Freeform: A User-Adaptable Form Management System

Roger King
Michael Novak

Department of Computer Science
University of Colorado
Boulder, Colorado 80309

Abstract

Freeform is an office form management system based on the
belief that a form should easily adapt to the needs of each of its

users. Freeform uses a high-level data model in order to make rela-
nonslupsbetwemnemsonaformnmvmbletomeuw The
dacnpuonofafmn,aswellmtbeacumldm,lsswredmCacus
an object-oriented daiabase. By buiiding more meaning into a form,
Freeform makes it possible for a user 0 make all modifications 10 a
form design by interactively editing the form. This includes
modifications that affect the underlying database schema. Freeform
thus allows users with little database knowledge to create and main-
tain private versions of a form while automatically maintaining
integrity and consistency between versions.

1. Introduction

Freeform is a menu-based form management system running
onaSunwakstanmundu‘theUND(opaanngsystem Freeform
provides a highly interactive interface for both design operations and
data operations on forms, however, the emphasis is on designing
forms. A novel aspect of Freeform is that it allows end users o
easily adapt a form to their individual needs. For this reason, we
introduce the concept of form families. A form family is a set of dif-
ferent versions of the same form. End users may create a private ver-
sion of the form and add it to the family. Constraints on the form
family are specified by the owner of the master version and automat-
ically enforced by the system. A mail system is also provided to
allow communication between form users. The mail system may be
used to send mail manually and to specify events or classes of events
that cause mail to be sent automatically. In order to make form
descriptions easier to understand and work with, an object-oriented
data model is used to represent forms and an object-orieated data-
base is used for the storage of form descriptions and data.

For many years, forms have been an important method of
communication in the office environment. It has even been sug-
gested that forms are the most natural form of interaction between a
user and data (Lef79, SLT82]. A form can be thought of as a struc-
tured input/output medium. Traditionally, a designer created a paper

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the VLDB copyright notice and the
title of the publication and its date appear, and notice is given that
copying is by permission of the Very Large Data Base Endow-
ment. To copy otherwise, or to republish, requires a fee and/or spe-
cial permission from the Endowment.

Proceedings of the 13th VLDB Conference, Brighton 1987

form and the users filled in the form by putting data in the appropri-
ate areas. Data storage consisted of puiting the paper form in a file
cabinet. Recent research has led to a large increase in the use of
electronic form systems, where the electronic form (displayed on a
computer terminal) is used as the input/output medium and a data-
base is used to store data. We have also seen systems such as
COUSIN [HaS83], a form-based interactive command interface,
several application development systems [Row85, Shu85] that use
form-based interfaces, and some database languages such as QBE
[Z1075] that use a form-like interface for manipulating a database.
These systems merely use a form layout as a tool and are not meant
for managing forms. Our interest is in form management systems
which are used to create, modify, and store descriptions of forms and
to do data operations such as filling in and reading forms. We refer
to the description of a form as a form design and a particular set of
data for a form design as a form instance. A form design involves
both the appearance of the form and information about how objects
on the form relate to database schema objects. We will refer to the
relationships between form and database schema objects as the link
between the the form design and the database.

There are two general categories of operations in most form
management sysiems, modifying a form design and wsing a form.
Using a form refers to data operations such as filling out a form or
looking at a form instance. Using a form generally requires no data-
base knowledge, since the form design has already been created and
linked to the database. Therefore, using a form is very straightfor-
ward on most current systems, Many existing form management
systems [HuW84, KGM84, RoS82, Shi84, Tsi80, YHS84, Z1082] pro-
vide a screen-oriented interface for using forms. It is for this reason
that our work does not concentrate on using forms.

Although most of the current form management systems
[CzE84, Huw84, KGM84, RoS82, Shi84, Tsi80, YHS84,Z1082] use
a relational database, some also allow higher level data structures
than just tables (the form equivalent of relatons and tuples) for
describing a form. SOFTFORM [HuW84] and FORMANAGER
[YHS84] use a hierarchically structured data mode! for forms.
Although a form in these systems does contain tables, it need not be
just a flat collection of tables. Instead, the form in these systems is
tree structured. This allows a form to contain more semantic infor-
mation than a pure relational model. Even in these systems, modify-
ing a form design often forces the designer to deal directly with the
relational database. This is due to the fact that modifying a form
design often involves modifying the link between the form and the
database. When a form object is added or modified, there is a high
probability that the database schema will be affected. For example,
if a new form object has no corresponding schema object in the

This work was supported by ONR under contract N00OO14-86-K-0054.

