy implies indistinguishability. Then
we will show that the converse is not true. We show that
there exists an algorithm that is (¢’, §’)-indistinguishable
yet blatantly non-e-differentially private. This fact
might convince a data publisher to strongly prefer an
algorithm that achieves (¢,d)-probabilistic differential
privacy over one that is only known to achieve (¢',d’)-
indistinguishability. It also might convince researchers
to analyze the probabilistic privacy guarantee of
algorithms that are only known to be indistinguishable
as in [9] or [24].

First we show that our definition implies (¢,d)-
indistinguishability.

Proposition 1: If an algorithm A is (e, §)-probabilistic dif-
ferentially private then it is also (e, 0)-indistinguishable.

The proof of Proposition 1 can be found in the Ap-
pendix 1. On the other hand, the converse of Proposi-
tion 1 does not hold. In particular, there exists an an
algorithm that is (€', §’)-indistinguishable but not (e, §)-
probabilistic differentially private for any choice of € and
0 < 1, as illustrated in the following example.

Example 2: Consider the following algorithm that
takes as input a search log S with search histories of
U users.

Algorithm A
Input: Search log S € DY
1. Sample uniformly at random a single search history
from the set of all histories excluding the first user’s
search history.
2. Return this search history.

The following proposition analyzes the privacy of
Algorithm A.

Proposition 2: For any finite domain of search histories D
Algorithm A'is (¢/,1/(|D| — 1))-indistinguishable for all ¢’ >
0 on inputs from DY.

The proof can be found in Appendix A.3. The next

proposition shows that every single output of the algo-
rithm constitutes a privacy breach.

| 1 3 4 5 7 9
77| 811205 787260 785753 78.6827 79.3368 803316
TABLE 2

7" as afunctionof rform=2,e=1,6 =0.01

Proposition 3: For any search log S, the output of Al-
gorithm A constitutes a privacy breach according to -
differentially privacy for any value of e.

Proof: Fix an input S and an output O that is differ-
ent from the search history of the first user. Consider the
input S’ differing from S only in the first user history,
where S] = O. Here

1/(|D| — 1) = Pr[A(S) = O] £ ¢ Pr[A(S") = O] = 0

Thus the output S breaches the privacy of the first user
according to e-differentially privacy. O

Corollary 2: Algorithm A is (¢,1/(|D] — 1))-
indistinguishable for all € > 0. But it is not (e, §)-probabilistic
differentially private for any € and any § < 1.

6 CHOOSING PARAMETERS

Apart from the privacy parameters ¢ and J, ZEALOUS
requires the data publisher to specify two more param-
eters: 7, the first threshold used to eliminate keywords
with low counts (Step 3), and m, the number of contri-
butions per user. These parameters affect both the noise
added to each count as well as the second threshold
7'. Before we discuss the choice of these parameters we
explain the general setup of our experiments.

Data. In our experiments we work with a search log
of user queries from a major search engine collected
from 500,000 users over a period of one month. This
search log contains about one million distinct keywords,
three million distinct queries, three million distinct query
pairs, and 4.5 million distinct clicks.

Privacy Parameters. In all experiments we set § = 0.001.
Thus the probability that the output of ZEALOUS could
breach the privacy of any user is very small. We explore
different levels of (¢, d)-probabilistic differential privacy
by varying e.

6.1

We would like to retain as much information as possible
in the published search log. A smaller value for 7’
immediately leads to a histogram with higher utility
because fewer items and their noisy counts are filtered
out in the last step of ZEALOUS. Thus if we choose 7
in a way that minimizes 7/ we maximize the utility of
the resulting histogram. Interestingly, choosing 7 = 1
does not necessarily minimize the value of 7’. Table 2
presents the value of 7’ for different values of 7 for
m = 2 and € = 1. Table 2 shows that for our parameter
settings 7/ is minimized when 7 = 4. We can show the

Choosing Threshold 7

KL Divergence Average L-1 Distance

Zeroes

Fraction of zeroes

0.003 0.006 0.045
7 0.04 q
0.0025 — 0.005 - — 4
I @ o 0035 -
2 2 1e
0.002 | 48 0004 | 18 3 003} 4
2 2 F2
a a 18
0.0015 |- 13 0003 e PYRUREIED e kol 1=
° b PP 2aCad ° o
g g %&
0.001 45 o002 - 15 e XS
E E 12
0.0005 >S$$(B 0.001 B 3
o b SR PR A e o 4 e . 0 S S
0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40
m (Contributions per user) m (Contributions per user) m (Contributions per user) m (Contributions per user)
0.55 0.6 25
05 | 1
0.45 * 4 05 - . 2
0.4 -2 A
035 |- X R 4 e K 18 e O 8
3 g 5 . § 15 g
0.3 ;iﬁ Ko 19 S S
X % 12 12 2
0.25 HeH 3 [} 1 o
02 % 12 12 * g
015 [3 4 X
05 X
01 R - B2 S
Las SR X
0.05 Eoo S PO O S X R
0 1 I 1 1 1 1 | 1 1 1 0 1 1 1 1 1 1 1
0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40
m (Contributions per user) m (Contributions per user) m (Contributions per user) m (Contributions per user)
18000 3000 2500 200
16000 - 4 180 |-
14000] 0 2000 4 ol B
12000 - v 2000 1 40 RV
10000 * S " , 1500 1, 120 s 1
r WK 2 k3 D e
K S 1500 e ¥5 o o *8 100l k3 4
8000 3 P 3 . 3 *
. 1000 o 80 |- X 4
6000 - 1000 | e 4 ¥ 60 L s i
4000 - 500 ** | 500 { 1 40 ;3‘ ____________ > S 2
2000 - *ﬂ* 20 X X £
0 busse . . . o s . . . o) ETTTITND . GuA R o @XX P
0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40
m (Contributions per user) m (Contributions per user) m (Contributions per user) m (Contributions per user)
0.9 T 0.7 - - 0.6
0.8 * e w
) i JR— . 0.6 - 1 L
07 ¥ - * {g e P K g 05
056 g ¥ 18 18 * g o4r -
05 1s 4o 04 * 1= L
S S M XS 03 K
04 b § b § 03 T 4 § £
03 1% 18wk ,?(L 18 o2k 1
0.2 Ju e . S .
01 B R X 1 1 BaaexeX
0 " 0 X | . 1 0 i 1 1 1 1 1
0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40
m (Contributions per user) m (Contributions per user) m (Contributions per user) m (Contributions per user)
‘ Top 200 Top 15000 e Top 2000 Top 200 Top 2000 ‘ Top 50 Top 300 e
Top 1000 «++3:++: Top 20000 o Top 3000 Top 400 «++)+ Top 3000 Top 100 «++):+++ Top 400

