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Abstract. Software design defects often lead to bugs, runtime errors and software maintenance 

difficulties. They should be systematically prevented, found, removed or fixed all along the 

software lifecycle (development and maintenance stages). However, detecting and fixing these 

defects is still, to some extent, a difficult, time-consuming and manual process. In this paper, we 

propose a two-step automated approach to detect and then to correct various types of design 

defects in source code. Using Genetic Programming, our approach allows automatic generation of 

rules to detect defects, thus relieving the designer from a fastidious manual rule definition task. 

Using a Genetic Algorithm, correction solutions are found by combining refactoring operations in 

such a way to minimize the number of detected defects. We evaluate our approach by finding and 

fixing potential defects in six open-source systems. For all these systems, we succeed in detecting, 

in average, more than 76% of known defects, a better result when compared to a state-of-the-art 

approach, where the detection rules are manually or semi-automatically specified. The proposed 

corrections fix, in average, more than 74% of detected defects. 

Keywords: Design defects; software maintenance; search-based software 

engineering; by example. 

1   Introduction 

Many studies reported that software maintenance, traditionally defined as any 

modification made on a software code during its development process or after its 

delivery, consumes up to 90% of the total cost of a typical software project ‎[1]. 

Adding new functionalities, detecting design defects, correcting them, and 

modifying the code to improve its quality are major activities of those 

maintenance tasks ‎[3]. Although design defects are sometimes unavoidable, they 
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should be in general prevented by the development teams and removed from their 

code base as early as possible. 

There has been much research effort focusing on the study of design defects, also 

called antipatterns ‎[2], smells ‎[3], or anomalies ‎[1] in the literature. Such defects 

include for example blobs, spaghetti code, functional decomposition, etc.  

Detecting and fixing design defects is, to some extent, a difficult, time-

consuming, and manual process ‎[6]. The number of software defects typically 

exceeds the resources available to address them. In many cases, mature software 

projects are forced to ship with both known and unknown defects for lack of 

development resources to deal with every defect. For example, one Mozilla 

developer‎claimed‎that‎“everyday, almost 300 bugs and defects appear, …, far too 

much for only the Mozilla programmers to handle”.‎ 

To insure detection of design defects, several automated detection techniques have 

been proposed ‎[5], ‎[6], ‎[7], ‎[4],‎[8].The vast majority of these techniques relies on 

declarative rule specification ‎[5], ‎[6], ‎[7], ‎[4]. In these settings, rules are manually 

defined to identify the key symptoms that characterize a defect. These symptoms 

are described using quantitative metrics, structural, and/or lexical information. For 

example, large classes have different symptoms like the high number of attributes, 

relations and methods that can be expressed using quantitative metrics. However, 

in an exhaustive scenario, the number of possible defects to be manually 

characterized with rules can be very large. For each defect, rules that are 

expressed in terms of metric combinations need substantial calibration efforts to 

find the right threshold value for each metric, threshold above which a defect is 

said to be detected.  

Another work ‎[5] proposes to use formal definitions of defects to generate 

detection rules. This partial automation of rule writing helps developers 

concentrate on symptom description. Still, translating symptoms into rules is not 

obvious because there is no consensual symptom-based definition of design 

defects ‎[1]. When consensus exists, the same symptom could be associated to 

many defect types, which may compromise the precise identification of defect 

types. These difficulties explain a large portion of the high false-positive rates 

reported in existing research.  

After detecting design defects, the next step is to fix them. Some work proposes 

“standard”‎ refactoring‎ solutions‎ that‎ can‎ be‎ applied‎ by‎ hand‎ for‎ each‎ kind‎ of‎
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defect ‎[2]. However, it is difficult to prove or ensure the generality of these 

solutions to any kind of defects or software codes. The majority of other works 

start from the hypothesis that useful refactorings are those which improve values 

of some metrics that describe‎ “good”‎ quality of software code ‎[20]. Some 

questions arise from the study of these approaches: how to determine the useful 

metrics for a given system? What would be the best (or at least a good) way to 

combine multiple metrics? Does improving the metric values necessarily mean 

that specific defects are corrected? Existing approaches only bring limited 

answers to these issues.  

Besides, one can notice the availability of defect repositories in many companies, 

where defects in projects under development are manually identified, corrected 

and documented. Despite its availability, this valuable knowledge is not used to 

mine regularities about defect manifestations. These regularities could be 

exploited both to detect defects, and to correct them. 

In this paper, we propose a two step approach to overcome some of the above 

mentioned limitations. Our approach is based on the use of defect examples 

generally available in defect repositories of software developing companies. In 

fact, we translate regularities that can be found in such defect examples into 

detection rules and correction solutions. Instead of specifying rules manually for 

detecting each defect type, or semi-automatically using defect definitions, we 

extract these rules from instances of design defects. This is achieved using 

Genetic Programming (GP). Then, we generate correction solutions based on 

combinations of refactoring operations that minimize the number of detected 

defects in the code to be corrected. This is achieved using a Genetic Algorithm 

(GA). Such proposal is very beneficial because: 

 

1)  it does not require to define the different defect types, but only to have 

some defect examples;  

2) it does not require an expert to write rules manually; 

3) it does not require to specify the metrics to use or their related threshold 

values; 

 

The remainder of this paper develops our proposals and details how they are 

achieved. Therefore, the paper is structured as follows. Section 2 is dedicated to 
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the problem statement. In Section 3, we give an overview of our proposal. Then, 

Section 4 details our adaptations to the defect detection and correction problem. 

Section 5 presents and discusses the validation results. The related work in defect 

detection and correction is outlined in Section 6. We conclude and suggest future 

research directions in Section 7. 

2   Research Problem 

To better understand our contribution, it is important to clearly define the 

problems of defect detection and correction. In this section, we first introduce 

definitions of important concepts related to our proposal. Then, we emphasize the 

specific problems that are addressed by our approach. 

