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ABSTRACT 
The transportation mode such as walking, cycling or on a train 
denotes an important characteristic of the mobile user’s context. In 
this paper, we propose an approach to inferring a user’s mode of 
transportation based on the GPS sensor on her mobile device and 
knowledge of the underlying transportation network. The 
transportation network information considered includes real time 
bus locations, spatial rail and spatial bus stop information. We 
identify and derive the relevant features related to transportation 
network information to improve classification effectiveness. This 
approach can achieve over 93.5% accuracy for inferring various 
transportation modes including: car, bus, aboveground train, 
walking, bike, and stationary.  Our approach improves the accuracy 
of detection by 17% in comparison with the GPS only approach, 
and 9% in comparison with GPS with GIS models. The proposed 
approach is the first to distinguish between motorized 
transportation modes such as bus, car and aboveground train with 
such high accuracy. Additionally, if a user is travelling by bus, we 
provide further information about which particular bus the user is 
riding. Five different inference models including Bayesian Net, 
Decision Tree, Random Forest, Naïve Bayesian and Multilayer 
Perceptron, are tested in the experiments. The final classification 

system is deployed and available to the public. 

Categories and Subject Descriptors 
I.5.2 [Pattern Recognition]: Design Methodology – classifier 

design and evaluation 

General Terms 
Algorithms, Design, Experimentation 

Keywords 
GIS, GPS, mobile phones, pattern recognition, context awareness. 

1. INTRODUCTION 
In ubiquitous and context aware computing, understanding the 
mobility of a client from sensor data is an important area of 
research. The transportation mode, such as walking, cycling, or 
train denotes some characteristics of the mobile user’s context. 

With knowledge of a traveler’s transportation mode, targeted and 
customized advertisements may be sent to the traveler’s device. For 
example, if we discover that Alice is driving by car, the system 
may send her gas coupons or vehicle service specials. 

Another motivation for transportation mode detection is 
transportation surveys. Travel demand surveys have taken multiple 
formats, such as telephone interviews and questionnaires. These 
data collection strategies rely on manual labeling of data after the 
trip, and thus, inaccuracies are introduced. For example, a traveler 
may not recall the exact time that she/he boarded a transportation 
mode. Using GPS devices is more reliable for reporting accurate 
location, trip time, and trip duration [12, 13, 14]. Hence, if the 
precise transportation modes of individual users are recognized, it 
is possible to provide a more realistic travel demand picture. 

Many GPS trace sharing social networks have been implemented 
[21, 22, 23, 24]. These social networks enable friends to upload and 
share their GPS traces. Knowledge of transportation mode, added 
to these GPS traces, will enable the users to reflect on their past 
motion more meaningfully. It also allows users to obtain additional 
information from their friends’ travel experience. Additionally, 
awareness of transportation mode of a user may help to determine 
the user’s carbon footprint, or track the amount of calories burnt. 
Another application of transportation mode detection is crowd-
sourced real-time traffic information in which traffic speeds are 
aggregated from probes such as mobile phones carried by travelers. 
Transportation mode detection enables the aggregation system to 
filter out the speed data submitted by non-motorized travelers or 
travelers on trains. 

Transportation mode detection has been documented in the 
literature [1, 2, 4, 15, 16]. The existing approaches share the 
following general principle. First, from historical data, build a 
classification model in terms of mobility patterns. Then, when the 
transportation mode is to be determined, collect input from 
mobility sensors and feed the input to the classification model. The 
state-of-the-art is the technology developed in [4] which fuses input 
from GPS receiver and accelerometer. However, [4] only 
distinguishes between walking, running, biking, and motorized 
transport. It (i.e. [4]) does not distinguish between various modes 
under motorized transport, such as driving versus taking a bus.  As 
shown in [4], using only GPS information reduces detection 
accuracy, compared to using both GPS and accelerometer 
information. Clearly, the accuracy of transportation mode detection 
may be higher if one utilizes more sensors. However, the objective 
of our work is to determine the added value of the transportation 
network data. Specifically, we consider adding to GPS data the real 
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time locations of buses, spatial polylines representing rail line 
routes, and bus stop locations.  

In this paper we propose a method that is able to distinguish not 
only between non-motorized transport and motorized transport, but 
also between various motorized modes including automobile, bus, 
and aboveground train. Additionally, if we determine that the 
transportation mode is bus, we further provide information on 
which particular bus the client is travelling on.  

We follow the general principle of sensor data fusion and 
classification that has been used in prior work [1, 2, 4, 6, 15, 16]. 
Fusing GPS sensor data with external transportation network data 
makes transportation mode detection more robust. Intuitively, 
different transportation modes have different mobility patterns. For 
example, motorized transport generally has a higher speed than 
non-motorized transport. For another example, being constrained 
by a road, people driving a car or taking a bus cannot change their 
heading direction as flexibly as if they are walking or cycling. On 
the other hand, relying on a single type of input does not always 
work. For example, movement at 7 km/hr may be a brisk walk, or a 
slowly moving car or bus, in congestion. 

Distinguishing between motorized and non-motorized 
transportation mode is not a difficult problem. However, with 
multiple motorized transportation modes, the problem becomes 
more difficult since buses, cars and trains may have similar GPS or 
accelerometer readings. We show that using a transportation 
network with real time and static spatial data, we can obtain high 
detection accuracy for various motorized and non-motorized 
transportation modes.  

In summary, this paper is the first to address transportation mode 
detection using external transportation network data such as real 
time bus locations; this is in addition to mobile device sensor-
information used in traditional approaches to the problem. Our 
contributions are as follows: (1) In addition to the traditional 
features on average speed and average acceleration, we identify for 
the first time the features of average bus closeness, average rail 
closeness, and average candidate bus closeness as the most 
effective features related to transportation mode detection, (2) The 
proposed work is the first to distinguish between motorized modes 
(bus, car, train) with such high accuracy, (3) There are other works 
that distinguish between cars and buses [1, 2, 15, 16]; however, the 
proposed approach is the first to consider aboveground train as a 
transportation mode, (4) We introduce a zip-code based indexing 
and pruning technique to speed up the feature computation, and (5) 
We present simulation results and real world results, showing the 
efficiency of the proposed approach.  