331

Cactis Database Cactis Schema
D':;"b';e l _9 gﬁmﬂsﬁ l 9 Fregeform 9%
Appiications é Applications é
| Bl || || e |
Figure 1

database, one must be created. This is why form design
modifications, other than those involving only the physical layout of
the design, require some relational database knowledge. For the
same reason, some systems [HuW84,RoS82, Tsi82, YHS84] expli-
citly distinguish between a form designer and a form user.

We feel that form users should be able to modify the form
design they are using, including modifications that affect the link
between the design and the database schema. To achieve this,
Freeform uses a similar object-oriented data model for both the form
and the underlying database. This model supports methods and
mechanisms for constructing complex objects using semantic data-
base constructs. Since a semantic model conveys more semantic
information than the relational model (see [HuK85,XiM85] for a
general discussion on semantic database models), this results in a
form that is easy for the user to understand. It also means that
Freeform can link the form and database schema in such a manner
that the user never needs to work directly with the database, even
when doing operations that modify the link. This is done by deriv-
ing the names of form objects from corresponding database schema
objects and by having relationships between form objects mimic the
relationships between the comresponding database schema objects.
Although this imposes some limitations on how a form design may
look, it canses the form design and the underlying database schema
to look very similar. This allows Freeform to manipulate the data-
base schema in response to user manipulation of the form design.

Since Freeform provides a highly interactive, graphics-based
interface, the user need not be an expert on object-oriented or
semantic data modeling. Freeform also differs from systems such as
ISIS [GGKS85], SKI [KiM84], and SNAP [BrH86]. These systems
all provide a graphical interface to a semantic database, while
Freeform provides a graphical interface to a form management sys-
tem. The method used to manipulate forms eliminates the Freeform
user’s need for a direct user interface to the underlying database.

Since manipulation of the database schema is done automati-
cally, the user may edit a form design by manipulating only the form
design. This is true even for operations that involve interaction with
the database schema. For example, if a user wishes to add a form
object, the corresponding database schema object must be found and
the fact that these objects correspond to each other must be stored
somewhere. In most systems this involves working directly with the
database schema. In Freeform the user may "expand” form objects
to see what other objects have a relationship with them. This lets the
user view objects in the underlying database schema and add them to
the form. Changes in the form-database link are done automatically
by Freeform. This makes editing a form design possible even for the
user with very little database knowledge.

In order to ensure consistency between the different versions
of a form design, Freeform uses form families. The designer of a
form creates a master version and specifies what kind of
modifications are allowed. For example, the designer may specify
that certain objects on the form design may not be modified or
deleted, or that an object’s value domain must be in a certain range.
Other users of the form may create private versions. Freeform makes

332

sure that the versions they create are consistent with the
specifications given by the designer. This allows each user to design
a version that they are comfortable with and Freeform makes sure it
is compatible with everyone else’s versions.

The rest of this paper is organized as follows. Section 2 talks
about our data model; section 3 describes the user interface; section
4 talks about form families; section 5 describes the implementation;
and section 6 discusses future research.

2. The Data Model

Freeform uses an object-oriented data model to represent

forms and an object-oriented DBMS called Cactis to store forms

[HuK86, HuK87,Kin84]. Freeform users communicate only with
name phons address city state 2ip

person

customer

transaction_ty T
payment_iype; invoice re address
salesperson

* "i‘a‘:’%‘:‘i‘. - Te screll ferm, depress left bu‘tto"-m naseer

(inveice) inveies sumber ___
castomer(persen)
raems sl Yheme e L
ety stere
state _ 3ip salsspersen
payment_type transactisa_typs
unlml&."lmlm_m uhlcn.lh
purchasesi(sale)
L7 nfg. wedel_dasc. amennt
comments cax *
tetal .
depestt .
Dalanee .
awsunt-p.o. :

Figure 3

Proceedings of the 13th VLDB Conference, Brighton 1987

Freeform; Freeform communicates with a Cactis database by using a
Cactis schema as its interface (see Figure 1). The forms schema
defines how form descriptions are stored and the forms database
stores them. A form description contains information about how
objects on the form are related to objects in the application database
and visual information about the form.