2.1 Definitions 

Software design defects, also called design anomalies, refer to design situations 

that adversely affect the development of a software. As stated by Fenton and 

Pfleeger ‎[3], design defects are unlikely to cause failures directly, but may do it 

indirectly. In general, they make a system difficult to change, which may in turn 

introduce bugs.  

Different types of defects, presenting a variety of symptoms, have been studied in 

the intent of facilitating their detection ‎[2] and suggesting improvement solutions. 

The two types of defects that are commonly mentioned in the literature are code 

smells and anti-patterns. In ‎[2], Beck defines 22 sets of symptoms of common 

defects, named code smells. These include large classes, feature envy, long 

parameter lists, and lazy classes. Each defect type is accompanied by refactoring 

suggestions to remove it. Brown et al. ‎[1] define another category of design 

defects that are documented in the literature, and named anti-patterns. In our 

approach, we focus on the three following concepts: 

 

 Blob: It is found in designs where one large class monopolizes the 

behavior of a system (or part of it), and other classes primarily encapsulate 

data. 

 Spaghetti Code: It is a code with a complex and tangled control structure.  
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 Functional Decomposition: It occurs when a class is designed with the 

intent of performing a single function. This is found in code produced by 

non-experienced object-oriented developers.  

 

The defect detection process consists in finding code fragments that violate 

properties on internal attributes such as coupling and complexity. In this setting, 

internal attributes are captured through software metrics and properties are 

expressed in terms of valid values for these metrics ‎[12]. The most widely used 

metrics are the ones defined by Chidamber and Kemerer ‎[3]. These include: 

 

 Depth of inheritance tree, DIT,  

 Weighted methods per class, WMC, 

 Coupling between objects, CBO.  

 

Variations of these metrics, adaptations of procedural ones, as well as new metrics 

were also proposed ‎[3] including:  

 

 Number of lines of code in a class, LOCCLASS,  

 Number of lines of code in a method, LOCMETHOD,  

 Number of attributes in a class, NAD,  

 Number of methods, NMD,  

 Lack of cohesion in methods, LCOM5,  

 Number of accessors, NACC,  

 Number of private fields, NPRIVFIELD. 

 

The detected defects can be fixed by applying some refactoring operations. 

William Opdyke ‎[27] defines refactoring as the process of improving a code after 

it has been written by changing the internal structure of the code without changing 

the external behavior. The idea is to reorganize variables, classes and methods in 

order to facilitate future extensions. This reorganization is used to improve 

different aspects of software-quality: reusability, maintainability, complexity, etc 

‎[28]. Some examples of refactoring operations include:  
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 Push down field moves a field from some class to those subclasses that 

require it. 

 Add parameter adds new parameter to a method  

 Push down method moves a method from some class to those subclasses 

that require it. 

 Move method moves a method from class A to class B. 

 

A complete list of refactoring operations can be found in ‎[29]. 

 

2.2 Detection Issues 

Although there is a consensus that it is necessary to detect and fix design 

anomalies, our experience with industrial partners showed that there are many 

open issues that need to be addressed when defining a detection and correction 

tool. In the following, we introduce some of these open issues. Later, in section 5, 

we discuss these issues in more detail with respect to our approach. 

 

How to decide if a defect candidate is an actual defect?  

Unlike software bugs, there is no general consensus on how to decide if a 

particular design violates a quality heuristic. There is a difference between 

detecting symptoms and asserting that the detected situation is an actual defect.  

 

Are long lists of defect candidates really useful?  

Detecting dozens of defect occurrences in a system is not always helpful. In 

addition to the presence of false positives that may create a rejection reaction from 

development teams, the process of using the detected lists, understanding the 

defect candidates, selecting the true positives, and correcting them is long, 

expensive, and not always profitable. 

 

What are the boundaries?  

There is a general agreement on extreme manifestations of design defects. For 

example, consider an OO program with a hundred classes from which one class 

implements all the behavior and all the other classes are only classes with 

attributes and accessors. There is no doubt that we are in presence of a Blob. 
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Unfortunately, in real life systems, we can find many large classes, each one using 

some data classes and some regular classes. Deciding which classes are Blob 

candidates depends heavily on the interpretation of each analyst. 

 

How to define detection thresholds when dealing with quantitative 

information?  

For example, the Blob detection involves information such as class size. Although 

we can measure the size of a class, an appropriate threshold value is not trivial to 

define. A class considered large in a given program/community of users could be 

considered average in another. 

 

How to deal with the context?  

In some contexts, an apparent violation of a design principle may be consensually 

accepted as normal practice. For example, a “Log”‎ class responsible for 

maintaining a log of events in a program, used by a large number of classes, is a 

common and acceptable practice. However, from a strict defect definition, it can 

be considered as a class with abnormally large coupling. 

 

Does improving code quality really mean that detected defects are fixed?  

In the majority of situations, code quality can be improved without fixing design 

defects. We need to identify if the code modification corrects or not some specific 

defects. In addition, the code quality is estimated using quality metrics but 

different problems are related to: how to determine the useful metrics for a given 

system and how to combine in the best way multiple metrics to detect or correct 

defects. 

 

How to generalize correction solutions?  

The correction solutions should not be specific to only some defect types. In fact, 

specifying‎manually‎a‎“standard”‎refactoring‎solution for each design defect can 

be‎a‎difficult‎task.‎In‎the‎majority‎of‎cases,‎these‎“standard”‎solutions‎can‎remove‎

all symptoms for each defect. However, removing the symptoms does not mean 

that the defect is corrected.   

In addition to these issues, the process of defining rules manually for detection or 

correction is complex, time-consuming and error-prone. Indeed, the list of all 
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possible defect types or maintenance strategies can be very large ‎[28] and each 

defect type requires specific rules. 

3   Approach Overview 

To address or circumvent the above mentioned issues, we propose an approach in 

two steps:  

 

1) Detection of defects: we use examples of already detected software design 

defects to automatically derive detection rules. 

2) Correction of defects: we find the refactoring solution that minimizes the 

number of detected defects. 

 

The general structure of our approach is introduced in Figure 1. The following 

two subsections give more details about our proposals. 