The rest of this paper is organized as follows. In section 2 we 
discuss the relevant work. In section 3 we introduce the data model 
and the general idea of our mode detection algorithm. In section 4 
we describe the system architecture and introduce the 
transportation network data. In section 5 we present the selection of 
mode detection features. In section 6 we evaluate our algorithm 
using real data. In section 7 we conclude the paper.  

2. RELEVANT WORK 
The work of Zheng et al. [2, 15] is based on transportation mode 
detection from GPS data alone; the authors introduce a robust and 
novel set of machine learning features that are sensitive to certain 
traffic and weather scenarios. Our work is different in that we 
consider transportation network data such as the real time location 
of buses to build classification features. Additionally, [2, 15] do not 

consider train as a transport mode. The approach proposed in this 
paper is over 17 % more accurate than [2, 15]. 

In [1, 16], the authors use an unsupervised learning technique to 
detect the transportation mode of a traveler. The transportation 
modes that are detected in [1, 16] include buses, cars and walk. The 
work in [1, 16] is able to predict the traveler’s goals, such as trip 
destination and trip purpose. In addition to GPS and GIS data, [1, 
16] use historical information about the user. Historical information 
includes, past user trips and information about where the users 
parked their cars. In our approach we do not consider historical 
information about the user. Furthermore, we use a supervised 
learning mechanism to detect transportation modes from the set 
{WALK, BUS, DRIVING, TRAIN, STATIONARY, BIKE}. 
Another difference is that we use different transportation network 
data than [1, 16] do. Particularly we use real time bus locations, rail 
line spatial data, and bus stop spatial data. [1, 16] use historical 
information about the bus stops at which a user boards, and where 
the user parks her/his vehicle. Importantly, the proposed bus stop 
feature is different than that in [1, 16]; the proposed classification 
feature captures the number of bus stops and duration at bus stops. 
A weakness of [1,16] is that the users’ motion pattern such as 
where the user parks her/his vehicle daily are taken into 
consideration, and therefore the model relies on background 
information about the user. The accuracy of the proposed approach 
is higher than that of [1, 16] by 9%.  

The proposed approach uses a single sensor (i.e. GPS) on the 
mobile device. There have been studies that consider multiple 
sensors for transportation mode recognition [4, 17, 18, 29, 30]. In 
[17, 18], over 20 sensors that are wearable on the human body are 
used. The input to the classification model includes information on 
the user’s body condition such as temperature, heart rate and GPS 
position. We consider a smaller number of sensors, but add 
transportation network data. We believe that it is unlikely for 
normal users to carry over 20 sensors daily. [29] uses multiple 
accelerometers and [30] uses a single sensing unit with multiple 
sensors (accelerometer, audio, and barometer) for activity 
detection. The state of the art is [4] which uses GPS and 
accelerometer sensors for transportation mode detection. However, 
[4] does not distinguish between motorized transportation modes 
such as car and bus. This limitation is due to the similarity in 
features of these two modes of transportation, especially in traffic 
or extreme weather. Using GPS and GIS data, as shown in the 
proposed approach, can achieve a very high detection accuracy, as 
in [4]. However, in the proposed approach we distinguish between 
motorized transportation modes and we do not use accelerometer 
as in [4]. Figure 1 summarizes the related works that uses GPS.  

 Figure 1 – Related work with GPS sensor 

 
The work in [19] is purely based on GSM, whereas we use GPS. In 
[37], the only sensor considered is the triaxial accelerometer. In 
[14], the authors’ objective is to conserve mobile devices resources 

 Classes Sensor Duration of 

test data 

Users Accuracy 

[2] driving, bus, 

bike, walk 

GPS 10 months 65 76.2% 

[4] still, walk, run, 

bike, motor 
GPS, 

accelerometer 

50 days 16 93.6% 

[1,16] walk, bus, car GPS,GIS 60 days 1 84% 

[15] car, bus, bike, 

walk 

GPS 6 months 45 74% 



such as battery life. Thus, in [14] only critical location points are 
submitted. Furthermore, the set of classification features used in 
our work is different from [14].  

Our prior research in [6] has a different focus; it considers 
extracting the semantic location from outdoor positioning systems. 
Likewise, [20] learns and recognizes the places a mobile user 
visited by observing the Wi-Fi and GSM radio fingerprints. This 
work does not consider Wi-Fi or GSM information. Instead, we 
consider GPS and transportation network data. Transportation 
network data is available freely to the public in many cities [25, 26, 
28].   

3. PRELIMINARIES 
In this section, we discuss the data model and the general idea of 
our algorithm.  

3.1 Data Model 
Definition 1. GPS sensor report.  A sensor GPS report pi 
represents data submitted from the GPS sensor embedded on a 
traveler’s mobile device. The format of the report is <lat, lon, t, v, 
h, acc> where: lat represents the latitude; lon represents longitude; t 
represents the timestamp of the sensor report; v represents the 
current ground speed of the device; h represents the direction of 
travel; and acc represents the accuracy level of the latitude and 
longitude coordinates. 

The measurement units of the GPS sensor report attributes are: 
latitude (lat) and longitude (lon) are in decimal degree; current 
ground speed (v) is measured in meters per second; direction of 
travel (h) is specified in degrees counting clockwise from true 
north; accuracy level (acc) is defined in meters; and time t is in 
seconds.  

Definition 2.  A GPS trace T is a sequence of GPS sensor reports, 
T = p0 → p1 →  · · ·  → pk, where the timestamps in the sequence 
strictly increase. 

3.2 General Idea 

In general, our algorithm is a supervised learning mechanism with 
two stages. In stage 1 (learning stage), the data from the GPS 
sensor report is merged with the transportation network data and 
labeled ground truth. This data is used to create a classification 
feature set that we use to train our classification model. In this 
stage, mobile devices submit GPS sensor reports every t seconds, 
where t is a system parameter. These incoming sensor reports are 
labeled with the corresponding transportation modes.  