(a) Keywords (b) Queries

(c) Clicks (d) Query Pairs

Fig. 2. Effect on statistics by varying m for several values of top-j.

following optimality result which tells us how to choose
7 optimally in order to maximize utility.

Proposition 4: For a fixed ¢,0 and m choosing T = [2m/¢|
minimizes the value of 7'.
The proof follows from taking the derivative of 7’ as a
function of 7 (based on Equation (5)) to determine its
minimum.

6.2 Choosing the Number of Contributions m

Proposition 4 tells us how to set 7 in order to maximize
utility. Next we will discuss how to set m optimally. We
will do so by studying the effect of varying m on the
coverage and the precision of the top-j most frequent
items in the sanitized histogram. The fop-j coverage of a
sanitized search log is defined as the fraction of distinct
items among the top-j most frequent items in the orig-
inal search log that also appear in the sanitized search
log. The top-j precision of a sanitized search log is defined
as the distance between the relative frequencies in the
original search log versus the sanitized search log for

(A) Distinct item counts with different m.

m | 1 4 8 20 40
keywords 6667 6043 5372 4062 2964
queries 3334 2087 1440 751 408
clicks 2813 1576 1001 486 246
query pairs 331 169 100 40 13
(B) Total item counts x 103 with different m.
m | 1 4 8 20 40
keywords 329 1157 1894 3106 3871
queries 147 314 402 464 439
clicks 118 234 286 317 290
query pairs 8 14 15 12 7
TABLE 3

the top-j most frequent items. In particular, we study
two distance metrics between the relative frequencies:
the average L-1 distance and the KL-divergence.

As a first study of coverage, Table 3 shows the number
of distinct items (recall that items can be keywords,
queries, query pairs, or clicks) in the sanitized search log
as m increases. We observe that coverage decreases as we

KL Divergence

Zeroes

Fraction of zeroes

0.7 0.9 4 T 45 —
06] 08 35 o I C s 0O [}
07 o 35| o000 1
05 a8 K- . o Y 0@
é‘“g,n. o Jg os 8 s 8 3r o]
04 g M S os S S 25t [0}
& g 4] 2 3 [o)
e 12 o4 > Y]
03 ” & S s Q [9)
R < o3 z - < 15t ¢ i
o | 1 [©] R SN
4 02 1 RIS 7
0.1 1 e 23 §Xx
- 01 05 05 _xl-% 1
TR
o 0 0 0 P R S R
0 20000 40000 60000 80000 100000 0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000 0 100 200 300 400 500 600 700 800 900 1000
Topj Topj Topj Topj
100000 8000 450
90000 - 7000 | © 00

80000 [
70000 [
60000
50000 [
40000 [~
30000
20000 [
10000

40000
Topj

60000 80000

4000
Topj

6000 8000 10000

350
300
250
200
150
100

50

L L L 0
8000 10000

0 100 200 300 400 500
Topj

600 700 900 1000

0.6 T

o PP 3
© 05 @,
1, o8 0© u k. 5@, O
18 o o e S?g X8 04 090600 oo
18 os) R 18 18 7
15 o5 oe * ;X 15 15 osf e T
18 oaf : e 18 18 i o
18 03| @ K 18 g ozf EH o
b N K i 1 KX
1 0.2 [0) §X 1 01} a*xx
R 01 gr R 7 wlRX
L L L L 0 " L L L L L L L L i L L L L L L L L
20000 40000 60000 80000 100000 0 2000 4000 6000 8000 10000 2000 4000 6000 8000 10000 0 100 200 300 400 500 600 700 800 900 1000
Topj Topj Topj Topj
=1 =2 =10 =1 =2 =10 =1 =2 =10 =1 =2 =10
[mo) e i X m =40 @J [o) e i X m=40 @J [o) e i X m=40 @J [oo e i X m=40 @J
(a) Keywords (b) Queries (c) Clicks (d) Query Pairs

Fig. 3. Effect on Statistics Of Varying j in top-j for Different Values of m.

| keywords queries click query pairs
avg items/user | 56 20 14 7
TABLE 4

Avg number of items per user in the original search log

increase m. Moreover, the decrease in the number of pub-
lished items is more dramatic for larger domains than
for smaller domains. The number of distinct keywords
decreases by 55% while at the same time the number
of distinct query pairs decreases by 96% as we increase
m from 1 to 40. This trend has two reasons. First, from
Theorem 2 and Proposition 4 we see that threshold 7/
increases super-linearly in m. Second, as m increases the
number of keywords contributed by the users increases
only sub-linearly in m; fewer users are able to supply
m items for increasing values of m. Hence, fewer items
pass the threshold 7/ as m increases. The reduction is
larger for query pairs than for keywords, because the
average number of query pairs per user is smaller than
the average number of keywords per user in the original
search log (shown in Table 4).

