
Freeform: A User-Adaptable Form Management System

Roger King
Michael Novak

Department of Computer Science
university of Colorado

Boulder, ColoIado 80309

desaidtionofafonn,aswellastbeactual~isstoredinCactis.
an objemniented databwe. By building more meaning into a form,
Freeformmalcesitpossiblefaausatomskeallmodificationstoa
form design by mtaztively editing the form. This includes
modilications that affect the undexlying databas schema Freeform
thusallowsuserswithlittledambaseknowledgea,aeateandmain-
tain private versions of a form while aummaucaEy maintaining
integrity and -y between versions.

1. Iutroduetioll

Freeform is a menu-based fam management system running
onaSunwc&taticuundertheUNIKopemtingsystem.Freeform
provides a highly interactive interface for both design opera&~ and
dataope&om3onforlns,however,theernphasisisondesign&
forms. AnovelaspectofFreefosrnisthatitallowsurdusersto
easilyadaptafonntotheirindividuatneeds.Forthisreeson,we
intmdux the concept offonnfamilics. A form family is a set of dif-
ferentversioasofthesameform.Endusasmaycnateaprivarcver-
sionoftbeformendaddittothefamily.Constrahusontbefann
tamilyarespeciftedbytheownerofthetnasterversionandautomat-
icallyenfacedbythesystem. Amailsystemisalsoprovidedto
allowcomInunicadon-fonnusel??.ThemailsystanlMybe
usedtosmdmailmanuallyandtospecifyeventsorcdassc3ofev~ts
thatcausemailtobesentau~y. hlordertonulkefonn
dc!saiptionseasi~to llndmmdandworkwith,anobjeet-oliented
data model is used to repmsatt forms and an objectoriented data-
baseisusedforthesuxageofformdescriptionsanddata.

For many years, forms have bear an impcetant method of
communication in the office environment It has even been sug-
gestedthatformsanthemostnaMalfarmofin~tionbaweena
useranddata~f79,SLTsz]. Afonncanbethoughtofasasuuc-
tured input/output medium. Traditionally, a des@ner created a paper

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the VLDB copyright notice and the
title of the publication and its date. appear, and notice is given that
copying is by permission of the Very Large Data Base Endow-
ment. To copy otbenvise. or to republish, requires a fee and/or spe-
cial permission from the Endowment.

Proceedings of the 13th VLDB Conference, Brighton 1987

formandthe~filledinthefarmbyplttingdatainthea~-
ateareas.Datastoragecon&tedofputtingtbepaperforminafile
cabinet Recent reseamhhasledtoalarge inuease in the use of
e1eelronic farm systems, wberu the elecuonic form (displayed on a
comp4uertmninal)isusedastheinp&utputmediumandadata-
baseisusedtostoredata.Wehavealsoseensystemssuchas
COUSIN tHaS831. a form-based inuxactive command interface,
several applicadon deve@rneut systems lRow85,ShulSj that use
form-based intmtaces, and some dambase languages such as QBE
[zlo75) that use a form-like inter&e for manipulathtg a database.
Thesesystwnsmerelyuseaformlayoutasatoolandarenot~t
far managing forms. Our intereat is in form mrlnagemtw SystQns
whichareusedtocreate,modify,andstaedescriptionsoffamsand
tododataqe&onssuchastillinginandreadingfcmns. Werefer
tothedesaiptionofaformasafonndesignanda~~setof
data for a form design as a form time. A form design involves
buththeappwmmxofthefosrnandinfamationabouthowobjects
ontheformdatetodmbaseschemaobjeets. Wewillrefertothe
l&tio&ipsbuweenfoPmauddambaseschemaobjectsastlleg~
betweenthethefarmdeaignandtheda@ase.

lluxeamtwogenaalauegoriesofoperaticmsinmostfam
management systems, mod#jing a form design and uring a form.
Usingafarmrefas~odataopaationssuchssfilling~afonnor
lcokingatafonnktance. Usingaformgeuemllyrequiresaodata-
basehxnvledge,sincethefonndesignhasalrcadybeencreatedand
linkedtothedatabae lberef~usingafonuisvaysuaightfor-
wardonmostcurrentsystans. Manyexistingformmanaganent
systems fHuW84. KGM84. RoS82, Shi84. Tsi80, YHSM. ZM2] pro-
videascreenuiunedintmfkeforusingforms. Itisforthkreason
thatoiRworkdoesnotconcentrateonusingfonns.