Cactis views an application environment as a collection of
constructed objects. An object may have attributes and relation-
ships. Objects and relationships are typed. A constructed object’s
type is determined by two things: its attribute structure and its con-
nectors. A connector allows a relationship to be applied to a certain
object. An attribute is an atomic property of a constructed object.
These atomic properties may be of any C data type, except pointer.
A relationship is a directional mapping from one constructed object
to one or more constructed objects. Restrictions such as non-null or
unique may also be put on a relationship.

For example, a constructed object called person may have the
attributes name, social_security_number, and age, which are all
atomic and single-valued. It may also have a connector called chil-
dren and a connector called parent. The directed relationships
my_children and my_parent can be used to connect people to their
immediate family. Relationships may be used to pass attributes from
one object to another, in order to calculate derived attributes. In this
way, the social security number of a person could be passed to a
child over the my_children relationship, and used as the value of an
attribute called my_parent’s_social_security_number.

The Freeform data model is a modified version of the data
model used by Cactis. The basic Freeform object type is form,
which consists of a form name and onc or more form versions. It is
the form version that corresponds to what most people think of as a
"form". A form version consists of a version name and a form object
that describes the version. Often, we will talk about a form version
and this form object interchangeably. It is this form object which
corresponds to some object in the Cactis schema. For example, the
form version in Figure 3 (please ignore the dashed border around the
object name at this time) corresponds to the Cactis schema in Figure
2 (Figure 2 is not a Freeform screen image). The form shown has
more white space then is generally seen on a paper form. Since an
electronic form does not have the space limitations of a paper form,
we feel there is no need to compress it, but the user may modify the
layout if a more compressed form is desired. The enclosed text in
the schema drawing represents constructed objects, the unenclosed
text represents attributes, thin lines represent one-to-one relation-
ships, and thick lines represent one-to-many relationships. Other
form versions could also correspond to the same schema.

The form object is the basic building block in Freeform. A
form object may be simple or compound. A simple form object may
be a field or a table. A field corresponds to a Cactis attribute and
may be of type integer, real, boolean, character, dollar, date, unfor-
mated text, ordinal or comment. For example, the ordinal field
payment_type in Figure 3 corresponds to the attribute payment_type
in Figure 2. A comment field has no value associated with it and
therefore no corresponding Cactis object, and an ordinal field is
merely a field that has a finite number of possible values. A table is
a collection of columns, each of which corresponds to a Cactis attri-
bute. The table itself corresponds to a Cactis constructed type that is
the range of some one-to-many relationship. For example, the table
in Figure 3 (with columns quantity, U/M, mfg., model_desc., and
amount) corresponds to the constructed type sale in Figure 2.

Also associated with each field, ordinal type and table column
is some information that keeps track of whether it is used for input
or output. We will refer to this as its I/O class. A compound form
object is a collection of other form objects and may may be con-
sidered the Freeform equivalent of a Cactis constructed object.

Proceedings of the 13th VLDB Conference, Brighton 1987

design use module auxillary tunctions mail system design editor

A

mail options aditor options
Figure 4 .

However, rather than using the Cactis notion of relationships,
Freeform uses the idea of ownership. Therefore, a compound form
object owns all the form objects within it (in Figure 3, invoice owns
all the other form objects). Like Cactis atributes, simple form
objects may be functionally-defined; as in Cactis, the description of
how an object is defined is within that object For
example, the total field and all the fields beneath it in Figure 3 are
functionally-defined, and maintained by Cactis.

The Freeform model also has some restrictions not found in
the Cactis model. First, only the types defined above are used in
Freeform. Second, the way Freeform object are connected is more
restrictive than the way Cactis objects are connected, since the only
kind of "relationship” allowed in Freeform is ownership. The
Freeform data model thus has a hierarchical structure, rather than the
graph structure of the Cactis data model.

use options

3. The User Interface

A popular line of thought is that there is necessarily a tradeoff
between leamnability and usability. Several recent studies argue just
the opposite [RoM83, WJL8S5]); the two seem to be congruent. By
borrowing some techniques from human factors research, we wish to
produce a user interface that is both easy to leam and to use. The
high usability and wide acceptance of systems such as the Star
[SIK82] and the Macintosh [Rub84] have shown the viability and
flexibility of highly interactive, graphics oriented user interfaces.
This combined with the increasing availability of graphics hardware
have led us to create a menu-driven graphical interface for Freeform.
By carefully designing this interface, we hope to minimize two gen-
eral problems associated with user interfaces [WIL85). One of these
problems is the difficulty involved in navigating within the interface.
The second is inconsistency at different levels of the interface.