Then, in stage 2 (inference stage), to determine a traveler’s 
transportation mode, we first extract the same classification 
features as in stage 1. Subsequently, given the features, the 
classification system predicts the transportation mode of the 
traveler in a probabilistic format.  

Specifically, our mode detection algorithm fuses inputs from the 
mobile devices’ GPS receivers with real time locations of buses, 
rail line and bus stop location data. GPS technology is a built-in 
feature of many mobile devices, such as IPhones, BlackBerrys and 
Android phones. Given a GPS trace of a traveler, one way to build 
the classification model is as follows. For each GPS sensor report 
in the trace, various features including the closest Euclidian 
distance to rail lines, closest Euclidian distance to buses and closest 
Euclidian distance to bus stops are computed.  Mean speed, 
heading, and acceleration are also obtained over a time window. 
These features form a sensor feature vector. The feature vector, 
plus the transportation mode label of the associated time interval, 

forms a training example. In this way, a training set is constructed. 
This procedure is illustrated by Figure 2. 

GPS location, heading, speed and acceleration are features that 
have been used in existing studies. However, features like closest 
Euclidian distance to rail line, closest Euclidian distance to buses 
and bus stop closeness rate have never been used before. These are 
newly introduced in this paper.  

Figure 2 – Generating classification examples from GPS sensor 

and transportation network data 

4. TRANSPORTATION MODE 

DETECTION 
In this section, we present the system architecture and introduce the 
transportation network data that is utilized in our mode detection 
algorithm.   

4.1 System Architecture 

We use a centralized system architecture. Each mobile device 
submits its GPS sensor reports to the central server. After the 
central server receives a time window amount of GPS sensor 
reports, it predicts the transportation mode used, and sends this 
prediction to the mobile device. We believe this centralized system 
is more platform independent than the distributed counterparts, 
where classification is done directly on the mobile device. 
Furthermore, since the mode detection is performed at the central 
server, there is no need to store transportation network data on the 
mobile device. Hence, the centralized model consumes less of the 
device’s memory, less processing time, less bandwidth, and less 
battery power. On the other hand, the distributed model is location 
privacy aware, since the location of the user is not submitted to a 
central authority. The privacy issue with the centralized system is 
addressed in our prior works [35, 36]. 

4.2 Transportation Network Data 

We fuse data from the GPS sensor reports with data from the 
transportation network to create the classification feature vector. 
Specifically, for the city of Chicago, Illinois, USA, we consider: (1) 
real time location of public passenger  buses, (2) rail line spatial 
information, and (3) public passenger bus stop spatial data. In 
Section 5, we will discuss the procedure to create the classification 
features from GPS sensor reports and transportation network 
information. 

4.2.1 Real time bus location 

Real time locations of public passenger buses for the city of 
Chicago is available to the public [26]. Each of these buses has a 
GPS receiver and can determine its location, and then report the 
location back to some server. Likewise, real time public transit 
tracking is performed in many other cities such as London, New 
York, San Francisco, Toronto, and Washington. For the city of 
Chicago, the system considers the real time locations of buses 
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belonging to Chicago Transit Authority (CTA). CTA has over 
1,700 buses in service that operates over 140 routes. On an average 
weekday, 1.7 million rides are taken [25]. The real time locations 
of the buses are updated every 20-30 seconds, and the data is 
available freely to the public as an API in XML format. 
Information available about the CTA buses includes: route, 
latitude, longitude, final stop, bus identification, and direction. In 
Figure 3, we create a “MashUp” using Google Maps [27] and the 
real time locations of the CTA buses.  

4.2.2 Rail Lines 

Spatial data of the rail tracks (train routes) in the city of Chicago 
is also available to the public [28], as geometric polylines. Figure 4 
depicts a diagram of the Chicago Transit Authority (CTA) rail 
network. This rail line trajectory’s location information is used in 
the proposed system. Spatial rail line information fused with GPS 
sensor data creates a classification feature in the proposed system. 
The classification feature is the Euclidian distance between the 
traveler’s mobile device and closest rail line. 

4.2.3 Bus Stops 

The CTA services over 11,577 bus stops [25]. Spatial information, 
name, and identification of these public passenger bus stops are 
available [25]. Public passenger bus stops’ spatial 
information, merged with GPS sensor data from the traveler’s 
device, creates a classification feature in the proposed system.    

 

Figure 3 – Real-time bus locations 

5. CLASSIFICATION FEATURE SELECTION 

This section deliberates the classification features used in the 
proposed transportation mode classification system. Additionally, 
the motivation for each feature, and the algorithm used for 
calculating the feature values are discussed. In this paper we 
explore 4 novel classification features related to motorized 
transportations: (1) average bus location closeness, (2) candidate 
bus location closeness, (3) average rail line trajectory closeness, 
and (4) bus stop closeness rate. This is in addition to the traditional 
features considered in the literature: average accuracy of GPS 
coordinates, average speed, average heading change, and average 
acceleration. In the rest of this section we describe each of the 
novel features and the traditional features..  

5.1 Average accuracy of GPS coordinates  

The estimated horizontal accuracy is a measure of the confidence 
on the location reported by the GPS sensor; it is a component of a 
GPS sensor report (see Definition 1). The accuracy is reported in 
meters. Different transportation modes should have different 
estimated accuracies. For example, traveling by aboveground trains 
should have worse accuracy than walking, since walking has a 
clearer view of the GPS satellites in the sky. Additionally, we 
consider the average accuracy for a set of GPS reports as a feature, 

instead of the instantaneous accuracy as done in [14]. Taking the 
average accuracy is more realistic since the GPS system may 
introduce uncertainties.  

Let {p1, p2, p3, p4…pn} be a finite set of GPS sensor reports 
submitted from the traveler’s mobile device within a time window.  

Average accuracy = (∑i=1 to n pi
acc) / n       (1) 

where pi
acc is the estimated accuracy of the reported GPS position.  

5.2 Average speed 
In terms of speed, we use the speed value returned by the GPS 
sensor when it is available; this is more accurate than calculating 
the speed from consecutive GPS location points [4]. Otherwise, if 
the direct speed is not available, it can be computed from 
consecutive location changes. For a sequence of GPS reports we 
compute the average speed. This feature has been used in many 
existing works [2, 4, 18]. 