Although most of the cture-nt form management systems
[aE84,HuW&l,KGM84.Ros82,Shi84,Tsi8o.yHs84.zlo82] use.
arelational~sonmalsoallowbigherleveldatasmtcmms
than just tablea (tbe form equivalent of relations and tuples) for
descriiing a fam. SOFI’KIRM lHuW84] and FORMANAGER
[YHS84luseahiaarchicallysmscuueddatamodelforfouns.
AlthoughaformiathesesrstemsQescontaintables,itneednotbe
justaflatcoUectionoftableaInstead,thefmnindresesystemsis
treesumXu&. Thisallowsafortntocontainmansemanticinfor-
mationthanapuremMionalmodel. Evatinthesesystems,modify-
ingafamdesignoftenforcesthedesignatodcal~dywiththe
relationalda@aseThiiiaduetothefktdmtmodifyingaftmn
designofteninvolvesmodifyingthe~betweenthefonnandthe
database Whenaformobjectisaddedormodified,thenisahigh
probabilitythatthedambaseschemawillbe.affecM.Forexample.
ifanewfantobjecthasn,umq&ingschemaobjeUinthe

331

database. one must be created. This is why foun design
mod.i8cations, other than those involving only the physical layout of
the design, require some relational dambase knowledge. For the
same reason, some systems [HuW84. RoS82, Tsi82. YHS84] expli-
citly distinguish between a form designer and a form user.

We feel that form users should be able to modify the form
design they are using, including modi6cations that affect the link
between the design and the database schema To achieve this,
Freeform uses a similar object+rlented data model for both the form
and the underlying database. This mcdel sqports methods and
mechankms for constructing complex objects using semantic data-
base consaucts. Since a semantic model conveys more semantic
information than the relational model (see [HuK85,KiM85] for a
generaldiscussiononsemantlcdaUbasemodels).thisresultsina
formthatiseasyfortheuserto unde&andItakomeansthat
Freeformcanlinktheformanddatabaseschemainsuchamanner
thattheusaneverneedsto~directlywiththedatabase,even
whendoingopemiom thatmodifythelink. l’hisisdonebyderiv-
ing the names of form objects from correqonding database schema
objects and by having re&mships between form objects mimic the
relationships between the cmrmponding datablae schema objects.
Although this imposes some limitations on how a form design may
l~itcausestheformdesignandtheunderlyingdambaseschema
tolook~ysimilar.This~owsFreefanntomanipllstethedata-
baseschemainmsponsetousermanipuhuionoftheformde!sign.

Since Fteefonn provides a highly intera&& graphics-based
inteaface,theuserneednotbeanexpertonobject-orientedor
semanticdatamodeling. Freefamalsodifferskomsystemssuchas
ISIS [GGK8~. SKI lKiM84], aad SNAP lJkH86l. These systems
allprovideagraphicalintfx-ketoasemanticdatabase,while
Freeform provides a graphical inter&e to a fam management sys-
tem. ‘lbemethodusedtomanip&eformseliminamstheFreeform
user’sneedforadirectuserintafacetothe~l~gdatabase.

Since manipulation of the dambase schema is done automati-
cally,theusermayeditaformdesipbymanipulatingonlythefam
design. This is true even for operations that involve interaction with
thedambaseschema. Forexampl~ifauserwishestoaddaform
object,thecormqomkgdamhaseschemaobjectmnstbefoundand
thefactthattheseobjects comspondtoeechothermustbestored
somewhue. In most systems this involves working directly with the
daubaseschana InFmefonntheuscrmay”expand”fonnobjects
toseewhatothaobjectshavearelationshipwiththem.Thisletsthe
userviewobjectsintheunderlyingdambaseschemaandaddtheanto
the form. Changes in the fcrmdambase link ate done automatically
by Freefcam. This makes editing a form design possible even for the
user with very little dambase knowledge.

In order to ensum consisrency between the different vasi0n.s
of a form design, Freeform uses form families. The designer of a
form creates a master version and specities what hind of
modifications are allowed. For example, the designer may specify
that certain objects on the fomr design may’not be mod&d or
deleted, or that an object’s value domain must be in a certain range.
Other users of the form may create private versions. Freeform makes

sure that the versions they create am consistent with the
speci6catior~~ given by the designer. This allows each user to design
a version that they are comfortable with and Freeform makes sure it
is compatible with everyone else’s versions.