 

Generation of 

detection rules

Code correction

Examples 

of defects

Quality 

metrics

Detection 

rules

Refactoring 

operations

Code to be 

corrected

Recommended 

refactoring solution

 

Fig 1. Overview of the approach general architecture 

 

3.1 Detection of Design Defects  

In this step, knowledge from defect examples is used to generate detection rules. 

The detection step takes as inputs a base (i.e. a set) of defect examples, and takes 

as controlling parameters a set of quality metrics (the expressions and the 

usefulness of these metrics were defined and discussed in the literature  ‎[12]). 

This step generates as output a set of rules. The rule generation process combines 
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quality metrics (and their threshold values) within rule expressions. Consequently, 

a solution to the defect detection problem is a set of rules that best detect the 

defects of the base of examples. For example, the following rule states that a class 

c having more than 10 attributes and 20 methods is considered as a blob defect: 

 

R1: IF NAD(c)≥10 AND NMD(c)≥20 Then Blob(c) 

 

In this example of a rule, the number of attributes (NAD) and the number of 

methods (NMD) of a class correspond to two quality metrics that are used to 

detect a blob defect. A class will be detected as a blob whenever both thresholds 

of 10 attributes and 20 methods are exceeded.  

 

Defect examples are in general available in repositories of new software projects 

under development, or previous projects under maintenance. Defects are generally 

documented as part of the maintenance activity, and can be found in version 

control logs, incident reports, inspection reports, etc. The use of such examples 

has many benefits. First, it allows deriving defect detection rules that are closer to, 

and more respectful of the programming “traditions”‎ of‎ software‎ development‎

teams in particular companies. These rules will be more precise and more context 

faithful, yet almost without loss of genericity, than more general rules, generated 

independently of any context. . Second, it solves the problem of defining the 

values of the detection thresholds since these values will be found during the rule 

generation process. These thresholds will then correspond more closely to the 

company best practices. Finally, learning from examples allows reducing the list 

of detected defect candidates. 

 

The rule generation process is executed periodically over large periods of time 

using the base of examples. The generated rules are used to detect the defects of 

any system that is required to be evaluated (in the sense of defect detection and 

correction). The rules generation step needs to be re-executed only if the base of 

examples is updated with new defect instances.  
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3.1 Correction of Design Defects  

The correction step takes as controlling parameters, the generated detection rules, 

and a set of refactoring operations that were defined and discussed in the scientific 

literature ‎[2]. This step takes as input a software code to be corrected. As output, 

this step recommends a refactoring solution, which suggests a set of refactoring 

operations that should be applied in order to correct the input code [29]. The 

correction step first uses the detection rules to detect defects in the input software 

code. Then the process of generating a correction solution can be viewed as the 

mechanism that finds the best way to combine some subset (to be fixed during the 

search) among all available refactoring operations, in such a way to best reduce 

the number of detected defects.  

 

We use logic predicates ‎[34] to represent refactoring operations. For example, the 

following predicate indicates‎ that‎ the‎ method‎ “division”‎ is‎ moved‎ from‎ class‎

“department”‎to‎class‎“university”:  

 

MoveMethod(division, departement, university)  

 

The correction step is aimed to be executed more frequently than the rule 

generation step, i.e. each time evaluation (in the sense of defect detection and 

correction) of a software code is needed.  

 

3.2 Problem Complexity 

In the detection step, our approach assigns a threshold value randomly to each 

metric, and combines these threshold values within logical expressions (union 

OR; intersection AND) to create rules. The number m of possible threshold values 

is usually very large. The rules generation process consists of finding the best 

combination between n metrics. In this context, the number NR of possible 

combinations that have to be explored is given by: 

 

NR = (n!)m (1) 
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This value quickly becomes huge. For example, a list of 5 metrics with 6 possible 

thresholds necessitates the evaluation of up to 1206 combinations.  

 

Consequently, the rule generation process is a combinatorial optimization 

problem. Due to the huge number of possible combinations, a deterministic search 

is not practical, and the use of a heuristic search is warranted. To explore the 

search space, we use a global heuristic search by means of Genetic Programming 

‎[25]. This algorithm will be detailed in section 4. 

 

As far as the correction step is concerned, in addition to the number of possible 

refactoring combinations, the order of applying them is important. If k is the 

number of available refactoring operations, then the number NS of possible 

refactoring solutions is given by: 

 

NS = (k!)k (2) 

 

Due to the large number of possible refactoring solutions, another heuristic 

optimization method, which relies on a Genetic Algorithm ‎[26], is used to 

generate refactoring solutions. This algorithm is described in section 4. 

 

4   Refactoring by Example 

This section describes how Genetic programming (GP) can be used to generate 

rules to detect design defects, and how a Genetic Algorithm (GA) can be derived 

to find refactoring solutions. To apply GP and GA to a specific problem, the 

following elements have to be defined:  

 

 Representation of the individuals,  

 Creation of a population of individuals,  

 Evaluation of individuals (using a fitness function) to determine a 

quantitative measure of their ability to solve the problem under 

consideration, 

 Selection of the individuals to transmit from one generation to another, 
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 Creation of new individuals using genetic operators (crossover and 

mutation) to explore the search space,  

 Generation of a new population. 

 

The next sections explain the adaptation of the design of these elements for both 

the automatic generation of detection rules using GP, and suggestion of 

refactoring solutions using GA.  

 

4.1 Defects Detection Using Genetic Programming 

Genetic programming is a powerful heuristic search optimization method inspired 

by the Darwinian theory of evolution ‎[26]. The basic idea is to explore the search 

space by making a population of candidate solutions, also called individuals, 

evolve toward a‎“good”‎solution of a specific problem.  

In Genetic Programming, a solution is a (computer) program which is usually 

represented as a tree, where the internal nodes are functions and the leaf nodes are 

terminal symbols. Both the function set and the terminal set must contain symbols 

that are appropriate for the target problem. For instance, the function set can 

contain arithmetic operators, logic operators, mathematical functions, etc; whereas 

the terminal set can contain the variables (attributes) of the target problem. 