To understand how m affects precision, we measure
the total sum of the counts in the sanitized histogram
as we increase m in Table 3. Higher total counts offer
the possibility to match the original distribution at a
finer granularity. We observe that as we increase m, the
total counts increase until a tipping point is reached

after which they start decreasing again. This effect is
as expected for the following reason: As m increases,
each user contributes more items, which leads to higher
counts in the sanitized histogram. However, the total
count increases only sub-linearly with m (and even
decreases) due to the reduction in coverage we discussed
above. We found that the tipping point where the total
count starts to decrease corresponds approximately to
the average number of items contributed by each user in
the original search log (shown in Table 4). This suggests
that we should choose m to be smaller than the average
number of items, because it offers better coverage, higher
total counts, and reduces the noise compared to higher
values of m.

Let us take a closer look at the precision and coverage
of the histograms of the various domains in Figures 2
and 3. In Figure 2 we vary m between 1 and 40. Each
curve plots the precision or coverage of the sanitized
search log at various values of the top-j parameter in
comparison to the original search log. We vary the top-j
parameter but never choose it higher than the number
of distinct items in the original search log for the various
domains. The first two rows plot precision curves for the
average L-1 distance (first row) and the KL-divergence
(second row) of the relative frequencies. The lower two
rows plot the coverage curves, i.e., the total number of
top-j items (third row) and the relative number of top-j
items (fourth row) in the original search log that do not
appear in sanitized search log. First, observe that the

coverage decreases as m increases, which confirms our
discussion about the number of distinct items. Moreover,
we see that the coverage gets worse for increasing values
of the top-j parameter. This illustrates that ZEALOUS
gives better utility for the more frequent items. Second,
note that for small values of the top-j parameter, values
of m > 1 give better precision. However, when the top-
j parameter is increased, m = 1 gives better precision
because the precision of the top-j values degrades due
to items no longer appearing in the sanitized search log
due to the increased cutoffs.

Figure 3 shows the same statistics varying the top-j
parameter on the x-axis. Each curve plots the precision
for m = 1,2,4,8,10,40, respectively. Note that m = 1
does not always give the best precision; for keywords,
m = 8 has the lowest KL-divergence, and for queries,
m = 2 has the lowest KL-divergence. As we can see
from these results, there are two “regimes” for setting
the value of m. If we are mainly interested in coverage,
then m should be set to 1. However, if we are only
interested in a few top-j items then we can increase
precision by choosing a larger value for m; and in this
case we recommend the average number of items per
user.

We will see this dichotomy again in our real appli-
cations of search log analysis: The index caching ap-
plication does not require high coverage because of its
storage restriction. However, high precision of the top-j
most frequent items is necessary to determine which of
them to keep in memory. On the other hand, in order
to generate many query substitutions, a larger number
of distinct queries and query pairs is required. Thus m
should be set to a large value for index caching and to
a small value for query substitution.

7 APPLICATION-ORIENTED EVALUATION

In this section we show the results of an application-
oriented evaluation of ZEALOUS in comparison to a k-
anonymous search log and the original search log as
points of comparison. Note that our utility evaluation
does not determine the “better” algorithm since when
choosing an algorithm in practice one has to consider
both the utility and disclosure limitation guarantees of
an algorithm. Our results show the “price” that we
have to pay (in terms of decreased utility) when we
give the stronger guarantees of (probabilistic versions
of) differential privacy as opposed to k-anonymity.

Algorithms.

We experimentally compare the utility of ZEALOUS
against a representative k-anonymity algorithm by Adar
for publishing search logs [1]. Recall that Adar’s Al-
gorithm creates a k-query anonymous search log as
follows: First all queries that are posed by fewer than
k distinct users are eliminated. Then histograms of
keywords, queries, and query pairs from the k-query
anonymous search log are computed. ZEALOUS can
be used to achieve (€', §’)-indistinguishability as well as

10

(¢, 6)-probabilistic differential privacy. For the ease of
presentation we only show results with probabilistic dif-
ferential privacy; using Theorems 1 and 2 it is straightfor-
ward to compute the corresponding indistinguishability
guarantee. For brevity, we refer to the (¢, §)-probabilistic
differentially private algorithm as e-Differential in the
figures.

Evaluation Metrics.

We evaluate the performance of the algorithms in two
ways. First, we measure how well the output of the algo-
rithms preserves selected statistics of the original search
log. Second, we pick two real applications from the
information retrieval community to evaluate the utility
of ZEALOUS: Index caching as a representative applica-
tion for search performance, and query substitution as a
representative application for search quality. Evaluating
the output of ZEALOUS with these two applications
will help us to fully understand the performance of
ZEALOUS in an application context. We first describe
our utility evaluation with statistics in Section 7.1 and
then our evaluation with real applications in Sections
7.2 and 7.3.