The rest of this paper is organized as follows. Section 2 talks
about our data model; section 3 describes the user interface; section
4 talks about form families; section 5 describes the implementation;
and section 6 discusses future research.

2. The Data Model

Freeform uses an object-oriented data model to represent
forms and an object-oriented DBMS called Cactis to store forms
[HuKg6,HuK87.K34]. Freeform users communicate only with

city stats zip

Figure 3

332 Proceedings of the 13th VLDB Conference, Brighton 1987

Freeform; Freeform commmkates with a Cactis database by using a
Cktis SC~~ITM as its interface (see Figure 1). The forms schema
defines how form descriptions am stored and the forms dambase
stores them. A form description contains information about how
objects on the form are related to objects in the application database
and visual illfoollatioll about the form.

Cais views an appkation eawimnment as a coUection of
constructed objects. An object may have attributes and relation-
ships. Objects and relationships are typed. A constructed object’s
typeisdeterminedbytwothingszitsattributestmcmre and its con-
nectors. A connector allows a rektion&p to be applied to a certain
object. An attribute is an atomic property of a constructed object.
These atomic pmperties may be of any C dam type, except pointer.
A relationship is a directional mapping from one constructed object
to one or mae. constructed objects. Restrictions such as non-null or
uniquemayalsobeputonanlationship.

For example, a consmaxed object called person may have the
athibutes name, sociaLx!curity~number, and age, which are all
atomic and singk-valued. It may also have a co- called chil-
drenandac0mxctorcalkdpanz.m. Thedhecaxlrelationships
my&ldmn and myqarent can be used to connect peopk to their
immed&family.Relationshipsmaybeusedtopassattributesfrom
OllCObjeCttOanotha,illardertOLXlCUbdUiVedamibutes.IllthiS

way,tbesocialsecmitymunberofapmsoncouldbepassedtoa
child ova the my-children relationship. and used as the value of an
aariiute calkd mygarent’s_social_seanity,nmnber.

Thel%eef~datamodelisamodiliedvasionofthedata
model used by Cactis. ‘Ibe basic Fxetimn object type is form,
whkhconsktsofaformnameandoneormarefonnver~ns. Itis
thefoImversionthat correspondsmwhatmostpeoplethinkofasa
“form”. A form version con&s of a version name and a form object
thatdescribestheversion.Often,wewilItalkaboutafoxmversion
and this form object illtachangeabiy. It is this form object which
careqa&tosomeobjectintheCactisscheana Forexample,the
fonnversioninFQure3(pleaseignotethedashedbordcr8tmmdthe
objectnameatthistimejcoueqod mthecactisschemainFgme
2(Figme2isn0taF+eefamscrceaimage). lbefannshownhas
morewhi~spxethenlsgene&yseenonapaperf~.Sincean
ekctnnicformQesnothavethespacelimi@onsofapaperform.
wefeelthenisnoneedtocom~it,buttheuscrmay modifythe
layoutifamorecompxessedfonnisdesired ~enclosedrextin
theschanadrawillgrepresents colmucMobjectathelmulclosed
text represents attributes, thin lines represent oaato-one Elation-
ships,andthi&linesrepEsentorle-t6many~ Other
formvexslonscuddalsouxnxpo&totbesameschema.

ThefonnobjectlsthebasicbuildingblockinFxeef~. A
farm object may be simpre or compovnd A simple tin-m object may
beafildaatablc. Afield- toaCactisattriiteand
may be of type lntega, real, boolean, characta, dollar, date, lmfa-
mated text, ordinal a cornmeaL Fa exampk, the ordinal fkld
payment-type in Fgure 3 comxpo& to the attribute payment-type
inFigme2. Acomment6eldhasnoval~associatedwithitand
thereforenoccarespaodingC&sot$xt,andanonlinalfieldis
mez-lyafieldthathasafinitenumberofpossibkvalues. Atableis
a collection of columns, each of which cOrnSpOndS toaCacdsattrl-
bute.Therableitselfaure@m&toaC&sconstructedtypethatis
the range of some one-many relalionship. Fa exampk. the table
in Figure 3 (with c&mns quantity, U/M, mfg., model&sc., and
amount) conr+n~ds to the constructed type sale in Figure 2.