In order to make navigation within the Freeform user interface
straightforward, the interface is organized as the tree seen in Figure
4 (Figure 4 is not a Freeform screen image). The user starts in the
command level (Figure 5) and chooses an option with one of the
command buttons. The option chosen moves the user down a level
into the appropriate subtree. For example, selecting the Edit
Current Version button takes the user into the design editor. When
done working at the current level, the user moves back to the previ-
ous level. To minimize user confusion, the tree is never more than
three ievels deep. We also allow no horizontal moves such as going

rreny version |
Li1st A CIrms
Use Lurrent Version
1t rrestorm

List A srgions

ter Mai YSTOm

rrent Version

Figure §

333

directly from the design editor to the design usage module. In addi-
tion to making navigation as simple as possible, this ensures that
users complete a task before moving to the next one.

In order to create a consistent interface, interaction is through
menus whenever possible. Internal nodes (command level, form
editor, form usage module) always use menus, however, leaf nodes
(auxiliary functions, edit options, use options) may prompt the user
for input, since some tasks are impossible to do with menus alone.
For example, at the command level, choices are made with menu
buttons. If the New Current Version option is selected, a leaf level
interface is entered. Now the user is prompted to type in a version
name and when this is completed the command level is reentered.

The interface uses two adjoining windows. The top window is
used for command buttons, displaying messages and entering text
(form names, version names, etc.). The bottom window is used by
the design editor, the design use module, and the mail system to
graphically display and interact with a form design. In order to avoid
confusion, the user interacts with only one window at a time (even
though both windows are used by some operations).

‘When Freeform is run, the top of the screen appears as shown
in Figure 5. The buttons other than Edit Current Version, Use
Current Version, and Enter Mail System are for executing the
auxiliary functions. They are provided for doing the tasks that do not
require interactively working with a specific form design. All the
auxiliary functions either require no input or prompt for text input.

The design editor, design use module, and mail system all pro-
vide an interactive interface utilizing pop-up menus and using the

Currsac ferm: imweise Luryeat Version: master
Editing - Te screll ferm, depress left butten

principles of direct manipulation [HHN, Lel.83] whenever possible.
The design use module is used for data entry and retrieval. It allows
users to create new form instances and to work with existing form
instances (browse, modify, etc.). The mail system is designed to
allow the users of a form to communicate with each other. Users
may specify events that trigger mail messages to themselves or to
other users and they may send mail manually. The mail system is
also used by Freeform to notify users of events [EIB82, StR86], such
as when a form version is no longer up to date. The design editor
interface is where the thrust of our work lies and it will be discussed
in a separate section. Since both the design use module and mail sys-
tem interfaces are consistent with the design editor interface, they
will be not discussed further.

3.1. The Design Editor

The design editor is used for creating private versions of a
form design. The main features of the design editor are:

- It uses an interactive interface utilizing pop-up menus.

- The user needs very little database knowledge.

- Consistency between versions is automatically enforced.

- Both the appearance and content of a version may be edited.

The design being edited is graphically displayed (Figure 3) in
a manner that corresponds directly to the way it is stored. Everything
owned by a compound form object is displayed inside that object.
An example of this is that the form object person owns the form
objects name, phone, address, city, state, and zip. The system keeps
track of the lowest level object that the cursor is within, This object

it lorn: 1aveirss Larreat Versise: master
Editing - Te screll fers, depress left butten

(inveice) Ixvetce_awmber _

EDITOR UPTIONS h
Describe Current Gbjsct §
Show F111 Order :
Hide F111 Order
Changs F111 Order
txpand Current Object
Comprsss Current Object
Move Currsat Object

Regize Curreat Object
slate Current Object
Undo Last Delets

purchases(saie)
o nfg.

Add Curreat Ohjsct
Add Mew Objsct
Crsats Derived Gbject

Save kdit Ssssion

Write tdit session |
[Repaint scresn |
Ex1t Editor

couments

3alanes

ameswnt-p.s.

(inveice) inveice-mumber
custemer{persen)
date _/ [/
ety stere
state __ zip salespsrsem ___
enployer (company)
paymat_type transaetion_typs
cmlmlmlmlm_m unLun.’uy
sale
quaatity U/ wty. wodel_dosc. amomat
comments tax j
total .
doposit
dalanss 2
aeeumt-y.e. .

Figure 6

334

Figure 7

Proceedings of the 13th VLDB Conference, Brighton 1987

is the current object and is surrounded with a dashed border (in Fig-
ure 3, name is the current object).