Each individual of the population is evaluated by a fitness function that 

determines a quantitative measure of its ability to solve the target problem.  

Exploration of the search space is achieved by evolution of candidate solutions 

using selection and genetic operators, such as crossover and mutation. The 

selection operator insures selection of individuals in the current population 

proportionally to their fitness values, so that the fitter an individual is, the higher 

the probability that it is allowed to transmit its features to new individuals  by 

undergoing crossover and/or mutation operators. The crossover operator insures 

generation of new children, or offspring, based on parent individuals. The 

crossover operator allows transmission of the features of the best fitted parent 

individuals to new individuals. This is usually achieved by replacing a randomly 

selected sub tree of one parent individual with a randomly chosen sub tree from 

another parent individual to obtain one child. A second child is obtained by 

inverting parents. Finally, mutation operator is applied, with a probability which is 



 

13 

usually inversely proportional to its fitness value, to modify some randomly 

selected nodes in a single individual. The mutation operator introduces diversity 

into the population and allows escaping local optima found during the search.  

Once selection, mutation and crossover have been applied according to given 

probabilities, individuals of the newly created generation are evaluated using the 

fitness function. This process is repeated iteratively, until a stopping criterion is 

met. This criterion usually corresponds to a fixed number of generations. The 

result of genetic programming (the best solution found) is the fittest individual 

produced along all generations. 

 

4.1.1. GP Algorithm overview 

 A high level view of our Genetic Programming approach to the defect detection 

problem is introduced by Figure 2. As this figure shows, the algorithm takes as 

input a set of quality metrics and a set of defect examples that were manually 

detected in some systems, and finds a solution, which corresponds to the set of 

detection rules that best detect the defects in the base of examples. 

 

Input: Set of quality metrics  

Input: Set of defect examples 

Output: Detection rules 

1: I:= rules(R, Defect_Type) 

2: P:= set_of(I)  

3: initial_population(P, Max_size)  

4: repeat 

5:  for all I P do 

6:   detected_defects := execute_rules(R) 

7:  fitness(I) := compare(detected_defects,   defect_examples) 

8: end for 

9: best_solution := best_fitness(I); 

10:  P := generate_new_population(P) 

11: it:=it+1; 

12: until it=max_it 

13: return best_solution 
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Fig 2. High-level pseudo-code for GP adaptation to our problem 

 

Lines 1–3 construct an initial GP population, which is a set of individuals that 

stand for possible solutions representing detection rules. Lines 4–13 encode the 

main GP loop, which explores the search space and constructs new individuals by 

combining metrics within rules. During each iteration, we evaluate the quality of 

each individual in the population, and save the individual having the best fitness 

(line 9). We generate a new population (p+1) of individuals (line 10) by iteratively 

selecting pairs of parent individuals from population p and applying the crossover 

operator to them; each pair of parent individuals produces two children (new 

solutions). We include both the parent and child variants in the new population p. 

Then we apply the mutation operator, with a probability score, for both parent and 

child to ensure the solution diversity; this produces the population for the next 

generation. The algorithm terminates when the termination criterion (maximum 

iteration number) is met, and returns the best set of detection rules (best solution 

found during all iterations). 

4.1.2 Genetic Programming Adaptation  

The following three subsections describe more precisely our adaption of GP to the 

defect detection problem.  

4.1.2.1 Individual Representation  

An individual is a set of IF – THEN rules. For example, Figure 3 shows the rule 

interpretation of an individual.  

 

R1: IF (LOCCLASS(c) ≥‎1500 AND LOCMETHOD(m,c) ≥‎129)‎OR‎(NMD(c) ≥‎

100) THEN blob(c) 

R2: IF (LOCMETHOD(m,c) ≥‎151)‎THEN‎spaghetti‎code(c) 

R3: IF (NPRIVFIELD(c) ≥‎ 7‎ AND‎ NMD(c) = 16) THEN functional 

decomposition (c) 

Fig 3.  Rule interpretation of an individual 

 

Consequently, a detection rule has the following structure:  

 

IF “Combination of metrics with their threshold values” THEN “Defect type” 
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The IF clause describes the conditions or situations under which a defect type is 

detected. These conditions correspond to logical expressions that combine some 

metrics and their threshold values using logic operators (AND, OR). If some of 

these conditions are satisfied by a class, then this class is detected as the defect 

figuring in the THEN clause of the rule. Consequently, THEN clauses highlight 

the defect types to be detected. We will have as many rules as types of defects to 

be detected. In our case, mainly for illustrative reasons, and without loss of 

generality, we focus on the detection of three defect types, namely blob, spaghetti 

code and functional decomposition. Consequently, as it is shown in figure 4, we 

have three rules, R1 to detect blobs, R2 to detect spaghetti codes, and R3 to detect 

functional decomposition. 

 

One of the most suitable computer representations of rules is based on the use of 

trees ‎[35]. In our case, the rule interpretation of an individual will be handled by a 

tree representation which is composed of two types of nodes: terminals and 

functions. The terminals (leaf nodes of a tree) correspond to different quality 

metrics with their threshold values. The functions that can be used between these 

metrics correspond to logical operators, which are Union (OR) and Intersection 

(AND).  

Consequently, the rule interpretation of the individual of Figure 3 has the 

following tree representation of Figure 4. This tree representation corresponds to 

an OR composition of three sub-trees, each sub tree representing a rule: R1 OR 

R2 OR R3.  
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Fig 4. A tree representation of an individual 

 

For instance, the first rule R1 is represented as a sub-tree of nodes starting at the 

branch (N1 – N5) of the individual tree representation of Figure 5. Since this rule 

is dedicated to detect blob defects, we know that the branch (N1 – N5) of the tree 

will figure out the THEN clause of the rule. Consequently, there is no need to add 

the defect type as a node in the sub-tree dedicated to a rule. 