Also associated with each field, adinal type and tabk c&mm
issomeinfarmationthatkeepstrackofwhetheritisusedfainput
oroutput. WewillrefertothisasitsIDclass. Acompoundform
object is a colkction of other form objects and may may be con-
sid& the Freeform equivalent of a C&s constructed object.

proceedings of the 13th VLDB Conference, Brighton 1987

Figure 4

Howevex, rather than using the Cactis notion of dadon&&
Freeformusestheideaofowne&ip.The&ore,acanpoundfam
objectownsallthe~objectswithinit(mFigure3,invoiceowns
all the otha form objects). Like Cactls attribute& simpk tam
objects may be fuactionally-degne& as in Cactis, the desaiption of
how an object is delined is elmpmbdwithillrhatob* For
exampk.thetotalfie~andallthefieldsbemeathitiaElgrae3are
functionallydetined, and maintained by C&s.

lXeEreefannmodelalsohassomere&cti~notfoundin
theCactlsmodel. F~onlytl~typesde6nedaboveare~in
Freefonn.Second,thewayFreeformobjectareconnaMlsmore
resrrlctiverhanthewaycacfisob~an~slncetheonly
kindof”&tknship”allowcdinFnefannlsowae&ip. The
Freeformdatamodelthusbasahiaarchicatsaucmre,rathcxthaathe
gmphsmJctureoftheCactisdatamodel.

3. Tlla user Interface

Apopularlineoftlmughtisthatthereisnecessarityatradeoff
beMenlearnabGtyandusability. Severallecemstudiesarguejust
tbe qposite lRoMg3,WJLgq; the two seem to be congruent By
bannvingsometechniquesfromhumallfactasIweasch,wewisllto
produceauscrlnterfacethatisbotheasytolessnandto~The
highusabililyalldwideawepmnw ofsystanasucllasthestar
[sIK82lalldttleMacin~ mlb84lhaveslKnvllIhevisbilityslld
flexibility of highly iatemulve, graphics orknted 1194 inteafxes.
‘Ibiscombinedwirhthe inae&ngal&lMlQofgmphicshafdwlue
havekdustoaeateaamudri~gmphkalinterfaccfaFreef~.
Bycar&dlyde.@ingthkinte&e.wehopetominimketwogw-
esalplobleslls-withusaillterhlcescwnsfl. Oneofthese
problems is the dlfflculty involved in navigating witbia the intaface.
Thesecondisinconsistencyatdiff~tkvelsoftheintexface

InordertomakenavigationwltllintheFreefamuserin&ace
straightfrm4dthein~isorganizedasthetteeseeninFigme
4(Figme4isnotal%efamscxcnimage). Theuserstartpintbe
wmmandkvei(Qllle5)andchoo6c3alloptlollwirhoneofthe
aunmandbuttons.Theoptionchosenmovesrbeusadowaakvel
illtoIheappmp&EsublreLForexampl~sekctingtheEfllt
cluTentverslonbuttollmkestheusaintothedesigneditor. when
done~gattbecurrentk~,theuarmovegbacktothe~-
ouskvel.Tominimiz.euserconfusion,therreeisnevermorethan
threekv~sdeep.Wealsoaltownohorizontalmovessuchapgoing

Fm5

333

directly from the design editor to the design usage module. In addi-
tion to making navigation as simple as possible, this ensures that
users complete a task before moving to the next one.

In order to create a consistent interface, interaction is through
menus whenever possible. Internal nodes (command level, form
editor, form usage module) always use menus, however, leaf nodes
(auxiliary fmctions, edit options, use options) may prompt the user
for input, since some tasks are impossible to do with menu alone.
For exampk, at the command level, choices are made with menu
buttons. If the New Current Version option is selected, a leaf level
interface is entered. Now tbe user is prompted to type in a version
name and when this is completed the command level is reentered.

The interfilm uses two adjoining windows. -Ihe top window is
used for command buttons, displaying messages and entering text
(form names. version names, etc.). The bottom window is used by
thedesigneditor,thedesignusemoduie,andthemailsystemto
graphically display and interact with a form design. In or&r to avoid
confision, the user interacts with only one window at a time (even
though both windows are used by some operations).