Let {p1, p2, p3, p4…pn} be a finite set of GPS sensor reports 
submitted within a time window.  

Average speed = (∑i=1 to n pi
v) / n  (2) 

where pi
v is the current ground speed obtained from the GPS 

sensor report.  

5.3 Average heading change 

The heading is the direction from true north. For a set of GPS 
reports, we compute the average heading change. The heading 
change is an important feature for distinguishing between 
motorized and non-motorized transportation mode as observed by 
Zheng et al. [2]. This proposed classification feature is different 
from the heading feature in [2] because we compute the average 
heading change whereas [2] computes the heading change rate. The 
heading change rate in [2] is defined to be the number of times the 
heading change exceeds a certain threshold. It is computed as the 
ratio |Pc| / distance, where |Pc| represents the number of points 
where the traveler changes heading beyond the heading threshold. 
The heading change rate as defined in [2] cannot be used to 
distinguish between transportation modes with heading change rate 
below the chosen heading threshold. Let {p1, p2, p3, p4…pn} 
represent a finite set of GPS reports submitted within a time 
window.  

Average heading change = (∑i=1 to n |pi
h – pi-1

h| ) / n (3) ∀2 ≤ i ≤ n 

where pi
h is the direction from true north included in the GPS 

sensor report.  

5.4 Average acceleration  

Let {p1, p2, p3, p4…pn} be the finite set of GPS reports submitted 
within a time window.  

pi
acceleration = (pv

i – pv
i-1)/(p

t
i– pt

i-1), ∀2 ≤ i ≤ n 

Average acceleration =  (∑i=1 to n pi
acceleration ) / n         (4) 

where pi
acceleration  is the acceleration of the mobile device. 

5.5 Bus location closeness 

This feature aggregates the traveler’s GPS location with the real 
time locations of public passenger buses. Bus location closeness is 
useful for determining if the mobile device is on a bus or not. We 

Figure 4 – Rail Network 



develop two algorithms to determine if a mobile user is traveling by 
bus; (1) average bus closeness, and (2) candidate bus closeness.  

Let the location of the mobile user at time t be represented as pt
loc, 

based on the GPS sensor report. Also, let the m buses in the city be 
bus1 to busm, where busx.t

loc is the location of bus busx at time t. 
Below, line 1 shows the mobile user’s location trace. Line 2 to line 
5 represent the location traces of all the m buses (bus1, bus2, 
bus3…busm).  

1. p1
loc,   p2

loc,   p3
loc,    p4

loc … pn
loc 

2. bus1.1
loc,  bus1.2

loc, bus1.3
loc,   bus1.4

loc … bus1.n
loc 

3. bus2.1
loc,  bus2.2

loc, bus2.3
loc,   bus2.4

loc … bus2.n
loc 

4. bus3.1
loc,  bus3.2

loc, bus3.3
loc,   bus3.4

loc … bus3.n
loc 

… 

5. busm.1
loc,  busm.2

loc, busm.3
loc,   busm.4

loc … busm.n
loc 

Average bus closeness (ABC) 

From GPS sensor reports {p1, p2, p3, p4…pn} that are submitted 
within a time window, we obtain the set of locations points {p1

loc,   
p2

loc,   p3
loc,    p4

loc … pn
loc}.  For each location point pt

loc, we 
compute dt

 bus as the Euclidian distance between pt
loc

 and the closest 
bus busx.t

loc at time t. Subsequently, given dt 
bus, we calculate the 

feature average bus closeness (ABC), as the average Euclidian 
distance of (d1

bus, d2
 bus, d3

 bus, d4
 bus…dn

bus), for the set of GPS 
sensor reports {p1, p2, p3, p4…pn}.  

ABC = (∑i=1 to n di
bus) / n         (5) 

This feature is used to capture whether the traveler is traveling via 
bus transportation mode.  

Candidate bus closeness (CBC) 

First, we obtain the set of locations points {p1
loc,   p2

loc,   p3
loc,    

p4
loc … pn

loc} from GPS sensor reports {p1, p2, p3, p4…pn} that are 
submitted within a time window. For each location point pt

loc, we 
compute the Euclidian distance dj.t

bus 1≤j≤m to each bus busj, in the 
set of all buses {bus1, bus2, bus3…busm} at time t.  Then, for each 
bus busj, we compute the total Euclidian distance Dj over the time 
window as follows. 

Dj = ∑t=1 to n dj.t
bus 1≤j≤m                      (6) 

Given Dj for all the m buses, we compute CBC as follows. 

CBC = min (Dj)      1≤j≤m                       (7) 

The classification feature CBC is the minimum Dj value. Using the 
CBC feature requires more memory than the ABC counterpart, 
since the Euclidian distance from the device to every bus in the city 
needs to be computed and stored for each GPS sensor report. For 
ABC we only compute the distance to the closest bus. To the best 
of our knowledge, this work is the first to consider the real time 
location of buses for transportation mode detection.  

5.6   Rail line trajectory closeness 
This classification feature relates the traveler’s GPS location with 
spatial data representing the rail network. This feature may be 
useful to detect if a person is travelling on an aboveground train. 
For underground trains (subways), since GPS does not work well 
underground, this feature may not be effective. We do not consider 
subways in this work. The Euclidian distance di

rail between a 
person’s mobile device and the closest rail line is computed for 
each GPS sensor report pi. We then calculate the classification 
feature average rail location closeness (ARLC) as follows. Let {p1, 

p2, p3, p4…pn} be a finite the set of GPS reports submitted within a 
time window.  

ARLC = ∑i=1 to n di
rail  / |n|     (8) 

To the best of our knowledge, the proposed work is the first to use 
this rail line feature for transportation mode detection. The 
predictive power of this feature on transportation mode detection is 
evaluated in Section 6. 