 

4.1.2.2 Generation of an initial population 

To generate an initial population, we start by defining the maximum tree length 

including the number of nodes and levels. These parameters can be specified 

either by the user or randomly. Thus, the individuals have different tree length 

(structure). Then, for each individual we randomly assign:  

 

 one metric, with its threshold value, to each leaf node 

 a logic operator (AND, OR) to each function node 

 

The root (head) of the tree is unchanged. Since any metric combination is possible 

and correct semantically, we do need to define some conditions to verify when 

generating an individual. 
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4.1.2.3 Genetic Operators  

Selection 

To select the individuals that will undergo the crossover and mutation operators, 

we used the stochastic universal sampling (SUS) ‎[25], in which the probability of 

selection of an individual is directly proportional to its relative fitness in the 

population. For each iteration, we use SUS to select (population_size/2) 

individuals from population p for the new populationp+1. These 

(population_size/2)‎ selected‎ individuals‎ will‎ “give‎ birth”‎ to‎ another‎

(population_size/2) new individuals using crossover operator. 

 

Crossover 

Two parent individuals are selected and a sub tree is picked on each one. Then 

crossover swaps the nodes and their relative sub trees from one parent to the 

other. The crossover operator can be applied only on parents having the same type 

of defect to detect. Each child thus combines information from both parents.  

Figure 5 shows an example of the crossover process. In fact, the rule R1 and a rule 

RI1 from another individual (solution) are combined to generate two new rules. 

The right sub tree of R1 is swapped with the left sub tree of RI1.  

 
 

 

Fig 5. Crossover operator 

 

As result, after applying the cross operator the new rule R1 to detect blob will be:  

R1: IF (LOCCLASS(c) ≥‎ 1500‎ AND‎ LOCMETHOD(m,c)  ≥‎ 129)) OR 

(NPRIVFIELD(c) ≥‎7) THEN blob(c) 

 

Mutation 
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The mutation operator can be applied either to function or terminal nodes. This 

operator can modify one or many nodes. Given a selected individual, the mutation 

operator first randomly selects a node in the tree representation of the individual. 

Then, if the selected node is a terminal (threshold value of a quality metric), it is 

replaced by another terminal. The new terminal either corresponds to a threshold 

value of the same metric or the metric is changed and a threshold value is 

randomly fixed. If the selected node is a function (AND operator for example), it 

is replaced by a new function (i.e. AND becomes OR). If a tree mutation is to be 

carried out, the node and its sub trees are replaced by a new randomly generated 

sub tree.  

To illustrate the mutation process, consider again the example that corresponds to 

a candidate rule to detect blob defects. Figure 6 illustrates the effect of a mutation 

that deletes node NMD, leading to the automatic deletion of node OR (no left sub 

tree), and that replaces node LOCMETHOD by node NPRIVFIELD with a new 

threshold value. Thus, after applying the mutation operator the new rule R1 to 

detect blob will be:  

R1 : IF (LOCCLASS(c) ≥‎1500‎AND‎NPRIVFIELD(c)  ≥‎14)) THEN blob(c) 

 

 

Fig 6. Mutation operator 
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4.1.2.4 Decoding of an individual 

The quality of an individual is proportional to the quality of the different detection 

rules composing it. In fact, the execution of these rules, on the different projects 

extracted from the base of examples, detect various classes as defect. Then, the 

quality of a solution (set of rules) is determined with respect to the number of 

detected defects in comparison to the expected ones in the base of examples. In 

other words, the best set of rules is the one that detects the maximum number of 

defects. 

 

 

 

Fig 7. Base of examples 

 

Considering the example of Figure 7, let us suppose that we have a base of defect 

examples having three classes X, W, T that are considered respectively as blob, 

functional decomposition and another blob. A solution contains different rules 

that detect only X as blob. In this case, the quality of this solution will have a 

value of 1/3 = 0.33 (only one detected defect over three expected ones). 

 

4.1.2.5 Evaluation of an individual 

The encoding of an individual should be formalized as a mathematical function 

called‎ “fitness‎ function”.‎ The fitness function quantifies the quality of the 

generated rules. The goal is to define an efficient and simple (in the sense not 

computationally expensive) fitness function in order to reduce the computational 

complexity. 

As discussed in Section 3, the fitness function aims to maximize the number of 

detected defects in comparison to the expected ones in the base of examples. In 
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this context, we define the fitness function of a solution, normalized in the range 

[0, 1], as: 
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where t is the number of defects in the base of examples, p is the number of 

detected classes with defects, and ai has value 1 if the ith detected class exists in 

the base of examples (with the same defect type), and value 0 otherwise. 

To illustrate the fitness function, we consider a base of examples containing one 

system evaluated manually. In this system, six (6) classes are subject to three (3) 

types of defects as shown in Table 1.  

 

TABLE I.  DEFECTS EXAMPLE.  

Class Blob Functional 
decomposition 

Spaghetti 
code 

Student  X  
Person  X  

University  X  
Course X   

Classroom   X 
Administration X   

 

The classes detected after executing the solution generating the rules R1, R2 and 

R3 of Figure 5 are described in Table 2. 

TABLE II.  DETECTED CLASSES 

Class Blob Functional 
decomposition 

Spaghetti 
code 

Person  X  
Classroom X   
Professor  X  

 

Thus, only one class corresponds to a true defect (Person). Classroom is a defect 

but the type is wrong and Professor is not a defect. The fitness function has the 

value:  
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With t=3 (only one defect is detected over 3 expected defects), and p=6 (only one 

class with a defect is detected over 6 expected classes with defects). 

 

4.2 Design Defects Correction Using Genetic Algorithm 

Genetic programming, described in the previous section, is a branch of genetic 

algorithms ‎[26]. The main difference between genetic programming and genetic 

algorithms is the representation of the solution. Genetic programming creates 

computer programs as the solution (tree representation). Genetic algorithms create 

a string of numbers that represent the solution. Since we have detailed the 

description of GP in the previous section, we describe directly in the next section 

the adaption of GA to our problem. 