In order to provide the capability for modifying the content of
a form design (adding and deleting form objects), the editor must
allow the user to manipulate the database schema through the editor
interface. Since each compound form object corresponds t0 an con-
structed object in the database schema we can find every schema
object that has a relationship with this constructed object. Expand

Current Object does this for the current form object, then creates a

corresponding temporary form object for each schema object
located. A temporary form object is one that does not really exist in
the current version. Those form objects that do really exist in the
current version are referred to as permanent. Temporary form
objects are displayed in reverse video and are treated just like per-
manent form objects while the design is being worked with. These
temporary objects may also be expanded. However, expand only
works for compound forms objects, since simple form objects do not
correspond to any constructed object in the database. Compress
Current Object removes all the temporary form objects within the
current form object. Compress also works only for compound form
objects, except in the following special case. If the current form
object is a simple temporary form object, compress removes that
object. This is not as drastic as it sounds, since removing a tem-
porary object has no effect other than making it disappear from the
user’s view. The object can also be made to reappear by doing an
expand on its parent object. By using expand and compress, the
user may browse the database schema as if it is just an extension of
the form design being worked on.

FSLR: TMigter

t JOrR: 1Rveiss t
Editing - Te screll ferm, depress left butten

(inveice) taveisemmaber ___
custemer(person)
ate _/ /[
atdress sity seee
e o S

empioyer(conpany)

address

sale
o iy, weda)_desc. Swewmt
compents nx
tetal .
aposit __ .
dalanse
seeunt-p.o. .
Figure 8

Proceedings of the 13th VLDB Conference, Brighton 1987

CArTeal 3 UIrTSAt Versima: 7
t "i:lli.;.ll;; ~ Te screll ferm, depress left blt:ol_ master

Cimveice) inveise-mmber ___
custemer(persen)
— dote _J /_
ity rem
e o e —

empleyer(company)
Aawe

payment_type tTmsattion_type |
canh [aml u-.Tmr lnu_-n uulm.[m
sale
quantity U wfy. wedsl dess. auvwnt
EBeRtS
ce! tax i
total __ .
deporzy ____.
Ddalance :
ApsERt=P.6. .

Figure 9

The way expand and compress work is shown in Figures 6
through 8. Given the version in Figure 6 and the corresponding
database schema in Figure 2, the expand being done in Figure 6 will
result in the version shown in Figure 7. Doing an expand on this
version, with the current form object being employer(company),
results in Figure 8. Now doing a compress with the current form
object still being employer(company) results in Figure 7 again.
Freeform automatically creates a new form layout when a form
object is expanded or compressed. This layout may be changed by
the user.

In addition to being able to look at the schema, the user must
be able to incorporate new objects into the form design. This is done
by browsing the database schema (using expand and compress) till
the desired object is found, then making it permanent (adding it to
the design) with the Add Current Object command. This is the pre-
ferred method for adding form objects and is shown in the following
example. To add employer(company) in Figure 8 to the form design,
it is selected as the current object and the Add Current Object
option is chosen (using the same menu seen in Figure 6). The result
can be seen in Figure 9. The form object that owns the object being
added is automatically added to the form version (if it is not already
there) in order to preserve the hierarchy of the version. When a new
form object is added the user is also prompted for certain informa-
tion such as whether it is an input or output field, restrictions on its
value, etc., however, its name, type, etc. are determined from the
corresponding type in the database schema. Restrictions on the value
of a form object are not allowed to conflict with restrictions that
exist for the corresponding database schema object. The way new
objects are incorporated into the form design ensures consistency

335

FREEFURM

LIrTeRt jorm: 1Aveics Lurrent verslan: master
rditing - Te screll form, depress left bdutton
(imveice) ixveice-mumber ____
customer(person)
ome A tate _/ /
caty stere
e v e
employer(c.nspany) Phane
R) adivess
payment_tyye tnnuun_tzc_
unla-x' mlmkm,-c m-'uu.'x-y.
sale
quantity B wty. wedsl dasc. maunt
comments
tax .
tetal -
depesit .
balance .
IBOWRL-p.0. .
Figure 10

between different versions using the same object.

underlying schema changes to look like Figure 11 (Figure 11 is not
a Freeform screen image). Since Add New Object modifies the
database schema, its use is discouraged by forcing the user to
confirm that this is what is really desired.