71

We explore different statistics that measure the difference
of sanitized histograms to the histograms computed
using the original search log. We analyze the histograms
of keywords, queries, and query pairs for both saniti-
zation methods. For clicks we only consider ZEALOUS
histograms since a k-query anonymous search log is not
designed to publish click data.

In our first experiment we compare the distribution of
the counts in the histograms. Note that a k-query anony-
mous search log will never have query and keyword
counts below £k, and similarly a ZEALOUS histogram
will never have counts below 7/. We choose e = 5,m =1
for which threshold 7" =~ 10. Therefore we deliberately
set k = 10 such that k ~ 7',

Figure 4 shows the distribution of the counts in
the histograms on a log-log scale. Recall that k-query
anonymity does not contain any click data, and thus
it is only shown in Figures 4 (a), 4(b), and 4(d). We
see that the power-law shape of the distribution is well
preserved. However, the total frequencies are lower for
the sanitized search logs than the frequencies in the
original histogram because the algorithms filter out a
large number of items. We also see the cutoffs created
by k and 7’'. We observe that as the domain increases
from keywords to clicks and query pairs, the number
of items that are not frequent in the original search log
increases. For example, the number of clicks with count
equal to one is an order of magnitude larger than the
number of keywords with count equal to one.

While the shape of the count distribution is well
preserved, we would also like to know whether the
counts of frequent keywords, queries, query pairs, and
clicks are also preserved and what impact the privacy

General Statistics

10° T - T
% Original 3
k-Anonymity
e-Differential +

T T
Original ¥
k-Anonymity 4

e-Differential 4+

Frequency
Frequency
Frequency

10 10 10° 100 " 10°
Count

(a) Keyword Counts

(b) Query Counts

Fig. 4. Distributions of counts in the histograms.

e for e-Differential

3 4 5 6 7 8 9
T T T T T T T

e for e-Differential

=
1)
o
=
o

50 T T T T T T

X
X e
X-o

40

‘
X + 4w
X+ Aw

xx*v.xq@xx;

1

Average Difference of Counts

30

+
+
H

20 | 1

10]
Differential -+
) Ano‘nymll}/ ?(

Average Difference of Counts
Average Difference of Counts

[Differential +=+++ -
L L L L L L L L L \ ‘Anon‘ymny‘)(‘

ok N ®w » O O N
T
L

11

T
original ¥

Kk-Anonymity

e-Differential 4

M "original | ¥ *
108 | e-Differential 3 108 F

Frequency

Count

(c) Click Counts

(d) Query Pair Counts

e for e-Differential

3 T T T T T

Anonymity -

25 -

oo I o i e e e e e

15 —

Average Difference of Counts
-
T
I

=4

@
T
L

Differential «+«==--
0 oy PR 0 S S S RO R R

0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100
k for k-Anonymity k for k-Anonymity

(a) Keywords (b) Queries

0 1 2 3 4 5 6 7 8 9 0 10 20 30 40 50 60 70 80 90 100
e for e-Differential k for k-Anonymity

(c) Clicks (d) Query Pairs

=
S5}

Fig. 5. Average difference between counts in the original histogram and the probabilistic differential privacy-preserving
histogram, and the anonymous histogram for varying privacy / anonymity parameters ¢ and k. Parameter m is fixed to

1.

parameters € and the anonymity parameter k£ have. Fig-
ure 5 shows the average differences to the counts in the
original histogram. We scaled up the counts in sanitized
histograms by a common factor so that the total counts
were equal to the total counts of the original histogram,
then we calculated the average difference between the
counts. The average is taken over all keywords that have
non-zero count in the original search log. As such this
metric takes both coverage and precision into account.

As expected, with increasing e the average difference
decreases, since the noise added to each count decreases.
Similarly, by decreasing k the accuracy increases because
more queries will pass the threshold. Figure 5 shows
that the average difference is comparable for the k-
anonymous histogram and the output of ZEALOUS.
Note that the output of ZEALOUS for keywords is more
accurate than a k-anonymous histogram for all values of
e > 2. For queries we obtain roughly the same average
difference for k = 60 and ¢ = 6. For query pairs the
k-query anonymous histogram provides better utility.

We also computed other metrics such as the root-
mean-square value of the differences and the total varia-
tion difference; they all reveal similar qualitative trends.
Despite the fact that ZEALOUS disregards many search
log records (by throwing out all but m contributions
per user and by throwing out low frequent counts),
ZEALOUS is able to preserve the overall distribution
well.

7.2 Index Caching

In the index caching problem, we aim to cache in-
memory a set of posting lists that maximizes the hit-

probability over all keywords (see Section2.3.2). In our
experiments, we use an improved version of the algo-
rithm developed by Baeza—Yates to decide which posting
lists should be kept in memory [3]. Our algorithm first
assigns each keyword a score, which equals its frequency
in the search log divided by the number of documents
that contain the keyword. Keywords are chosen using a
greedy bin-packing strategy where we sequentially add
posting lists from the keywords with the highest score
until the memory is filled. In our experiments we fixed
the memory size to be 1 GB, and each document posting
to be 8 Bytes (other parameters give comparable results).
Our inverted index stores the document posting list for
each keyword sorted according to their relevance which
allows to retrieve the documents in the order of their
relevance. We truncate this list in memory to contain
at most 200,000 documents. Hence, for an incoming
query the search engine retrieves the posting list for
each keyword in the query either from memory or from
disk. If the intersection of the posting lists happens to be
empty, then less relevant documents are retrieved from
disk for those keywords for which only the truncated
posting list is kept on memory.