WhenFreefonnisrun,thetopofthescreenappearsasshown
in Figure 5. The. buttons other than Edit Current Version, Use
Current Version, and Enter Mail System a~ for executing the
~functions.They~providedfar&~gthe~thatdonot
require imaactively working with a specific form design. All the
auxiliary functions either require no input or promp for text input.

The design editor, design use module. and mail system all pro-
vide an intexactive interface utilbing pop-up menus and using the

principles of direct manipulation [HHN,LeL83] whenever possible.
The design use module is used for data entry and retrieval. It allows
users to create new form instances and to work with existing form
instances (browse, modify. etc.). The mail system is designed to
allow the users of a form to communicate with each other. Users
may specify events that trigger mail messages to themselves or to
other users and they may send mail manually. The mail system is
also used by Freeform to notify users of events lElB82. StR861. such
as when a form version is no longer up to date. The design editor
interface is where the thrust of our work lies and it will be discussed
in a sepamte section. Since both the design use module and mail sys-
tem interfr0zs are consistent with the design editor interface, they
will be not discussed further.

3.1. The Design Editor

The design editor is used for creating private versions of a
form design. The main features of the design editor are:

- It uses an inteaactive interface milking pop-up menus.
- The user needs very little database knowledge.
- Consistency between versions is automatically enforced.
- Roth the appearance and content of a version may be edited.

The design being edited is gmphically displayed (Figure 3) in
a manner that cormsponds directly to the way it is stored Everything
owned by a compound form object is displayed inside that object.
Anexampleofthisisthattheformobjectpersonownsthefarm
objects name, phone, address, city, state, and zip. The system keeps
trackofthelowestkvelobjectthatthecursoriswithin. Thisobject

Figure 6 Figure 7

334 Proceedings of the 13th VLDB Conference, Brighton 1987

is the current object and is surrounded with a dashed border (in Fig-
ure 3, name is the current object),

In arder to provide the capability for modifying the content of
a form design (adding and deleting form objects), the editor must
allow the user to manipulate the database schema through the editor
interface. Since each compound form object corresponds to an con-
strwted object in the database schema we can find every schema
object that has a relationship with this constructed object. Expand
Current Object does this for the current form object, then creates a
corresponding tmporury form object for each schema object
lccated A tempmary form object is one that does not really exist in
the current version. Those form objects that do really exist in the
cmrent version are referred to as permanenr. Temporary form
objects are displayed in reverse video and are treated just like per-
manent form objects while the design is being worked with. These
temporary objects may also be expanded. Howeva. expand only
worka for compamd forms objects, since simple form objects do not
cormspond to any constructed object in the datatutse. Compress
Current Object removes all the temporary form objects within the
current form object. Compress also works only for compound form
objecta, except in the following special case. If the current form
object is a simple temporary fam object, emupress remowx that
objectThisisnotasdrasticasitsour&sinceremovingatem-
pomryobjecthasnoeffectotherthanmakingitd@pearfromthe
user’sview. Theobjectcanalsobemadetoreappezbydoingan
expand on its parent object By using expand and compress. the
usermaybrowse~~schemaasifitisjustanextensionof
theformdeaignbeingw&edon.

Flpre 8

Flgnre9

The way expand and compress work is shown in Figures 6
through 8. Given the version in Figure 6 and the cormq~&
databasschemainFii~theexpandbeingdoneinRp6wifZ
resultintheversionshowninFigure7.Doinganexpandonthis
Versi~ with the culmlt form object being employe+ompany),
results in Figure 8. Now domg a compress with rhe currCnt fam
object still being employ~company) results in Fii 7 again.
Fke.eform automatically creates a new form layout when a fam
objectisexpandedorcompmaAThistayoutmaybechangedby
rbeuser.