5.7  Bus stop closeness rate 
This classification feature relates the traveler’s GPS location with 
spatial bus stop data. First, from experiments we determine a bus 

stop closeness threshold. This threshold is a Euclidian distance 
measure and may be used to concur if a person is at a bus stop. 
We calculate the classification feature BSCR (bus stop closeness 

rate) as follows. Let {p1, p2, p3, p4…pn} be a finite set of GPS 
sensor reports submitted within a time window. BSCR stands for 
the number of GPS sensor reports pi, whose Euclidian distance 
di

busstop to the closest bus stop, is less than the bus stop closeness 

threshold within a unit time. 

BSCR = | PS | / window size  (9) 

where PS = {pi | pi ε {p1, p2, p3, p4…pn}, di
busstop < bus stop 

closeness threshold}.  

Experiments to determine bus stop closeness threshold value 

Below, we explain how to obtain the bus stop closeness threshold 
value. For experiments, a traveler carried a mobile device and 
boarded a CTA bus.  We then measured the Euclidian distance to 
the closest bus stop from the traveler’s device. From over 450 GPS 
sensor reports, we plot the graph of Figure 5. The vertical axis 
represents the Euclidian distance to the closest bus stop. The 
horizontal axis represents the corresponding GPS sensor 
report number. From Figure 5, we observe how the mobile device’s 
Euclidian distance to the closest bus stop fluctuates during the 
travel. When the traveler on a bus is at the bus stop, the distance is 
at a minimum.  As the bus moves away from the bus stop, the 
distance increases. It peaks at the midpoint between two bus stops.  
Afterward, it decreases and reaches a new minimum when the bus 
reaches the next bus stop.  

When the traveler is traveling via bus mode and at a bus stop, the 
Euclidian distance to the closest bus stop is less than 13 meters. 
Thus, for bus stop closeness threshold, we used a value of 13m.  

For BSCR, we compute the number of times the Euclidian distance 
to the closest goes below the bus stop closeness threshold per unit 
time. We believe that if a traveler is traveling by bus, the BSCR 
should be greater than if they are not travelling by bus. We also 
evaluate the effectiveness of BSCR on predicting the transportation 
mode in the proposed work.  

 

Figure 5 - Mobile user’ Euclidian distance to closest bus stop while 
riding a bus 
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5.8   Zip code based Indexing and Pruning 

Recall that from the user’s GPS sensor reports we compute the 
closest Euclidian distances from real time locations of buses, rail 
line trajectories, and bus stops. Doing a linear comparison with all 
these locations can be time consuming. 

We build a flat indexing scheme using zip codes; this scheme 
alleviates the overhead of doing the costly linear comparisons. 
First, we pre-compute the zip codes for all the bus stops, bus routes 
and train lines. Then, for each zip code in the city, we maintain a 
bus stop candidate list, bus route candidate list, and rail line 
candidate list. We cache this zip code index on the central server. 
Next, when a mobile user submits a GPS sensor report, instead of 
doing a linear comparison with all the bus stops, buses, and rail 
lines, we only compare against those in the same zip code from 
which the GPS sensor report was submitted.  

In the proposed work, we compute the zip codes by reverse 
geocoding the spatial data. Reverse geocoding is the process of 
converting a location point to a readable address or place name. For 
example, reverse geocoding latitude: 41.976216 and longitude: -
87.90331, produces the address 1-99 Access Road Chicago, 
Illinois, 60666, USA. From the address, we extract the zip code 
(i.e. 60666) component. This zip code extraction is done for each 
bus stop, rail line, and bus route to construct the zip code index.   
For reverse geocoding services, we use Yahoo’s Reverse 
Geocoding API [34].  

6. EVALUATION 

In this section we discuss our training data collection procedure and 
the experimental results. We present the mode detection accuracy 
results when we ignore the transportation network, compared to 
detection accuracy results after we include transportation network 
information. Additionally, we use classification feature selection to 
rank our initial set of features. Given this ranking, we then select 
the highest rank features to build a final system, 

6.1 Data Collection 

For training the classifier, we collected traces on six different 
modes of transportation (walking, bus, car, stationary, aboveground 
train and bike). The data was collected by 6 individuals, 3 females 
and 3 males. The data was collected over a 3 week period. 
Additionally, three types of mobile devices were considered for 
data collection: (1) HP IPAQ PDA, (2) Android based Samsung 
Galaxy mobile phone (3), IPhone 3G. These devices are shown in 
Figure 6. Our application platform is the mobile web. 
Transportation mode ground truth was labeled on the GPS sensor 
reports by each individual using the user interface (UI) of the 
mobile web application (see Figure 7a). In Figure 7b, we present a 
table, depicting the duration of mode specific labeled training data, 
collected from the six experiment participants.    

 

Figure 6 - Devices used for data collection (HP IPAQ, Samsung 

Galaxy, IPhone 3G) 

 

6.2 Training data preprocessing 

The accuracy of GPS varies. For example, GPS tends to 
underperform if it does not have a clear view of the sky (e.g. in 
urban canyons). For this reason, we perform a noise filtering step 
before training the classifier. Invalid GPS points are suppressed 
based on the GPS accuracy and the change in speed. GPS sensor 
reports with high inaccuracy readings and unrealistic changes in 
speed are pruned. This is a manual step before classifier training.  
GPS noise filtering before classifier training is not a new concept. 
The authors of [4] perform a preprocessing step before training 
their classifier. 

GPS sensor reports are submitted by the mobile user from the 
mobile device every 15 seconds. A window size of 30 seconds was 
chosen as the period of classification. Therefore, for every two GPS 
sensor reports received, we constructed the classification feature 
set. We observeed that submitting GPS reports is very power 
consuming. Thus, submitting GPS reports every second as done in 
[4] will exhaust battery power.  

  

Figure 7 - (7a) User interface for data collection and ground 

truth labeling (7b) Amount of training data collected 

6.3 Window Size 

In the proposed work, transportation mode detection accuracy was 
not sensitive to window size. However, larger window sizes result 
in longer transportation mode detection time.  