Figure 6(a) shows the hit—probabilities of the inverted
index constructed using the original search log, the k-
anonymous search log, and the ZEALOUS histogram
(for m = 6) with our greedy approximation algorithm.
We observe that our ZEALOUS histogram achieves bet-
ter utility than the k-query anonymous search log for
a range of parameters. We note that the utility suffers
only marginally when increasing the privacy parameter
or the anonymity parameter (at least in the range that we

Hit Probability

e for e-Differential

1 2 3 4 5 6 7 8 9 10
1
' O;lg\na\‘—l—‘ ' ' '
Anonymity 0.8 1
08 Differential ««- 3+
>
£ osf
06 - E
g
o 4 ———————— s o : :
ok rr——" R T S S —— %
02 1 3 02} Original —— |
Mol
m=6 ¥
ol v ol v ym=§ ¥
10 20 30 40 50 60 70 80 90 100 1 2 3 4 5 6 7 8 9 10
k for k-Anonymity e for e-Differential
(a) (b)

Fig. 6. Hit probabilities.

have considered). This can be explained by the fact that
it requires only a few very frequent keywords to achieve
a high hit-probability. Keywords with a big positive
impact on the hit-probability are less likely to be filtered
out by ZEALOUS than keywords with a small positive
impact. This explains the marginal decrease in utility for
increased privacy.

As a last experiment we study the effect of varying
m on the hit-probability in Figure 6(b). We observe that
the hit probability for m = 6 is above 0.36 whereas
the hit probability for m = 1 is less than 0.33. As
discussed a higher value for m increases the accuracy,
but reduces the coverage. Index caching really requires
roughly the top 85 most frequent keywords that are still
covered when setting m = 6. We also experimented with
higher values of m and observed that the hit-probability
decreases at some point.

7.3 Query Substitution

Algorithms for query substitution examine query pairs
to learn how users re-phrase queries. We use an algo-
rithm developed by Jones et al. in which related queries
for a query are identified in two steps [17]. First, the
query is partitioned into subsets of keywords, called
phrases, based on their mutual information. Next, for
each phrase, candidate query substitutions are deter-
mined based on the distribution of queries.

We run this algorithm to generate ranked substitution
on the sanitized search logs. We then compare these
rankings with the rankings produced by the original
search log which serve as ground truth. To measure the
quality of the query substitutions, we compute the pre-
cision/recall, MAP (mean average precision) and NDG
(normalized discounted cumulative gain) of the top-j
suggestions for each query; let us define these metrics
next.

Consider a query ¢ and its list of top-j ranked substitu-
tions ¢p, ..., q;_, computed based on a sanitized search
log. We compare this ranking against the top-j ranked
substitutions qo, . . ., ¢;—1 computed based on the original
search log as follows. The precision of a query q is the
fraction of substitutions from the sanitized search log
that are also contained in our ground truth ranking:

. Ha0:- - gj-1} N {40, - - 41}
Precision(q) = - y
|{qu) qu—1}|

12

0.04

0.035 -
0.03 -
0.025 -

0.02 -

Coverage

0.015 | .

0.01

0.005+ ..
¥

1 2 3 4 5 6 7 8 9 10
e for e-Differential

Fig. 8. Coverage of the privacy-preserving histograms for
m =1and m = 6.

Note, that the number of items in the ranking for a query
g can be less than j. The recall of a query ¢ is the fraction
of substitutions in our ground truth that are contained
in the substitutions from the sanitized search log:

7Qj—1} N {Q(I)7 ..
|{q07 .. 7Qj—1}|

MAP measures the precision of the ranked items for a
query as the ratio of true rank and assigned rank:

 Hao . 1)

Recall(q) =

Jj—1

MAP(q) =)

=0

i+1
rank of ¢; in [gf,. ..

@]+ L

where the rank of ¢; is zero in case it does is not
contained in the list [gp, ..., q}_,] otherwise it is 7, s.t.
4 = qjr-

Our last metric called NDCG measures how the rel-
evant substitutions are placed in the ranking list. It
does not only compare the ranks of a substitution in
the two rankings, but is also penalizes highly relevant
substitutions according to [qo, - . .,q;—1] that have a very
low rank in [g(, . .., q;_,]. Moreover, it takes the length of
the actual lists into consideration. We refer the reader to
the paper by Chakrabarti et al. [8] for details on NDCG.

The discussed metrics compare rankings for one query.
To compare the utility of our algorithms, we average
over all queries. For coverage we average over all queries
for which the original search log produces substitutions.
For all other metrics that try to capture the precision
of a ranking, we average only over the queries for
which the sanitized search logs produce substitutions.
We generated query substitution only for the 100,000
most frequent queries of the original search log since
the substitution algorithm only works well given enough
information about a query.