Inadditiontobeingabletolookattheschana,theusermust
beabletoincorpo#enewobjectsintotheforrndesign. Thisisdone
by browsing the dambase schema (using expand and eomprrss) till
the desiml object is found. then making it permanent (adding it to
the design) with the Add Current Object command This is the pze-
ferred method for adding form objects and is shown in the following
example. To add employer(company) in Figure 8 to the form design,
it is selected as the current object and the Add Current Object
option is chosen (using the same menu seen in Figure 6). The result
can be seen in Figure 9. The form object that owns the object being
added is automatically added to the form version (if it is not already
there) in order to preserve the hiemrchy of the version. When a new
form object is added the user is also prompted for certain informa-
tion such as whether it is an input or output field, restrictions on its
value, etc., however, its name, type, etc. are determined from the.
correqonding type in the database schema. Restrictions on the value
of a form object am not allowed to conflict with restrictions that
exist for the cormspomhng database schema object. The way new
objects are incorporated into the form design ensures consistency

Proceedings of the 13th VLDB Conference, Brighton 1987 335

bcme4m different vasions using the same object.

Intheeventthattheusercamrotlindthedesiredobject,anew
object may be mated using Add New Object. This command
prompts the user for some information about the object (name, type.
etc.) and puts the object in a location specified by the user. A
cWespood.ingcactistypeaudappKqrWcactisre~pisaiso
mated This is done automatically, since Freeform knows where in
the~schemathenewobject(s)mllstbeplacedbywhaethe
userhaslocatedtheobjectontheformdesign. Anexampleofthis
canbeseeubylookiugatthe versionbcingeditedillFie;lae9(this
versioncanespondstotheC&sschemainFigute2). Toaddanew
object,theAddNewObjeetoptionischosenfkomthesamemenu
seeninFigure6. wbatheiieldphoosisadded(seeFigure10),the

underlying schema changes to look like Figure 11 (Figure 11 is m101
a Freeform screen image). Since Add New Object modifies the
database schema, its use is discouraged by forcing the user to
conf.irm that this is what is really desired.

Freeform also provides the user with the ability to intemc-
rively create form objects whose values are functionaily derived
from other objects on the form (see [ShM] for another form system.
with this capability). The form objects used may be permanent or
temporary. Allowing the use of temporary form objects allows the
user to mate a form object whose value is based on values of Cactis
objects that have no corresponding form object. For example, Cactis
may contain the age of each person a department employs while the
user may only want to put the average age of a department’s
employees on his fcmn version.

The editor also provides commands for deleting form objects
and commands for changing form layout, hll ca’der. etc. None of
these commands affect the ccmxponding database schema.

4. Form Families

It is through form families that all the different versions of a
form design are tied together. A form family is born when someone
aeatesanewfanndesign(themasterversion)andgrows~oother
usascnarenewvasionsofitThesenewversionsarecnatedby
starring with an existing v&on and using the design editor to
modify it, The user need not start with the master version, even
though the master version Wines what is and is not legal on the
other versions. It is for this reason that the creator of the master ver-
slollisalsotbeadminiswtarofthecomspondingformfamily.

Figure 11

336

Figure 12

Proceedings of the 13th VLDB Conference, Brighton 1987

Fiire W

Wbilecreathrgamasterversionwith thedesigneditcr,thecmator
may specify whether a form object is tequired or optional, what
value ranges am IegaI for a form object when the form is being used,
etc. When a user creates a private version these speciiications are
automatically enforced by the design editor. ‘The administrator may
also modify the master version later. Tbe vemions that are no longer
legal are automatically mod&d to make them legal. If, during
experimental use of Freeform. we discover that automatic
modification proves to be too drastic, a method that involves some
dialogue between the zxhinis~ and the users wig be substituted.

How form families grow can best be seen with an example.
Suppose that the fcrm administrator creates the fotm invoice, shown
in Figure 12, with all objects except for comments and
empioyer(company) required. Since employer&ompany) is optional,
alltheobjectswithinitarealsooptionalNotallobjactswithina
reqd object must be required. To prevent careless mistakes
while tilling out the amount cohmm of the table, the administrator
hasspeci6edthatitsvahmmustbegmaterthanO. Tbeadministrator
alsowishestobeautomakaUynotitiedwhenauseraddsanew
object to any version of the form. This is done with the mail system.

