turning knowledge into practice

Estimating Medicaid Costs for Cardiovascular Disease: A Claims-based Approach

Presented by

Susan G. Haber, Sc.D¹; Boyd H. Gilman, Ph.D.¹

¹RTI International

Presented at

The 133rd Annual Meeting of the American Public Health Association Philadelphia, PA December 10–14, 2005

Background

- Cardiovascular diseases (CVD) are leading causes of mortality and morbidity and pose substantial economic burden
- Medicaid serves populations at high risk for CVD
 - Low-income, minorities, elderly and disabled
- Rising Medicaid expenditures are an ongoing concern
 - Preventing CVD may provide an opportunity to reduce program costs

Study Questions

- What is the diagnosed prevalence of CVD in the adult Medicaid population?
 - Hypertension, heart disease, congestive heart failure (CHF), stroke
- What are the per capita medical costs associated with each disease?
- What is the financial burden of these diseases on state Medicaid programs?

Overview of Presentation

- Econometric model
- Data
 - Choice of states
- Criteria for identifying people with conditions
- Results
- Conclusions

Econometric Model

- Econometric approach to estimating disease costs
 - Use multivariate regression analysis to estimate marginal costs associated with a condition
- \$ = f (sociodemographic characteristics, medical conditions, medical conditions*age)
 - Sociodemographic characteristics: gender, race, age, age², dual eligible, full benefit dual eligible
 - Cardiovascular conditions: hypertension, heart disease, CHF, stroke
 - Additional high prevalence or high cost conditions

Econometric Model (continued)

- Estimated separate models for annualized expenditures in 6 categories: inpatient, hospital OPD/ER, LTC, office-based, Rx, other
 - Combined results by service type to estimate effect on total expenditures
- Used alternative functional forms for regressions
 - OLS on \$
 - 2-part GLM model: logit for p(use) and GLM on \$ using gamma distribution and log link for those with use
 - 2-part lognormal model: logit for p(use) and OLS on log \$ for those with use
- Models weighted by months of fee-for-service Medicaid eligibility
- Analyses restricted to adults

Medicaid Analytic Extract (MAX) File Data

- Uniform data set created by CMS based on claims and eligibility data submitted by all states since 1998
 - Analyses use data for 1999-2001
- 100% of Medicaid claims (inpatient, outpatient hospital, physician and other providers, long-term care, and Rx) and beneficiary information (age, gender, race, ZIP, eligibility)
- Supports state-specific cost estimates, including estimates for subpopulations
- Data tend to be incomplete for states with high Medicaid managed care enrollment

State Selection Criteria

- Data quality
 - Relatively low enrollment in capitated Medicaid managed care
 - Good reporting of diagnosis data (especially on crossover claims for dual eligibles)
- Population characteristics
 - Rates of CVD
 - Geographic variation
- Study states
 - IL (n=2,285,632)
 - KS (n=333,180)
 - LA (n=1,069,801)
 - MA (n=1,790,998)
 - SC (n=1,176,439)

Identifying Conditions

- Types of variables
 - Diagnosis codes
 - Prescription drug codes?
 - Lab tests?
- Number of diagnoses
 - Primary only, primary or secondary, any diagnosis code?
- Rule out criteria
 - Require claims on multiple dates
 - Single occurrence for inpatient, long-term care, and Rx claims

Prevalence of CVD by State (Primary or Secondary Dx with Rule Out)

Prevalence of CVD in LA by Criteria Used to Identify Condition

Per Capita Costs Due to CVD: OLS Results (Primary or Secondary Dx with Rule Out)

	Hypertension	Heart Disease	<u>CHF</u>	<u>Stroke</u>
IL	283	5,214	6,749	13,163
KS	285	2,925	4,257	8,733
LA	-698	1,675	2,718	6,618
MA	-2,262	405	3,684	8,818
SC	-479	2,248	2,005	6,507

Percent of Costs Due to CVD: OLS Results (Primary or Secondary Dx with Rule Out)

	<u>Hypertension</u>	Heart Disease	<u>CHF</u>	<u>Stroke</u>
IL	0.3	4.9	2.3	3.2
KS	0.2	2.5	1.6	2.0
LA	-1.8	3.4	1.9	3.5
MA	-1.9	0.3	0.7	1.4
SC	-1.1	3.9	1.2	3.3

Per Capita Costs Due to CVD in LA by Identification Criteria

	<u>Primary</u>	Primary or Secondary	<u>Any</u>	Primary <u>R/O</u>	Primary or Secondary <u>R/O</u>	Any <u>R/O</u>
Hypertension	-1,447	-1,294	-1,151	-885	-698	-522
Heart disease	1,675	1,693	1,711	1,716	1,675	1,680
CHF	2,509	2,567	2,703	2,692	2,718	2,880
Stroke	5,751	5,677	5,670	6,709	6,618	6,520

Conclusions

- Prevalence, per capita costs, and percent of total costs vary by state
- Estimates are sensitive to how conditions are defined
 - Rule out criteria especially important
- Cost estimates lower than expected
 - High proportion of dual eligibles
 - Controls for comorbid conditions
 - Long-term care

Next Steps

- Generate boot-strapped standard errors
- Develop estimates by year
- Develop estimates for subpopulations
 - Medicare dual eligibility status
 - Sociodemographic groups (age, race/ethnicity, gender)
 - Local area of residence (urban/rural, county)
- Estimate models without controls for comorbidities