Freeform also provides the user with the ability to interac-
tively create form objects whose values are functionally derived
from other objects on the form (see [Shi84] for another form system
with this capability). The form objects used may be permanent or
temporary. Allowing the use of temporary form objects allows the
user to create a form object whose value is based on values of Cactis
objects that have no corresponding form object. For example, Cactis
may contain the age of each person a department employs while the
user may only want to put the average age of a department’s
employees on his form version.

The editor also provides commands for deleting form objects
and commands for changing form layout, fill order, etc. None of
these commands affect the corresponding database schema.

4. Form Families

It is through form families that all the different versions of a
form design are tied together. A form family is born when someone
creates a new form design (the master version) and grows as other
users create new versions of it. These new versions are created by
starting with an existing version and using the design editor to
modify it. The user need not start with the master version, even
though the master version determines what is and is not legal on the
other versions. It is for this reason that the creator of the master ver-
sion is also the administrator of the corresponding form family.

t >
SYE 1RWeLCSE t‘!t’l’ t Version: master

In the event that the user cannot find the desired object, a new
object may be created using Add New Object. This command
prompts the user for some information about the object (name, type,
etc.) and puts the object in a location specified by the user. A
corresponding Cactis type and appropriate Cactis relationship is also
created. This is done automaticaily, since Freeform knows where in
the database schema the new object(s) must be placed by where the
user has located the object on the form design. An example of this
can be seen by looking at the version being edited in Figure 9 (this
version corresponds to the Cactis schema in Figure 2). To add a new
object, the Add New Object option is chosen from the same menu
seen in Figure 6. When the field phone is added (see Figure 10), the

name phone address city state zip

336

(imveice) inveise-mumber
custemer(persen)
nawe phone date _/ /
eity state __ 21y tore
empleyer(compary) Phone
name sslesperzea ——
payment_type trnmttn_t!;
can ranx l u;.ﬁl'iuu Pald_out uhllﬂ-ll-l
zale
quantity F 73 g, wadel_dess. sesumt
cemments o *
tetal .
depezit .
Balance .
anewat-y.e. -
Figure 12

Proceedings of the 13th VLDB Conference, Brighton 1987

FREEF O

TTens iorw: ~ v : % Form; Current versisa; maks
s m}:dxi‘;.ix;.g - Yo 8crell form, depress left ;:nt‘t::m reger rarmt m‘:t‘i‘;‘t’:'g - Yo screll form, depress left dutten
(inveice) Saveice-mumber ___ (lnveice) iavelce-nmmmer
custemer(persen) date
nowe address Phone Gte _/ / :::toner(person) : Ll
phone stere
Sy - e stars ity state _ w»
[speuse(persen) R [spouse(persen) v || Moonseetiontoee
| empleyer(coempany) nowe renployer(colpany) i mqmn. I 1wy,
Poymaat _type tramgaction_type Zale
azh casek £1n. I ala .
: I ¢ I s lm-“‘ . ¥ r‘n l i quantity U g, wedsl_desc. amewnt
sale
quantity /X wfy. medal_dese. ameunt
subtotal ___
Paymnt _type tax
cash l chack L fin. m-r_Pu_m —
s tatal .
conments tax . connenta aspestt .
tetal ___, balames ____ .
deposit __ . Tmenat-y.e. .
balanse .
smeunt-p.s. .
Figure 13 Figure 14

While creating a master version with the design editor, the creator
may specify whether a form object is required or optional, what
value ranges are legal for a form object when the form is being used,
etc. When a user creates a private version these specifications are
automatically enforced by the design editor. The administrator may
also modify the master version later. The versions that are no longer
legal are automatically modified to make them legal If, during
experimental use of Freeform, we discover that automatic
modification proves to be too drastic, a method that involves some
dialogue between the administrator and the users will be substituted.

How form families grow can best be seen with an example.
Suppose that the form administrator creates the form invoice, shown
in Figure 12, with all objects except for comments and
employer(company) required. Since employer(company) is optional,
all the objects within it are also optional. Not all objects within a
required object must be required. To prevent careless mistakes
while filling out the amount column of the table, the administrator
has specified that its value must be greater than 0. The administrator
also wishes to be automatically notified when a user adds a new
object to any version of the form. This is done with the mail system.

Now Roger is going to create a private version of invoice by
starting with the master. The version Roger creates (Figure 13) has
no phone and address within the employer(company) object. Also,
spouse(person) has been added to the form design, because Roger
would like to be able to ask about the customer’s spouse by name
the next time they come into the store. Adding a new object is
always legal because it never causes a form design to contain less
information then the master version. Since spouse is not even on the
master version it automatically becomes an optional object. This

Proceedings of the 13th VLDB Conference, Brighton 1987

addition causes a mail message to be sent to the form administrator.