In Figure 7 we vary k and ¢ for m = 1 and we draw the
utility curves for top-j for j = 2 and j = 5. We observe
that varying e and & has hardly any influence on perfor-
mance. On all precision measures, ZEALOUS provides
utility comparable to k-query-anonymity. However, the
coverage provided by ZEALOUS is not good. This is
because the computation of query substitutions relies not
only on the frequent query pairs but also on the count

NDCG Score

e for e-Differential e for e-Differential
1 2 3 4 5 6 7 8 9 10 0 1 2 3 4 5 6 7 8 9 10

13

e for e-Differential e for e-Differential
1 2 3 4 5 6 7 8 9 10 0 1 2 3 4 5 6 7 8 9 10

1l— o e e e e S e TR S S
L [e-Diff Top 1 L i [e-Diff Top 1
09 09 e-Diff Top 5 -+ 0.9 09 e-Diff Top 5 ¢+
08 08 [k-AnonTop2 = R 08 F 3., Sitorr i Mo Sl 08 k-AnonTop2 =¥ 7
07| B L 07 %HOQETOPS 4 0.7 -9 07 | BKAnoxToRs 3k d
06| 2E osf LS T T T S Ty v 4= osf 2
L 1 e L 1@ L 4 8 L E
0.5 P3 o 0.5 g 0.5 § 0.5
04 b 1< oar s e B & oal i 04l |
03 e-Diff Top 2 1 03 1 ¢ 1 03 | e-Diff Top 2 1 03 - 1
02 e-Diff Top5 «+)+ 02+ q 02 - e-Diff Top 5 ==+ o 02 q
L k-Anon Top 2 | L L k-Anon Top 2 | L |
01 k-Anon Top 5 01 01 k-Anon Top 5 01 e X
0 oy T T 0 S S S R S 0 o T R 0 prenaspen)
0O 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90
k for k-Anonymity k for k-Anonymity k for k-Anonymity k for k-Anonymity
(a) NDCG (b) MAP (c) Precision (d) Recall

Fig. 7. Quality of the query substitutions of the privacy-preserving histograms, and the anonymous search log.

of phrase pairs which record for two sets of keywords
how often a query containing the first set was followed
by another query containing the second set. Thus a
phrase pair can have a high frequency even though all
query pairs it is contained in have very low frequency.
ZEALOUS filters out these low frequency query pairs
and thus loses many frequent phrase pairs.

As a last experiment, we study the effect of increasing
m for query substitutions. Figure 8 plots the average
coverage of the top-2 and top-5 substitutions produced
by ZEALOUS for m = 1 and m = 6 for various values
of e. It is clear that across the board larger values of m
lead to smaller coverage, thus confirming our intuition
outlined the previous section.

8 RELATED WORK

Related work on anonymity in search logs [1], [14], [23],
[15] is discussed in Section 3.1.

More recently, there has been work on privacy in
search logs. Korolova et al. [19] proposes the same
basic algorithm that we propose in [12] and review in
Section 4.5 They show (¢, §’)-indistinguishability of the
algorithm whereas we show (¢, ¢)-probabilistic differen-
tial privacy of the algorithm which is a strictly stronger
guarantee, see Section 5. One difference is that our
algorithm has two thresholds 7, 7" as opposed to one and
we explain how to set threshold 7 optimally. Korolova
et al. [19] set 7 = 1 (which is not the optimal choice
in many cases). Our experiments augment and extend
the experiments of Korolova et al. [19]. We illustrate the
tradeoff of setting the number of contributions m for
various domains and statistics including L1-distance and
KL divergence which extends [19] greatly. Our applica-
tion oriented evaluation considers different applications.
We compare the performance of ZEALOUS to that of k-
query anonymity and observe that the loss in utility is
comparable for anonymity and privacy while anonymity
offers a much weaker guarantee.

5. In order to improve utility of the algorithm as stated in [19], we
suggest to first filter out infrequent keywords using the 2-threshold
approach of ZEALOUS and then publish noise counts of queries
consisting of up to 3 frequent keywords and the clicks of their top
ranked documents.

9 BEYOND SEARCH LoGS

While the main focus of this paper are search logs, our
results apply to other scenarios as well. For example,
consider a retailer who collects customer transactions.
Each transaction consists of a basket of products together
with their prices, and a time-stamp. In this case ZEAL-
OUS can be applied to publish frequently purchased
products or sets of products. This information can be
used in a recommender system or in a market basket
analysis to decide on the goods and promotions in a
store [13]. Another example concerns monitoring the
health of patients. Each time a patient sees a doctor
the doctor records the diseases of the patient and the
suggested treatment. It would be interesting to publish
frequent combinations of diseases.

All of our results apply to the more general problem
of publishing frequent items / itemsets / consecutive
itemsets. Existing work on publishing frequent itemsets
often only tries to achieve anonymity or makes strong
assumptions about the background knowledge of an
attacker, see for example some of the references in the
survey by Luo et al. [21].

10 CONCLUSIONS

This paper contains a comparative study about publish-
ing frequent keywords, queries, and clicks in search logs.
We compare the disclosure limitation guarantees and the
theoretical and practical utility of various approaches.
Our comparison includes earlier work on anonymity and
(€¢/,0")-indistinguishability and our proposed solution to
achieve (e, §)-probabilistic differential privacy in search
logs. In our comparison, we revealed interesting relation-
ships between indistinguishability and probabilistic dif-
ferential privacy which might be of independent interest.
Our results (positive as well as negative) can be applied
more generally to the problem of publishing frequent
items or itemsets.

A topic of future work is the development of algo-
rithms that allow to publish useful information about
infrequent keywords, queries, and clicks in a search log.

ACKNOWLEDGMENTS

We would like to thank our colleagues Filip Radlinski
and Yisong Yue for helpful discussions about the usage
of search logs.

REFERENCES

(1]
(2]

(3]
(4]

(5]

(6]

(7]

(8]

(%]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]
[24]

[25]

Eytan Adar. User 4xxxxx9: Anonymizing query logs. In WWW
Workshop on Query Log Analysis, 2007.