4.2.1 Genetic Algorithm Adaptation  

4.2.1.1 Individual Representation  

One key issue when applying a search-based technique is to find a suitable 

mapping between the problem to solve and the techniques to use, i.e., in our case, 

correcting detected defect classes. We view the set of potential solutions as points 

in an n-dimensional space, where each dimension corresponds to one refactoring 

operation. Figure 8 shows an example where the ith individual (solutions) 

represents a combination of refactoring operations to apply. The sequence of 

applying the refactorings corresponds to their order in the table (dimension 

number). The execution of these refactorings are conformed to some pre and post 

conditions (to avoid conflicts).  

 

 

Fig 8. Individual representation 
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4.2.1.2 Selection and Genetic Operators  

For each crossover, two detectors are selected by applying twice the wheel 

selection ‎[26]. Even though individuals are selected, the crossover happens only 

with a certain probability. 

The crossover operator allows to create two offspring o1 and o2 from the two 

selected parents p1 and p2. It is defined as follows: A random position k, is 

selected. The first k refactorings of p1 become the first k elements of o1. 

Similarly, the first k refactorings of p2 become the first k refactorings of o2. 

The mutation operator operator consists of randomly changing a dimension 

(refactoring). 

 

4.2.1.3 Fitness Function  

The fitness function quantifies the quality of the proposed refactorings. In fact, the 

fitness function checks to minimize the number of detected defects using the 

detection rules. In this context, we define the fitness function of a solution as  

 

)min(nf     (4) 

  

Where n is the number of detected classes. 

5   Validation 

To test our approach, we studied its usefulness to guide quality assurance efforts 

for some open-source programs. In this section, we describe our experimental 

setup and present the results of an exploratory study.  

5.1 Goals and Objectives 

The goal of the study is to evaluate the efficiency of our approach for the 

detection and correction of design defects from the perspective of a software 

maintainer conducting a quality audit. We present the results of the experiment 

aimed at answering the following research questions: 

 

RQ1: To what extent can the proposed approach detect design defects? 
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RQ2: What types of defects does it locate correctly? 

RQ3: To what extent can the proposed approach correct detected defects? 

 

To answer RQ1, we used an existing corpus of known design defects ‎[5] to 

evaluate the precision and recall of our approach. We compared our results to 

those produced by an existing rule-based strategy ‎[5]. To answer RQ2, we 

investigated the type of defects that were found. To answer RQ3, we validated 

manually if the proposed corrections are useful to fix detected defects.  

5.2 System Studied 

We used six open-source Java projects to perform our experiments: GanttProject 

(Gantt for short) v1.10.2, Quick UML v2001, AZUREUS v2.3.0.6, LOG4J v1.2.1, 

ArgoUML v0.19.8, and Xerces-J v2.7.0. Table 1 provides some relevant 

information about the programs. 

TABLE III.  PROGRAM STATISTICS.  

Systems Number of classes KLOC 

GanttProject v1.10.2 245 31 

Xerces-J v2.7.0 991 240 

ArgoUML v0.19.8 1230 1160 

Quick UML v2001 142 19 

LOG4J v1.2.1 189 21 

AZUREUS v2.3.0.6 1449 42 

 

We chose the Xerces-J, ArgoUML, LOG4J, AZUREUS, Quick UML and Gantt 

libraries because they are medium-sized open-source projects and were analysed 

in related work. The version of Gantt studied was known to be of poor quality, 

which has led to a new major revised version. ArgoUML, Xerces-J, LOG4J, 

AZUREUS and Quick UML, on the other hand, has been actively developed over 

the past 10 years and their design has not been responsible for a slowdown of their 

developments.  

In ‎[5], Moha et al. asked three groups of students to analyse the libraries to tag 

instances of specific antipatterns to validate their detection technique, DECOR. 

For replication purposes, they provided a corpus of describing instances of 

different antipatterns that includes blob classes, spaghetti code, and functional 

decompositions. As describe in section 2, blobs are classes that do or know too 

much; spaghetti Code (SC) is code that does not use appropriate structuring 
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mechanisms; finally, functional decomposition (FD) is code that is structured as a 

series of function calls. These represent different types of design risks. In our 

study, we verified the capacity of our approach to locate classes that corresponded 

to instances of these antipatterns. We used a 6-fold cross validation procedure. For 

each fold, one open source project is evaluated by using the remaining five 

systems as base of examples. For example, Xerces-J is analyzed using detection 

rules generated from some defects examples from ArgoUML, LOG4J, 

AZUREUS, Quick UML and Gantt.  

The obtained results were compared to those of DECOR. Since ‎[5] reported the 

number of antipatterns detected, the number of true positives, the recall (number 

of true positives over the number of design defects) and the precision (ratio of true 

positives over the number detected), we determined the values of these indicators 

when using our algorithm for every antipattern in Xerces-J, AZUREUS, LOG4J, 

Quick UML, ArgoUML and Gantt. 

To validate the correction step, we verified manually the feasibility of the 

different proposed refactoring sequences for each system. We calculate a 

correctness precision score (ratio of possible refactoring operations over the 

number of proposed refactoring) as performance indicator of our algorithm. 

The complete lists of metrics, used to generate rules, and applied refactorings can 

be found in ‎[16].  

5.3 Results 

Class F.D. Blob Spag 

AbstractDOMParser   x 

BaseMarkupSerializer  X  

CoreDocumentImpl  X x 

DFAContentModel   x 

DocumentBuilderImpl       

DOMNormalizer  X  

DOMSerializerImpl   x 

DTDConfiguration  X  

DTDGrammar  X  

HTMLDOMImplementation       

LineSeparator       

NonValidatingConfiguration  X  

RegexParser x   

SAXParser x   

SchemaDOM x   

ShortHandPointer       

Token   x 

ValidatedInfo       

XIncludeHandler  X  
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XML11Configuration  X x 

XML11DTDConfiguration  X  

XML11NonValidatingConfiguration  X  

XMLDTDValidator  X  

XMLElementDecl    

XMLEntityManager  X  

XMLNSDTDValidator x   

XMLParser x   

XMLSchemaValidator  X  

XMLSerializer   x 

Fig 9. Xerces-J Results (Top-30 classes) 

 

Class F.D. Blob Spag 

GanttGraphicArea  x X 

GraphicPrimitiveContainer   X 

GanttOptions  x X 

ResourceLoadGraphicArea   X 

GanttXFIGSaver   X 

GanttDialogPerson   X 

NewProjectWizard X x   

GanttTree  x  

GanttProject  x  

TimeUnitGraph X     

GregorianTimeUnitStack X   

TipsDialog   X 

RecalculateTaskCompletionPercentageAlgorithm X   

TaskHierarchyManagerImpl X   

Fig 10. Gantt Results  

 

TABLE IV.  DETECTION RESULTS.  