Now Roger is going to cmate a privateversion of invoice by
starting with the master. The version Roger creates (Figure 13) has
no phone and addnzss within the employ~company) object. Also,
spouse(person)hasbeenaddedtotheformdesign,becauseRogcr
would like to be able to ask about the customer’s spouse by name
the next time they come into the stcre. Adding a new object is
always legal because it never causes a form design to contain less
information then the master version. Since spouse is not even on the
master version it automatically becomes an optional object. This

Proceedings of the 13th VLDB Conference, Brighton 1987

Figure 14

Mike is also going to create a p&ate version of invoice by
staning with Roger’s version. Since comments is optional, there are
no restrictions on modifying it and it has been reskd on Mike’s ver-
sion (Figure 14). Since it is always legal to tighten an aheady exist-
ing restriction, Mike will require any value entered in the amount
colwnnofthctabletobe~~thanorequaltolO,sincehesells
nothing priced less then $10. The physical layout of Mike’s version
isalsodifferentfromthatoftheothertwoversions. This is always
legal because it has no effect on the content of the form.

Thethreeversionsthathavebeencreatedmakeupafam
family. AR three of these forms are slightly diffeaens yet all ensure
that when a form is being tilled out, all the information that the
administratordesiredwiRbeprovided.

5. Implementation

Freeform is written in C and runs on a Sun workstation under
the UNIX operating system. ‘Ihe Sunviews window package, an
intaruptdriven,window~system,isusedtog~~the
graphics and for all user interaction. Freeform is also interrupt
driven, but only certain interrupts am processed at any given time.
This makes Freefotm a bit mote restrictive than the general Sun-
views environment and avoids some of the problems caused by a
use3 being able to do too many things at once. Aside from the mail
system, the implementation of Freeform is nearing completion

When storing form descriptions. we take advantage of the fact
that Fmeform objects are very similar to Cactis objects and define
some new Cactis constructed types and relationships to simulate the

337

Freeform hierarchy. These new constructs allow Cactis to con-
veniently store Freeform objects. This lets us store forms without
having to rearrange their natural structure. It also allows both form
descriptionsanddatatobestcaedinthesamedatabase.

6. Future Directions

Thereareacoupleofformdesignfeatureswewouldliketo
addtoFreeform. ‘lbeftrstoftheseistheability~createderived
formobjectsusingsimplepredicatesorarbitmryCfun&ona This
willbeverysimple,sinceCactissuppor&bothofthesemethodsof
cmating&rivedathibutes.Thesecondisafacilitysimilartothe
expandcommandthatallowstheuserblookattherelatedobjects
(iihrding derived objects) on other versions of the current form or
evenotbafonnsandooaddthemtothefonndesignbeingedited.

Thereamalsosomefeamres wewouldliketoaddthatwould
maLefillingoutafonneesierfortbeuser.Theabilitytoincludesys-
tandata[Huw84]suchastime,dete.e~.isoneof~featlms.It
wouldalsobedeairabletohavecerminfonnobjectsonlyappear
whenotherform~~havea~valuew~fillingoutafonn
D-hW84,Shi84,YHS84,Zlo821. For example, informah about a
clLmner’sspousemayberequestedonlyifthecustomaismarried

Ackmwkdgauents
We would like to thank the Freeform implementation team: Bruce
Barker, Elke Dunlinger, Joe Frank, Brenda Howell, Kurt Nagel,
Godwill Nelson, Sharon Smith, and Gary Vanderhnden.

References
D. Bryce and R. Hull, “SNAP: A Graphics-W
Schema Manaaa”. IEEE Conference On Data
Engineering. 19&, 151-164. -
B. Czejdo and D. W. Embley, “Office Form Definition
and FVocdng Using a Relational Data Model”.
SIWA Confcence Proceedhgs. June 1984.123-131.
c. A. Ellis and M. Bema& ylce&t~-~w~
Exuaimaml office Idammal
Co-&mcc Proceedings, June 1982.131-140.~

K. J. Goldman, S. A- Goldman, P. C. Kanellakis and S.
B. Zdonjk, “ISIS: In&face for a Semantic Informanon
; 8~3k~~MOD Coqknce Proceedings , May
r.