6.4 Classifier selection 
To determine the most accurate classifier for the proposed 
transportation mode detection algorithm, we compared precision 
and recall accuracy of five distinct classification models. The five 
models are: (1) Naive Bayes (NB), (2) Bayesian Network (BN), (3) 
Decision Trees (DT), (4) Random Forest (RF), (5) Multilayer 
Perceptron (ML). Readers are referred to [32, 33] for discussions 
on various classification models. To evaluate the different 
classification models on transportation mode detection, the WEKA 
machine learning tool set [32] was used. 

The results indicate that Random Forest (RF) is the best model, 
with an average precision accuracy of 93.70% and recall of 
93.80%. Thus, Random Forest classification system is chosen as 
the final classification model that is deployed to the public.  

6.5 Mode detection accuracy  

In this section, we analyze the performance and effectiveness of the 
transportation mode classifiers. We evaluate the classification 
schemes using two metrics: (1) precision accuracy 

and (2) recall accuracy. 

Precision Accuracy (M)=(number of correctly classified instances 

of mode M) / (number of instances classified as  mode M) 



Recall Accuracy (M) = (number of correctly classified instances of 

mode M) / (number of instances of mode M) 

Three sets of results were obtained and are presented in subsections 
6.5.1, 6.5.2, and 6.5.3, respectively. Each set contains the precision 
accuracy and recall accuracy for the five classification schemes. 
For each set, we used 10-fold cross validation. In 10-fold cross 
validation, the original sample was randomly divided 
into 10 subsamples. Of the 10 subsamples, a single subsample was 
retained as the validation data for testing the classification model, 
the remaining 9 subsamples were used for training data. The cross-
validation process was then repeated 10 times, with each of 
the 10 subsamples used exactly once as the validation data. 
The 10 results were then averaged to produce a single estimation. 

6.5.1 Classification without Transportation Network data 

Figure 8 shows the first set of results which are the precision 
accuracy and recall accuracy when transportation network related 
features are not considered. The only features considered are 
average speed, average acceleration, average heading change, and 
average GPS position accuracy. Thus, real time bus locations, rail 
line trajectory and bus stop locations are removed.  

From Figure 8 it can be observed that Random Forest classification 
model is the most accurate model since it has higher average 
precision and recall accuracy compared to the other four 
classification models.   

In general, when transportation network related features are not 
considered, the accuracy is below 76% for the five classification 
models (BN, NB, DT, RF, and ML). Additionally, we observe that 
motorized transportation and bikes show the lowest precision 
accuracy. For example, consider the case of Random Forest. The 
precision accuracy results for car, bus, and train are 58.1%, 56.5%, 
and 69.8%, respectively. The precision accuracy for bike is 71.4%. 
On the other hand, for non-motorized modes, such as walk and 
stationary, the precision accuracy is 100% and 96.8%. For all five 
models (BN, NB, DT,RF, and ML), the precision accuracy is best 
for walk and stationary. This implies that the transportation 
network data is not very helpful for detecting stationary and walk 
mode. On the other hand, features such as speed, heading, 
acceleration, and GPS accuracy are not sufficient for distinguishing 
between motorized modes because of feature similarities. 

6.5.2 Classification with Transportation Network data 

Figure 9 shows the second set of results which are precision and 
recall accuracy when all the classification features discussed in 
Section 5 are used. The difference between Figures 8 and 9 is 
obvious. The main difference between Figure 8 and Figure 9 is that, 
in Figure 8, transportation network related classification features 
are not considered, while in Figure 9 transportation network related 
features are considered.  

In Figure 9, all classifiers (BN, NB, DT, RF, ML) tested, with the 
exception of the Neural Network based Multilayer Perception 
(ML), achieve over 90% average precision and recall accuracy.  On 
the other hand, when transportation network features are 
suppressed, the average precision and recall accuracy is below 76% 
(see Figure 8). This suggests that the transportation network related 
features are effective for transportation mode detection. 

In the study, the most effective classification model is again 
Random Forest (RF), with an average precision accuracy of 93.7% 
and recall of 93.8%. This work is the first to distinguish between 
motorized transportation modes with such high accuracy [1, 2, 15, 
16].   

Figure 8 - Transportation network features not considered. 

 

Figure 9– Transportation network features considered  

 

From Figures 8 and 9, it can be seen that the precision and recall 
accuracy of motorized transportation modes and bikes increases 
more than the non-motorized modes of walk and stationary. For 
example, in the case of RF classification model, when 
transportation network features are used (Figure 9), the precision 
accuracies of car, train, bus, and bike are 87.5%, 98.4%, 88.3% and 
88.9% respectively. On the other hand, when transportation 
network related features are not used (i.e. Figure 8), in the case of 
RF, the precision accuracies for car, train, bus, and bike are 58.1%, 
69.8%, 56.5% and 71.4.% respectively.  

We conclude that our novel transportation network features are 
most effective for motorized transportation mode detection, and 
also effective for bike mode detection. This makes sense, since 
bikes and motorized modes may have similar speed and 
acceleration in traffic and therefore are difficult to distinguish using 
traditional motion pattern features. However, features of the 
transportation network, such as bus locations, help the 
distinguishing between buses and bikes. 

Distinguishing among motorized transportation modes is useful in 
practice. For example, companies such as Google collect data from 
travelers’ mobile phones in order to estimate the traffic speed of a 
road segment. For this purpose the speed estimation system should 
only use the speed reports submitted by mobile devices on cars or 
buses but not those on trains. Distinguishing the train mode from 
the other motorized modes enables the speed estimation system to 
filter out speed reports submitted from trains.  