System Precision Recall 
GanttProject Blob : 100% 

SC : 93% 
FD : 91% 

100% 
97% 
94% 

Xerces-J Blob : 97% 
SC: 90% 
FD: 88% 

100% 
88% 
86% 

ArgoUML Blob : 93% 
SC: 88% 
FD: 82% 

100% 
91% 
89% 

QuickUML Blob : 94% 
SC: 84% 
FD: 81% 

98% 
93% 
88% 

AZUREUS Blob : 82% 
SC: 71% 
FD: 68% 

94% 
81% 
86% 

LOG4J Blob : 87% 
SC: 84% 
FD: 66% 

90% 
84% 
74% 

 

TABLE V.  CORRECTION RESULTS.  

System Number of 
proposed 
refactorings 

Precision 
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GanttProject 39 84% (33|39) 
Xerces-J 47 78% (38|47) 
ArgoUML 73 81% (59|73) 
QuickUML 32 85% (27|32) 
AZUREUS 96 72% (69|96) 
LOG4J 41 77% (32|41) 

 
 

Figures 9-10 and Tables 4-5 summarize our findings. Figure 9 shows the top-30 

detected classes including only 5 false-positive ones (highlighted with a different 

color). For Gantt, our average antipattern detection precision was 94%. DECOR, 

on the other hand, had a combined precision of 59% for the same antipatterns. The 

precision for Quick UML was about 86%, over twice the value of 42% obtained 

with DECOR. In particular, DECOR did not detect any spaghetti code in 

contradistinction with our approach. For Xerces-J, our precision average was 

90%, while DECOR had a precision of 67% for the same dataset. Finally, for 

ArgoUML, AZUREUS and LOG4J our precision was more than 75. However, the 

recall score for the different systems systems was less than that of DECOR. In 

fact, the rules defined in DECOR are large and this is explained by the lower 

score in terms of precision. In the context of this experiment, we can conclude that 

our technique was able to identify design anomalies more accurately than DECOR 

(answer to research question RQ1 above). 

We have also obtained very good results for the correction step. As showed in 

Table 5, the majority of proposed refactoring are feasible and improve the code 

quality. For example, for Gantt, 33 refactoring operations are feasible over the 39 

proposed ones. After applying by hand the feasible refactoring operations for all 

systems, we evaluated manually that more than 75% or detected defects was 

fixed. The majority of non-fixed defects are related to blob type. In fact, this type 

of defect needs a large number of refactoring operations and it is very difficult to 

correct it. 

The complete list of detected classes and proposed refactorings by our approach 

for the different systems can be found in ‎[16].  

We noticed that our technique does not have a bias towards the detection and 

correction of specific anomaly types. In Xerces-J, we had an almost equal 

distribution of each antipattern (14 SCs, 13 Blobs, and 14 FDs). On Gantt, the 

distribution was not as balanced, but this is principally due to the number of actual 

antipatterns in the system. We found all four known blobs and nine SCs in the 
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system, and eight of the seventeen FDs, four more than DECOR. In Quick UML, 

we found three out five FDS; however DECOR detected three out of ten FDs.  

    The detection of FDs by only using metrics seems difficult. This difficulty is 

alleviated in DECOR by including an analysis of naming conventions to perform 

the detection process. However, using naming conventions leads to results that 

depend on the coding practices of the development team. We obtained comparable 

results without having to leverage lexical information. We can also mention that 

fixed defects correspond to the different defect types.  

     An important consideration is the impact of the example base size on detection 

quality. Drawn for AZUREUS, the results of Figures 11 shows that our approach 

also proposes good detection reults in situations where only few examples are 

available. The precision and recall scores seem to grow steadily and linearly with 

the number of examples and rapidly grow to acceptable values (75%). Thus, our 

approach do not needs a large number of examples to obtain good detection 

results. 
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Fig 11. Examples-size variation  

 

5.4 Discussion 

The reliability of the proposed approach requires an example set of bad code. It 

can be argued that constituting such a set might require more work than 

identifying, specifying, and adapting rules. In our study, we showed that by using 
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six open source projects directly, without any adaptation, the technique can be 

used out of the box and will produce good detection, correction and recall results 

for the detection of antipatterns for the studied systems. 

The performance of detection was superior to that of DECOR. In an industrial 

setting, we could expect a company to start with some few open source projects, 

and gradually migrate its set of bad code examples to include context-specific 

data. This might be essential if we consider that different languages and software 

infrastructures have different best/worst practices. 

Another issue is the rules generation process. The detection results might vary 

depending on the rules used, which are randomly generated, though guided by a 

meta-heuristic. To ensure that our results are relatively stable, we compared the 

results of multiple executions for rules generation. We consequently believe that 

our technique is stable, since the precision and recall scores are approximately the 

same for different executions. 

Another important advantage in comparison to machine learning techniques is that 

our GP algorithm does not need both positive (good code) and negative (bad 

code) examples to generate rules like, for example, Inductive Logic Programming 

‎[17]. 