Mike is also going to create a private version of invoice by
starting with Roger’s version. Since comments is optional, there are
no restrictions on modifying it and it has been resized on Mike’s ver-
sion (Figure 14). Since it is always legal to tighten an already exist-
ing restriction, Mike will require any value entered in the amount
column of the table to be greater than or equal to 10, since he sells
nothing priced less then $10. The physical layout of Mike’s version
is also different from that of the other two versions. This is always
legal because it has no effect on the content of the form.

The three versions that have been created make up a form
family. All three of these forms are slightly different, yet all ensure
that when a form is being filled out, all the information that the
administrator desired will be provided.

5. Implementation

Freeform is written in C and runs on a Sun workstation under
the UNIX operating system. The Sunviews window package, an
interrupt driven, window based system, is used to generate all the
graphics and for all user interaction. Freeform is also interrupt
driven, but only certain interrupts are processed at any given time.
This makes Freeform a bit more restrictive than the general Sun-
views environment and avoids some of the problems caused by a
user being able to do too many things at once. Aside from the mail
system, the implementation of Freeform is nearing completion.

‘When storing form descriptions, we take advantage of the fact
that Freeform objects are very similar to Cactis objects and define
some new Cactis constructed types and relationships to simulate the

337

Freeform hierarchy. These new constructs allow Cactis to con-
vememly store Freeform objects This lets us store forms without

PR S PRI e alom Al o Loab fa—e

having to rearrange their natural structure. It also allows both form

descriptions and data to be stored in the same database.

6. Future Directions

There are a couple of form design features we would like to
add to Freeform. The first of these is the ability to create derived
form objects using simple predicates or arbitrary C functions. This
will be very simple, since Cactis supports both of these methods of
creating derived attributes. The second is a facility similar to the
expand command that allows the user to look at the related objects
(including derived objects) on other versions of the current form or
even other forms and to add them to the form design being edited.

There are also some features we would like to add that would
make filling out a form easier for the user. The ability to include sys-
tem data [HuW84) such as time, date, etc. is one of these features. It
would also be desirable to have certain form objects only appear
when other form objects have a certain value when filling out a form

MInWeA4 ChiQd VHOR4 ’7'|n9','| EBor axaemnla informatinn ahont a

LEAM VY U vy WIS vy & BRI Ty AR VARSIV AAAVEIIGULIUE GLRSUL &

cutomersspomemayberequemdmﬂylfﬂwcustonuwmmncd.

Acknowledgements

We would like to thank the Freeform implementation team: Bruce
Barker, Elke Duttlinger, Joe Frank, Brenda Howell, Kurt Nagel,
Godwill Nelson, Sharon Smith, and Gary Vanderlinden.

References

[BrH86) D. Bryce and R. Hull, ““SNAP: A Graphics-based
Schema er’’, IEEE Conference On Data
Engineering, 1986, 151-164.

B. Czejdo and D. W. Embley, “‘Office Form Definition
and Processing Using a Relational Data Model™,
SIGOA Conference Proceedings, June 1984, 123-131.

C. A Ellis and M. Bemal, *“Officetalk-D: An
Experimental Office Information S ., SIGOA
Conference Proceedings, June 1982, 131-140.

K. J. Goldman, S. A. Goldman, P. C. Kanellakis and S.

B. Zdonik, ‘‘ISIS: Interface for a Semantic Information

S tem’’, SIGMOD Conference Proceedings , May
1985, 328-342,

P. J. Hayes and P. A. Szekely, “‘Graceful Interaction
Through The COUSIN Command Interface’,
International Journal of Man-Machine Studies 19, 3
(Sept. 1983), 285-306.

K. T. Huang and C. C. Wang, “‘SOFTFORM - A Two
Dimensional Interactive Form Design Language”’, JEEE
%%rkshop on Languages for Automation, 1984, 229-

[CzE84]
[EIB82]

[GGK85]
[HaS83]
[HuW84]

[HuK86]) S. Hudson and R. King, *‘CACTIS: A Database System
for S ing Functionally-Defined Databases’’,
Proceedings of the Workxhop on Object-OnenIed

Databases, Sept. 1986, 26-37.

S. Hudson and R. King, “‘Object-Oriented Database
Support for Software Environments”’, SIGMOD
Conference Proceedings, May 1987.