The proposed approach is 17 % more accurate than [2, 15] which 
uses GPS only and distinguishes between two motorized modes 
(bus and car). Also, the proposed approach is 9% more accurate 

 Precision Accuracy Recall Accuracy 

NB  BN DT RF ML

P 

NB  BN DT RF ML

P 
train 70.0 50.0 50.6 69.8 47.8 45.2 85.5 62.9 59.7 51.6 

bus 47.0 43.9 40.6 56.5 37.8 54.4 31.6 22.8 45.6 24.6 

stationary 100 100 100 100 96.2 100 100 100 100
0 

67.6 

walk 94.7 93.8 93.8 92.7 83.3 97.8 100 98.9 97.8 98.9 

car 42.3 90.0 43.5 58.1 30.2 42.3 17.3 38.5 69.2 25.0 

bike 70.2 71.0 68.8 71.4 54.5 89.2 86.5 89.2 81.1 81.1 

average 71.8 74.9 66.9 75.4 59.1 71.4 71.4 69.0 75.9 60.7 

 

 

Precision accuracy Recall accuracy 

NB  BN DT RF ML

P 

NB  BN DT RF ML

P 
train 98.3 96.8 96.8 98.4 89.1 91.9 96.8 96.8 98.4 79.0 

bus 85.0 88.3 88.9 88.3 83.3 89.5 93.0 84.2 93.0 87.7 

stationary 100 100 100 100 96.6 100 100 100 100 75.7 

walk 96.7 94.7 94.7 96.8 86.5 95.6 97.8 98.9 98.9 98.9 

car 78.2 85.4 85.1 87.5 67.3 82.7 78.8 76.9 80.8 67.3 

bike 88.9 88.6 85.5 88.9 75.0 86.5 83.8 94.6 86.4 73.0 

average 91.6 92.5 92.2 93.7 83.3 91.4 92.6 92.3
3 

93.8 83.0 



than [1, 16] which uses GPS/GIS and distinguishes between bus 
and car.  Using the newly proposed classification features, we show 
that we can detect transportation mode with high accuracy. These 
classification features are robust and most effective for detecting 
motorized transportation and bikes.    

6.5.3 Transportation Mode Classification Feature Selection 

Feature selection is a data-mining concept [31], which chooses the 
subset of input features by eliminating classification features that 
are less predictive. Using two commonly used feature selection 
algorithms, we ranked the eight classification features to identify 
the most relevant features for detecting transportation mode in the 
proposed work. The feature selection algorithms used are: (1) Chi 
Squared [31] and (2) Information gain [31]. The ranking of the 
initial eight classification features are shown in Figure 10. 
Removing irrelevant classification features reduces the 
computational cost for training and transportation mode detection.  

From Figure 10 we can see that the set of five top ranked 
classification features is the same for Chi Square [31] and 
Information Gain [31]. Thus, from Figure 10, we selected the five 
top ranked classification features, namely average speed, average 
acceleration, average rail line closeness, average bus closeness, and 
candidate bus closeness. We used these features to build a final 
classification model. The precision and recall accuracy of this final 
classification model is shown in Figure 11.  

According to Figure 11, when the top five features are selected and 
the other three classification features are pruned, the precision 
accuracy hardly changes (see Figure 9 as well). Observe that 
Random Forest (RF) classification model is still the dominating 
classification model in Figure 11, with a precision and recall 
accuracy of 92.8% and 92.9% respectively. For RF, only a 0.9 % 
reduction in recall and precision accuracy is noticed when the five 
top ranked features are considered, as opposed to considering all 
eight classification features. This indicates that the top five 
classification features are enough to detect transportation mode in 
the proposed work.  

In some cases, there is an increase in precision accuracy when only 
five features are considered. For example, consider the case of 
Random Forest precision accuracy for bus or bike transportation 
mode.  For another example, the precision accuracy for DT when 
we consider the top five classification features is greater for cars 
and bikes, than if we consider all initial eight classification 
features.  

In general, Figure 11 shows that even though we pruned three 
classification features, the accuracy is unaffected. This suggests 
that the three pruned features are redundant for detecting the 
transportation mode in the proposed work.  

 

 Figure 10 – Classification feature ranking and selection  

Rank Chi Squared Information gain  

1 average speed average speed 

2 average rail line closeness average rail line closeness 

3 average. bus closeness average acceleration 

4 average acceleration average. bus closeness 

5 candidate bus closeness candidate bus closeness 

6 average heading change average heading change 

7 average bus stop closeness average bus stop closeness 

8 average accuracy average accuracy 

Figure 11 - Only five high order classification features used.  

 

The most effective features are average speed, average 
acceleration, average rail line closeness, average bus closeness, and 
candidate bus closeness.  

Now we discuss Figure 10 from the perspective of transportation 
network data availability. Depending on its availability, the 
transportation network data can be categorized into three levels. 
The most widely available data is network topology data such as 
rail line routes. Figure 10 shows that this data is also most useful 
among transportation network features for mode detection. This is a 
good property of our approach. It means that our approach can be 
deployed to many regions in the world and is likely to achieve good 
performance there. The less widely available data is bus stop 
locations. Figure 10 shows that this data is least useful among the 
top ranked features. This means that our approach would not lose 
too much performance in the regions where bus stop information is 
unavailable. The least available data is real-time bus locations, 
which is a very predictive feature (i.e., average bus closeness) 
according to Figure 10. Thus our approach will not be able to 
utilize this predictive feature in many regions of the world. This is a 
limitation of our approach.  

6.6 Performance and scalability 
The speed at which we create the transportation mode classification 
features for training and inference is important. Recall, from the 
user’s GPS sensor reports, we need to compute the closest 
Euclidian distances to real time locations of buses, rail 
line trajectories, and bus stops. 

There are over 11,500 bus stops in the city of Chicago. For larger 
cities such as New York, the number of bus stops may be even 
greater. Doing a linear comparison with all the bus stops, buses, 
and rail lines is time consuming. Doing a linear comparison took us 
over 2 minutes on a HP Laptop with a 4GB RAM and 2.54GHz 
Intel Core 2 Duo processor. This is impractical and ineffective in 
the real world, since in two minutes, users may transfer from one 
transportation mode to another, or become frustrated with the 
system. The proposed zip-code based indexing and pruning 
approach reduces our feature creation time from over 2 minutes to 
below 10 seconds. This can be further improved by using more 
sophisticated techniques, such as indexing by R-trees. However, 
performance was not a focus of this work.  