Finally, since we viewed the design defects detection problem as a combinatorial 

problem addressed with heuristic search, it is important to contrast the results with 

the execution time. We executed our algorithm on a standard desktop computer 

(Pentium CPU running at 2 GHz with 3GB of RAM). The execution time for rules 

generation with a number of iterations (stopping criteria) fixed to 350 was less 

than four minutes (3min27s) for both detection and correction. This indicates that 

our approach is reasonably scalable from the performance standpoint. However, 

the execution time depends on the number of used metrics and the size of the base 

of examples. It should be noted that more important execution times may be 

obtained than when using DECOR. In any case, our approach is meant to apply 

mainly in situations where manual rule-based solutions are not easily available. 

6   Related Work 

Several studies have recently focused on detecting and fixing design defects in 

software using different techniques. These techniques range from fully automatic 

detection and correction to guided manual inspection. The related work can be 
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classified into three broad categories: rules-based detection-correction, detection 

and correction combination, and visual-based detection. 

In the first category, Marinescu ‎[7] defined a list of rules relying on metrics to 

detect what he calls design flaws of OO design at method, class and subsystem 

levels. Erni et al. ‎[18] use metrics to evaluate frameworks with the goal of 

improving them. They introduce the concept of multi-metrics, n-tuples of metrics 

expressing a quality criterion (e.g., modularity). The main limitation of the two 

previous contributions is the difficulty to manually define threshold values for 

metrics in the rules. To circumvent this problem, Alikacem et al. ‎[19] express 

defect detection as fuzzy rules, with fuzzy labels for metrics, e.g., small, medium, 

large. When evaluating the rules, actual metric values are mapped to truth values 

for the labels by means of membership functions. Although no crisp thresholds 

need to be defined, still, it is not obvious to determine the membership functions. 

Moha et al. ‎[5], in their DECOR approach, they start by describing defect 

symptoms using an abstract rule language. These descriptions involve different 

notions, such as class roles and structures. The descriptions are later mapped to 

detection algorithms. In addition to the threshold problem, this approach uses 

heuristics to approximate some notions which results in an important rate of false 

positives.  Khomh et al. ‎[4] extended DECOR to support uncertainty and to sort 

the defect candidates accordingly. Uncertainty is managed by Bayesian belief 

networks that implement the detection rules of DECOR. The detection outputs are 

probabilities that a class is an occurrence of a defect type. In our approach, the 

above-mentioned problems related to the use of rules and metrics do not arise. 

Indeed, the symptoms are not explicitly used, which reduces the manual 

adaptation/calibration effort. 

The majority of existing approaches to automate refactoring activities are based 

on rules that can be expressed as assertions (invariants, pre- and post condition), 

or graph transformation. The use of invariants has been proposed to detect parts of 

program that require refactoring by ‎[30]. Opdyke ‎[27] suggest the use of pre- and 

postcondition with invariants to preserve the behavior of the software. All these 

conditions could be expressed in the form of rules. ‎[31] considers refactorings 

activities as graph production rules (programs expressed as graphs). However, a 

full specification of refactorings would require sometimes large number of rules. 

In addition, refactoring-rules sets have to be complete, consistent, non redundant, 
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and correct. Furthermore, we need to find the best sequence of applying these 

refactoring rules. In such situations, search-based techniques represent a good 

alternative. In ‎[8], we have proposed another approach, based on search-based 

techniques, for the automatic detection of potential design defects in code. The 

detection is based on the notion that the more code deviates from good practices, 

the more likely it is bad. The two approaches are completely different. We use in 

‎[8] a good quality of examples in order to detect defects; however in this work we 

use defect examples to generate rules. Both works do not need a formal definition 

of defects to detect them.  

In the second category of work, defects are not detected explicitly. They are so 

implicitly because the approaches refactor a system by detecting elements to 

change to improve the global quality. For example, in ‎[20], defect detection is 

considered as an optimization problem. The authors use a combination of 12 

metrics to measure the improvements achieved when sequences of simple 

refactorings are applied, such as moving methods between classes. The goal of the 

optimization is to determine the sequence that maximizes a function, which 

captures the variations of a set of metrics ‎[21]. The fact that the quality in terms of 

metrics is improved does not necessary means that the changes make sense. The 

link between defect and correction is not obvious, which make the inspection 

difficult for the maintainers. In our case, we separate the detection and correction 

phases and the search-based adaptation is completely different.  

The high rate of false positives generated by the automatic approaches encouraged 

other teams to explore semiautomatic solutions. These solutions took the form of 

visualization-based environments. The primary goal is to take advantage of the 

human ability to integrate complex contextual information in the detection 

process. Kothari et al. ‎[33] present a pattern-based framework for developing tool 

support to detect software anomalies by representing potentials defects with 

different colors. Later, Dhambri et al. ‎[32] propose a visualization-based approach 

to detect design anomalies by automatically detecting some symptoms and letting 

others to the human analyst. The visualization metaphor was chosen specifically 

to reduce the complexity of dealing with a large amount of data. Still, the 

visualization approach is not obvious when evaluating large-scale systems. 

Moreover, the information visualized is for the most part metric-based, meaning 

that complex relationships can still be difficult to detect. In our case, human 
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intervention is needed only to provide defect examples. Finally, the use of 

visualisation techniques is limited to the detection step. 

7   Conclusion 

In this article, we presented a novel approach to the problem of detecting and 

fixing design defects. Typically, researchers and practitioners try to characterize 

different types of common design defects and present symptoms to search for in 

order to locate the design defects in a system. In this work, we have shown that 

this knowledge is not necessary to perform the detection. Instead, we use 

examples of design defects to generate detection rules. After generating the 

detection rules, we use them in the correction step. In fact, we start by generating 

some solutions that represent a combination of refactoring operations to apply. A 

fitness function calculates, after applying the proposed refactorings, the number of 

detected defects, using the detection rules. The best solution has the minimum 

fitness value. Due to the large number of refactoring combination, a genetic 

algorithm is used. Our study shows that our technique outperforms DECOR [5], a 

state-of-the-art, metric-based approach, where rules are defined manually, on its 

test corpus. 

The proposed approach was tested on open-source systems and the results are 

promising. As part of future work, we plan to extend our base of examples with 

additional badly-designed code in order to take into consideration more 

programming contexts. 
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