R. Hull and R. King, ‘‘Semantic Database Modeling:
Survey, Applications, and Research Issues”, USC
Technical Report Tech. Rep.-86-201 (April 1985).

E. L. Hutchins, J. D. Hollan and D. A. Norman, *‘Direct
Manipulation Intufacw", in User Centered System
Design ,87-124 .

R. King, *‘Sembase: A Semantic DBMS”’, Proceedings
of 1st Int'l Workshop on Expert Database § ystems,
Kiawah Island, South Carolina, Oct. 1984, 151- 171

[HuK387]
[HuK385)
(HHN]

[King4]

338

[KiM84] R. King and S. Melville, *“Ski: A Semantic-
Knowledgeable Interface’’, VLDB Conference

Proceedings, Singapore, August 1984,

R. King and D. Mcleod, ‘‘Semantic Database
Models’’, in Database Design, S. B. Yao (editor),
Prentice Hall, 1985.

H. Kitagawa, M. Gotoh, S. Misaka and M. Azuma,
‘‘Forms Document Management System SPECDOQ -
Its Architecture and Implementauon" SIGOA

Conference Proceedings, June 1984, 132-142.

A. Lee and F. H. Lochovsky, ‘‘Enhancing The Usability
of an Office Information System Through Direct
Manipulation’’, CHI Conference Proceedings, 1983,
130-134.

H. C. Lefkovitz, “‘A Status Report on the Activities of
the CODASYL End User Faciliies Committee
(EUFC)”’, SIGMOD Record 10 (August 1979).

T. L. Roberts and T. P. Moran, ‘*The Evaluation of Text
Editors: Methodology and Empirical Results™,
Communications of the ACM 26, 4 (Apnl 1983), 265-
283.

L. Rowe and K. Shoens, “A Form Application
Development System’, SIGMOD Conference
Proceedings, Orlando, 1982 28-38.

L. Rowe, “Fill-in-the-Form Programming’’, VLDB
Conference Proceedings , 1985.

C. Rubin, ‘“‘Macintosh: Apple’s Powerful New
Computer”’, Personal Computing 8, 2 (Feb. 1984), 56-
61, 65-69, 72-75, 79, 81, 85, 199.

Z. Shi, ““Design and Implementation of FORMS”,
Proceedings of the IEEE International Conference on
Computers and Applications, 1984, 31-36.

N. C. Shu, V. Y. Lum, F. C. Tung and C. L. Chang,
**Specification of Forms Processing and Business
Procedures for Office Automation’’, JEEE Transactions
on Software Engineering SE-8, 5 (Sept. 1982), 499-512.

N. C. Shu, “FORMAL: A Forms Oriented, Visual
Directed Application Development System’’, Computer,
Aug. 1985, 38-49.

DCSSnuthCIrbyRmeballBVexplankandE
Harlem, * ﬂleStarUserInwrface" BYIE 7,
4(Apnll982)

M. Stoncbraker and L. A. Rowe, “The Design of
Pogté;m". SIGMOD Conference Proceedings, May
986, 340-355. :

(KiM85]

[KGM84]

[LeL83]

[Lef79]

[RoMB83]

[RoS82]

[Row85]
[Rub84]

[Shi84]

[SLT82]

[Shu85]

[SIK82]

[SR86]

D. Tsichritzis, ‘“OFS: An Integrated Form Management

[Tsi80]
System”, VLDB Conference Proceedings, 1980, 161-

[Tsi82] , Communications

[WIL8S)

D Tsxchntns, ‘‘Form Management’’
of The ACM 25, 7 (July 1982), 453-478.

J Whiteside, S. Jones, P. Levy and D. Wixon,

‘‘Performance with Command, Menu, and Iconic
Ir;terfaces” CHI Conference Proceedings, 1985, 185-
191

[YHS84] S. Yao, A. R. Hevner, Z. Shi and S. Luo.
“PORMANAGER An Office Forms Mana?
System’’, ACM Trans. on Office Inf. Syst. 2, 3 (July
1984), 235-262.

M. M. Zloof, ** By Example’’, Proceedings of the
National Computer Conference 44 (1975), 431-438.

M. Zloof, “‘Office-By-Example: A Business Language
that Unifies Data and Word Processing and Electronic
Mail”’, IBM Systems Journal 21, 3 (1982), 272-304.

[Z1075)
[Zlo82]

Proceedings of the 13th VLDB Conference, Brighton 1987