Lars Backstrom, Cynthia Dwork, and Jon Kleinberg. Wherefore
art thou R3579x? Anonymized social networks, hidden patterns,
and structural steganography. In WWW, 2007.

Roberto Baeza-Yates. Web usage mining in search engines. Web
Mining: Applications and Techniques, 2004.

B. Barak, K. Chaudhuri, C. Dwork, S. Kale, F. McSherry, and
K. Talwar. Privacy, accuracy and consistency too: A holistic
solution to contingency table release. In PODS, 2007.

Michael Barbaro and Tom Zeller. A face is exposed
for aol searcher no. 4417749. New York Times
http:/ /www.nytimes.com/2006/08/09/technology /09aol.html?
ex=1312776000en=f6£61949c6da4d38ei=5090, 2006.

Avrim Blum, Katrina Ligett, and Aaron Roth. A learning theory
approach to non-interactive database privacy. In STOC, pages
609-618, 2008.

Justin Brickell and Vitaly Shmatikov. The cost of privacy: de-
struction of data-mining utility in anonymized data publishing.
In KDD, 2008.

Soumen Chakrabarti, Rajiv Khanna, Uma Sawant, and Chiru
Bhattacharyya. Structured learning for non-smooth ranking
losses. In KDD, pages 88-96, 2008.

Cynthia Dwork, Krishnaram Kenthapadi, Frank McSherry, Ilya
Mironov, and Moni Naor. Our data, ourselves: Privacy via
distributed noise generation. In EUROCRYPT, 2006.

Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith.
Calibrating noise to sensitivity in private data analysis. In TCC,
2006.

Michaela Go6tz, Ashwin Machanavajjhala, Guozhang Wang, Xi-
aokui Xiao, and Johannes Gehrke. Privacy in search logs. CoRR,
abs/0904.0682v1, 2009.

Michaela Go6tz, Ashwin Machanavajjhala, Guozhang Wang, Xi-
aokui Xiao, and Johannes Gehrke. Privacy in search logs. CoRR,
abs/0904.0682v2, 2009.

Jiawei Han and Micheline Kamber. Data Mining: Concepts and
Techniques. Morgan Kaufmann, 1st edition, September 2000.
Yeye He and Jeffrey F. Naughton. Anonymization of set-valued
data via top-down, local generalization. PVLDB, 2(1):934-945,
2009.

Yuan Hong, Xiaoyun He, Jaideep Vaidya, Nabil Adam, and
Vijayalakshmi Atluri. Effective anonymization of query logs. In
CIKM, 2009.

Rosie Jones, Ravi Kumar, Bo Pang, and Andrew Tomkins. ”I know
what you did last summer”: query logs and user privacy. In
CIKM, 2007.

Rosie Jones, Benjamin Rey, Omid Madani, and Wiley Greiner.
Generating query substitutions. In WWW, 2006.

Shiva Prasad Kasiviswanathan, Homin K. Lee, Kobbi Nissim,
Sofya Raskhodnikova, and Adam Smith. What can we learn
privately? In FOCS, pages 531-540, 2008.

Aleksandra Korolova, Krishnaram Kenthapadi, Nina Mishra, and
Alexandros Ntoulas. Releasing search queries and clicks privately.
In WWW, 2009.

Ravi Kumar, Jasmine Novak, Bo Pang, and Andrew Tomkins. On
anonymizing query logs via token-based hashing. In WWW, 2007.
Yongcheng Luo, Yan Zhao, and Jiajin Le. A survey on the
privacy preserving algorithm of association rule mining. Electronic
Commerce and Security, International Symposium, 1:241-245, 2009.
Ashwin Machanavajjhala, Daniel Kifer, John M. Abowd, Johannes
Gehrke, and Lars Vilhuber. Privacy: Theory meets practice on the
map. In ICDE, 2008.

Rajeev Motwani and Shubha Nabar. Anonymizing unstructured
data. arXiv, 2008.

Kobbi Nissim, Sofya Raskhodnikova, and Adam Smith. Smooth
sensitivity and sampling in private data analysis. In STOC, 2007.
Pierangela Samarati. Protecting respondents’ identities in micro-
data release. IEEE Trans. on Knowl. and Data Eng., 13(6):1010-1027,
2001.

14

APPENDIX A
ONLINE APPENDIX
This appendix is available online [12]. We provide it here

for the convenience of the reviewers. It is not meant to
be part of the final paper.

A.1 Analysis of ZEALOUS: Proof of Theorem 10

Let H be the keyword histogram constructed by ZEAL-
OUS in Step 2 when applied to S and K be the set of
keywords in H whose count equals 7. Let €2 be the set of
keyword histograms, that do not contain any keyword
in K. For notational simplicity, let us denote ZEALOUS
as a function Z. We will prove the theorem by showing
that, given Equations (4) and (5),
PrZ(S) ¢ 0] <6, ©)

and for any keyword histogram w € 2 and for any
neighboring search log S’ of S,
e PriZ(8")=w] < Pr[Z(S)=w] < e - PriZ(S")=uw].
(7
We will first prove that Equation (6) holds. Assume
that the i-th keyword in K has a count ¢ in Z(S) for
i € [1,|K]]. Then,
pr(z(S) ¢
. [Elz' € [1,|K][], & > T’}

- 1-Pr [w‘ e [L|K]|),& < T’}

T —T 1 =
= 1- H / ﬁefgdx

€1, K[] \" T
(the noise added to ¢; has to be > 7/ — 1)

|K|
1 o
= 1- (I—Q.e_x)

< @ . efﬂ—/%
- 2
U-m e
< 5 Y (because |K| < U -m/7)
-
Uem (o)
< 5 e x (by Equation 5)
-
= 0. 8)
Next, we will show that Equation (7) also holds. Let

S’ be any neighboring search log of S. Let w be any
possible output of ZEALOUS given S, such that w € 2.
To establish Equation (7), it suffices to prove that

Priz(8) =] _ .