P. J. Hayes and P. A- Szekely. “Graceftd Interxtion
Thtough. ‘lie COUSIN Command Interface”,
htematwnal JoumaL of Man-Machine Studies 19, 3
(Sept 1983). 285-306.
K. T. Huang and C. c. Wang, “SOFTFORM - A Two
Dlmensitmal Inmactive Fam Design Language”, IEEE
Work&p on Languages for Automatian. 1984, 229.
234.
S. Hudson and R. King, “CACTIS: A Dambase System
for Specifying Functionally-Defined Databases”,
Proceedings qf the Workshop on Object-Oriented
Databases, Sep~ 1986.26-37.
S. Hudson and R. King, “Object-Oriented Dambase
Support for Software Envinmmans”, SlGMOD
Confcettce Proceedings, May 1987.
R. Hull and R. King, “Semantic Dambase Modeling:
Sutvey, Applicatbw and Research Issues”. USC
Technical Report Tech. Rep.46.201 (April 1985).
E. L Hutchins; and D. A. Norman, “Direct

Design, 87-124.
“, in User Centered System

R. King, “8cmba.w A Semantic DBMS”, Proceedings
of 1st Int’l Workshop on Eqert Database Systems,
Kiawah Islank south Carolina, et. 1984,151.171.

IKiM84

IKiM

IKGMW

ILeL831

ILef791

IRoM831

l-S821

[Row851

lRlb84

ww

[SLT821

Wm853

R. King and S. Melville. “Ski: A Semantic-
Knowledaeable Interface”. VWB Conference
Proceed&s, Singapore, August 1984. -
R. King and D. McLeod. “Semantic Database
Models”. in Database Design, S. B. Yao (editor),
Prentice Hall. 1985.
H. Kitagawa, M. Gotoh. S. Misaka and M. Azuma,
“Forms Document Manaaement Svstem SPECDOG -
Its Architecture and - Implem&uuion”, SIGMA
Confercncc Proceedings, June 1984.132-142.
A. Lee and F. H. Lochovskv. “sEnhancina The Usabilitv
of an Office Information~ System Through D&t
A4animdation”. CHI Conhence Proceedhas. 1983.

H. C. IAkovia, “A Status Report on the Activities of
the CODASYL End User Facilities Committee
(EUFC)“, SIGhiOD Record 10 (August 1979).
T. L. Roberts and T. P. Moran, “The Evaluation of Text
Editors: Methodology and Empirical Results”,
Commun.ications of the ACM 26. 4 (April 1983). 265
283.

L. Rowe and K. Sheens. “A Form Application
Development System”, SIGIUOD Conference
Proceedings, Otlando, 1982.28-38.

L. Rowe, “Fii-in-tbFonn Programming”. VLDB
Conference Proceedings ,1985.

C. Rubin. “Macintosh: Apple’s Powerful New
Computer”. Personal Computing 8.2 (Feb. 1984). 56-
61.65-69,72-75.79.81.85.199.
z. shi, “Desi and Implementation of FORMS”.
Proceedings 0 the IEEE hter~tio~l COnfrrCnCC on $
Computers and Applications, 1984.31-36.
N. C. Shu, V. Y. Lum, F. C. Tung and C. L. Chang.
“Speciiication of Forms Processing and Business
Rocedurcs for Office Automation”. IEEE Transactions
on So&are Engineering SE43.5 (Se-pr 1982). 499-512

N. C. Shu, “FORMAL: A Farms Oriented Visual
Directed A&katbn Dcvclcpment System”, C&qnuer,
Aug. 1985.3849.

D. C. S. Smith. C. Irbv. R. Kimball. B. Vdank and E.

M. Stonebda and L. A. Rowe- “The De&n of

T
“, SIGMOD Confercncc hxeedbtgs,“bfay

19 ,340-355.
D. Tsichr&is, “OF!? An Integrated Form Management
fgan”, VLDB Conferace Proceea’ings. 1980, 161.

D. Tsiu “Form Managanent”, communications
of The ACM 25.7 (July 1982). 453-478.
J. Whit&de S. Jones, P. Levy and D. Wmon,
Tetform& with Command, Menu, and Iconic
Interfxes”. CHI Coqfkrence Proceedings, 1985. 185.
191.

S. B. Yao, A. R. Hcvncr, Z. Shi and S. Luo,
“#IRMANAGER: An office Forms Mana ment
System”, ACM Trans. on Q&e In& Syst. 2, !F (July
1984). 235-262.
M.M.Zloof,”

-7 National Computer
By Example”, Proceedings ofthe

otierence 44 (1975). 43 l-438.
M. Zloof, “OBlccBy-Example: A Business -guage
thatUnifie-sDataandWordPmcemingandElecmmic
Mail”. IBM Systems Journal 21.3 (1982). 272.304.

Proceedings of the 13th VLDB Conference, Brighton 1987