6.7 Extended real world evaluation 
The final classification model (Random Forest), using the top five 
ranked features, was deployed to the public via the mobile web. As 
explained earlier, we focused on the centralized server model. In 
this model, mobile users submit their GPS sensor reports via the 

 Precision accuracy Recall accuracy 

NB  BN DT RF ML

P 

NB  BN DT RF ML

P 
train 96.5 92.2 96.8 95.1 82.9 88.7 95.2 96.8 93.5 93.5 

bus 81.3 85.5 83.9 89.7 71.6 91.2 93.0 91.2 91.2 93.0 

stationary 100 97.3 100 100 84.2 91.9 97.3 100 100 86.5 

walk 94.6 94.7 95.7 96.8 88.2 95.6 98.9 96.7 100 90.1 

car 79.2 82.2 90.5 83.7 78.8 80.8 71.2 73.1 78.8 50.0 

bike 91.7 93.9 85.4 89.2 85.7 89.2 83.8 94.6 89.2 64.9 

average 90.6 91.0 92.4 92.8 82.2 90.2 91.1 92.3 92.9 81.8 



web to our central server for classification. The central server then 
responds to the user with the corresponding transportation mode. 
Below, in Figure 12, we show the final deployed transportation 
mode classification system under operation in an IPhone 3G.  

When the detected transportation mode is “bus” in Figure 12, we 
provide further information by giving the bus’s identification. The 
bus identification is a finer granularity of transportation mode 
detection than bus route; we can also detect the bus route on 
demand.  This work is the first to infer such detailed transportation 
mode detection.  

We also evaluated the deployed system to learn how the system 
performs in the real world under everyday usage. For evaluation 
purpose, new individuals that were not considered for the initial 
training data collection were given IPhone 3Gs with access to the 
classification system. We considered new individuals for this 
experiment, because we wanted to learn how the system would 
perform for new users that are not covered by the training data. 
These new users mounted the IPhone in any desired position (i.e. 
waist, arm, pocket, or bag), then tally the percentage of time the 
mode detection is correct.  For example, if the mode was detected 8 
out of 10 times correctly, the accuracy is 80%. The results of the 
real world evaluation for a mobile user are presented in Figure 13. 

 
 Figure 12– Deployed classification system 

Figure 13 shows that, when deployed in the real world, under 
everyday usage, we achieved an average detection accuracy of 
93.42% for the proposed mode detection system. The results 
indicate that the proposed approach is effective under everyday 
usage, and new training data collection is not necessary for new 
users. Also, the identified transportation network related features 
are very robust to traffic condition changes. 

 

Figure 13 – Evaluation of deployed system 

Mode Duration (min) Accuracy % 

train 35 93 

bus 30 95 

car 30 89 

walk 30 92 

bike 30 93 

stationary 34 98.5  

 

6.8 Bus mode detection discussion 
We presented three new classification features that can detect if a 
traveler is travelling via bus. The three features are: (1) average bus 
closeness (ABC), (2) candidate bus closeness (CBC), and (3) bus 

stop closeness rate (BSCR). From the feature selection in Figure 
12, we observe that BSCR was overshadowed by ABC and CBC.  

ABC captures the Euclidian distance to the closest bus for each 
snapshot. This Euclidian distance is summed over all the snapshots 
in a time window. Then, the average Euclidian distance is 
represented as ABC. ABC does not capture the traveler’s 
relationship with all the buses, only the closest bus.  

CBC requires the knowledge of the Euclidian distances to all the 
buses. Then, the single closest bus over a time window is chosen as 
the candidate bus. Thus, CBC does not capture bus transfers. For 
example, if a traveler alights from a bus, and boards another bus, 
CBC may not identify the correct bus.  

According to Figure 10, ABC is a more effective classification 
feature than CBC for transportation mode detection. In order to 
quantify the contribution of CBC to bus mode detection accuracy 
as a classification feature, we present bus mode accuracy results 
using the Random Forest Model, when the CBC feature is 
suppressed. The four high order features (average speed, average 
acceleration, average rail closeness, and average bus closeness) of 
Figure 10 are used in Figure 14.  From Figure 14, we observe that 
the precision accuracy of buses decreases to 85.1 % (Figure 14) 
from 89.7% (Figure 11), when only the top four features are used. 
This indicates that even though CBC may be more time consuming 
to compute, and use more memory than ABC, it is a worthwhile 
feature for buses. On the other hand, if speed and memory is 
critical; CBC can be suppressed, and bus mode detection will 
remain over 85% accurate. 

 

Figure 14 – Effects of CBC on bus mode detection 

 

7. CONCLUSION 

In this paper we proposed a new robust approach to detecting 
transportation modes. In the proposed work, we considered and 
used transportation network data consisting of real time location of 
buses, rail lines, and bus stops spatial data. The real time location 
of buses is available in many cities such as Chicago, New York, 
Toronto, London, Washington DC, and San Francisco. 

Using the transportation network data, we showed that it is possible 
to address the weakness of previously proposed solutions [1, 2, 4, 
15, 16]; that is, to distinguish between motorized modes such as 
trains, buses, and cars with high accuracy. Furthermore, if we 
detect that a traveler is traveling by bus, we can further identify on 
which particular bus the person is traveling.  

Among the five classification models considered, Random Forest 
model is the most dominating classification model with over 93 % 
precision and recall accuracy. When transportation network 
classification features are not considered, the precision accuracy 
decreased to below 76%. This reduction of accuracy, upon 
omission of transportation network related features, is more notable 
for motorized transportation modes and bikes.  This implies that 
transportation network data is effective for detecting motorized 
transportation, and bikes.  

We also realized that, in order to achieve high precision and recall 
accuracy, only a subset of our initial set of classification features is 
necessary. In addition to traditional features on average speed and 
average acceleration, we identified for the first time the features on 

   Precision Accuracy % Recall Accuracy % 

Bus 85.1 91.3 



average bus closeness, average rail line closeness, and average 
candidate bus closeness. Using only this subset of features, and 
suppressing the other classification features that are not necessary, 
the precision accuracy was still over 92.5%.  

Finally, users that have not participated in the initial training data 
collection evaluated the deployed system in the “real world” under 
everyday usage. The real world evaluation of the deployed system 
resulted in a precision accuracy of 93.42%. This indicates that 
additional training data collection is not necessary for new users; 
and the system is robust under every day usage.  
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