PriZ(5) —u = ¢ ©)

Priz(s) =] _

PrzE) —w] = ¢ o
We will derive Equation (9). The proof of (10) is

analogous.
Let H' be the keyword histogram constructed by
ZEALOUS in Step 2 when applied to S’. Let A be the

set of keywords that have different counts in H and H’.
Since S and S’ differ in the search history of a single
user, and each user contributes at most m keywords, we
have |A| < 2m. Let k; (i € [1,]Al]) be the i-th keyword
in A, and d;, d}, and df be the counts of k; in H, H’,
and w, respectively. Since a user adds at most one to the
count of a keyword (see Step 2.), we have d; — d} = 1
for any ¢ € [1,|Al]. To simplify notation, let E;, E;, and
E;*, E!" denote the event that k; has counts d;, d}, d} in
H, H', and Z(S), Z(5’), respectively. Therefore,

PriZ(S)=w] Pr(E;" | E|]

PriZ(8") =w] 11 PriE;" | B}

i€f1,]a]]

In what follows, we will show that % < el/>
for any i € [1,|Al]. We differentiate three cases: (i) d; > 7,
df >7,({) d; <7and (ili) d; =7 and df =7 — 1.

Consider case (i) when d; and d} are at least 7. Then,
if df > 0, we have

PTU%*‘EH
PriE;" | E]]
L e—ldi—dil/A
_ 22

LeTa=d]i/
oI —d}|—1d; —ds]) /A
eldi—di1/2

IA

= eX. (because |d; — d;| =1 for any i)

On the other hand, if d} =0,

* 7' —d; —|x
Prigs | B _ 7" e M
r* N pr—d, _ = :
PriEi” | Bi] [T d Le-lol/Ady

Now consider case (ii) when d; is less than 7. Since
w € N, and ZEALOUS eliminates all counts in H that
are smaller than 7, we have df =0, and Pr(E} | E;] = 1.
On the other hand,

I 1, ifd, <r
PriE; | Ei] = { 1— JemI7"=dil/A 1 otherwise
Therefore,
PrlE;" | Ej
PriE]" | B}
c 1
s 7z %e,hudg/x\
« 1
= T L0
< 1 — (by Equation 7)
. leln(2—2e A)

2

>

= €.

Consider now case (iii) when d; = 7 and d} = 7 — 1.
Since w € Q2 we have d} = 0. Moreover, since ZEALOUS
eliminates all counts in H that are smaller than 7, it
follows that Pr[E} | E!] = 1. Therefore,

PTU2*|EH

1
— = Pr[E,* | E;] <eX.
prigyE) - I R=e

15

In summary, % < e'/A. Since |A| < 2m, we
have
PriZ(S) = u]
Pr(Z(S") = w]
_qp DEE)
o PrIET | E]
< H V2
i1, Al
_ Al

< e (by Equation 6 and |A| < 2m).

This concludes the proof of the theorem.

A.2 Proof of Proposition 1

Assume that, for all search logs S, we can divide the
output space (2 into to two sets {2, {22, such that

(1) Pr[A(S) € Q] < 6, and

for all search logs S’ differing from S only in the search
history of a single user and for all O € Q:

(2) Pr[A(S) = O] < e Pr[A(S") = O] and
Pr[A(S") = O] < e Pr[A(S) = O].

Consider any subset O of the output space € of A. Let
01 =0nNn0Q; and Oy = O N Qy. We have

PrA(S) € O]
:/ PHA(S) :O]d0+/ PrlA(S) = 0]dO
0€0, 0€0,

< /O Pr[A(S) = 0]dO +ej Pr[A(S") = 0]dO

€Qq oeM
< 6+ ee/ Pr[A(S") = 0]dO
0eNy
< d+e-PrlA(S) € Q).

A.3 Proof of Proposition 2

We have to show that for all search logs S, 5" differing
in one user history and for all sets O :

Pr[A(S) € O] < Pr[A(S") € O]+ 1/(|D] - 1).

Since Algorithm A neglects all but the first input this is
true for for neighboring search logs not differing in the
first user’s input. We are left with the case of two neigh-
boring search logs S, 5" differing in the search history
of the first user. Let us analyze the output distributions
of Algorithm 1 under these two inputs S and S’. For
all search histories except the search histories of the first
user in S, S’ the output probability is 1/(|D|—1) for either
input. Only for the two search histories of the first user
S1, 5] the output probabilities differ: Algorithm 1 never
outputs S; given S, but it outputs this search history
with probability 1/(|D| — 1) given S’. Symmetrically,
Algorithm A never outputs S} given S’, but it outputs

this search history with probability 1/(|D| — 1) given S.
Thus, we have for all sets O

PrlA(S)e0]= > 1/(D|-1) (11)
deON(D-S1)
<y(Pl-nH+ Y, 1/(p-1)
deON(D—-Sz)
(12)

= Pr[A(S) € O] +1/(|D| - 1) (13)

16

