
Taming Your Character Data with Regular Expressions in SAS® –

Part II
James J. Van Campen, SRI International, Menlo Park, CA

Mary McCracken, SRI International, Menlo Park, CA

ABSTRACT
Regular expressions (regexp) are a powerful tool for working with character data. This paper provides an introduction
to the new PERL regexp capabilities available in SAS 9 ®. Building on the foundation laid in Part I, Part II illustrates
how to locate and manipulate character strings using the call routines PRXSUBSTR, PRXPOSN, and PRXCHANGE.

INTRODUCTION
In Part I, the syntax of PERL regexp was introduced. The PERL regexp syntax was used in conjunction with the SAS
functions, PRXPARSE and PRXMATCH to define regular expressions and locate matches in character strings. This
paper builds on those ideas by introducing and illustrating three SAS call routines, PRXSUBSTR, PRXPOSN, and
PRXCHANGE. CALL PRXSUBSTR returns the start position and the length of a match. CALL PRXPOSN returns the
start position and length for a capture buffer. CALL PRXCHANGE substitutes one string for another. With these call
routines specific strings can be located, extracted and replaced. The following three sections describe each call
routine in detail, and the final section illustrates the application of these call routines with an example involving study
subject contact data.

CALL PRXSUBSTR
CALL PRXSUBSTR is similar to the function PRXMATCH (see Part I), however, in addition to finding the start
position of the match CALL PRXSUBSTR can also find the length of the match. The syntax for CALL PRXSUBSTR is
as follows:

CALL PRXSUBSTR (regular-expression-id, source, start <, length>)

regular-expression-id: the identification number returned by the PRXPARSE function for the regular

expression to be used.

source: the character expression to be searched

start: the start position in source where the matching pattern begins

length: the length of the matching pattern (optional)

Given a regular expression id and a source string CALL PRXSUBSTR will return the start position and optionally the
length of the matching string. If there is no match CALL PRXSUBSTR will return zero for the start position and length.
If there are multiple matches within the character expression CALL PRXSUBSTR will by default return the position
and length of the longest match. The position and length information can be passed to another function such as
SUBSTRN which can extract the matching string and assign it to a new variable.

CALL PRXPOSN
Sometimes the string of interest must be parsed into components. For instance, if the string can only be found by
matching the surrounding characters or the components have value by themselves. In this situation CALL PRXPOSN
can be of use. Given a regular-expression-id and a capture-buffer-id CALL PRXPOSN will return the start position
and optionally the length of the capture-buffer. A capture-buffer is a portion of a regular expression defined by
enclosing it with parentheses (see Part I). A regular expression may have multiple capture-buffers. The syntax for
CALL PRXPOSN is as follows:

CALL PRXPOSN (regular-expression-id, capture-buffer-id, start <, length>)

regular-expression-id: the identification number returned by the PRXPARSE function for the regular

expression to be used.

capture-buffer-id: the number identifying the capture-buffer for the regular expression to be used. The first

set of parentheses (capture buffer) in the regexp is assigned 1, the second 2, etc.

start: the start position in source where the capture-buffer specified above begins

length: the length of the capture-buffer (optional)

If the capture-buffer-id is zero then CALL PRXPOSN will return the start position and length of the entire match. If the
capture-buffer-id is greater than the number of capture-buffers defined then CALL PRXPOSN will return missing

1

values for start position and length. As with PRXSUBSTR, the position and length information can be passed to
another function such as SUBSTRN which can extract the matching string and assign it to a new variable. To fill the
capture buffers, a matching function such as PRXMATCH must be run prior to running CALL PRXPOSN. See
example code on page 4.

CALL PRXCHANGE
CALL PRXCHANGE searches for regular expression matches and replaces them with another character string. CALL
PRXCHANGE is similar to the function, TRANWRD, however, it has the advantage of performing searches with
wildcards. The syntax for CALL PRXCHANGE is as follows:

CALL PRXCHANGE (regular-expression-id or regular-expression, times, old string <,
new-string <, result-length <, truncation_value <, number-of-changes>>>>)

regular-expression-id or regular-expression: the identification number returned by the PRXPARSE

function for the regular expression to be used or a PERL regular expression.

times: the number of times to search for a match and replace the matching string. If times = -1 then CALL

PRXCHANGE will find and replace all matches.

old-string: the character expression in which to search and replace. If new-string is omitted then all changes

will be made to old-string. If new-string is specified then old-string will remain unchanged.

new-string: the variable to which the new character expression is assigned (optional)

result-length: the length of the new character expression (optional)

truncation value: a flag which is 1 if the result of the change operation exceeds the length of new-string and

zero if the result is less than or equal to the length of new-string (optional)

number-of-changes: the number of substitutions made (optional)

When using CALL PRXCHANGE, it is necessary to use the swap (or substitution) operator when defining the regular
expression and the replacement string with PRXPARSE. See example.

EXAMPLE
Given a text file containing contact information, use PERL regular expressions to convert it to a SAS dataset with the
following variables: firstname, middleinitial, lastname, address, city, state, zip, area code, phonenumber, and email.
To illustrate the use of the PRXCHANGE all three letter domain names (in the email addresses) starting with ‘s’ and
ending in ‘i’ will be changed to ‘zap’.

John Q Smith 123 Elm St, Mountain View CA 94040 650-987-6543 john.smith@jones.com

Sandra J Jones 357 Main Ave, Sunnyvale CA 94263-4321 408-456-7891 sjjones@hotmail.com

Alfred P Dolittle 369 Dalrimple Blvd, London NV 74028 728-738-4567 slacker@slouch.com

Henry L Higgins 7541 El Camino Real, Redwood City CA 94064 (650)964-7895 nerd@linguist.net

James T Kirk 852 Asteroid Lane, Plutopolis NY 10026-0042 218.423.7536 jim@enterprise.com

Frances Z Smith 65487 Paco Drive, Los Altos CA 94022 (650)964-4678 fzs@smi.com

G Guzman 3636 California Ave Ste 100, Mountain View CA 94041 650-971-4523 gigi@sri.com

J B Halson 8956 Oak St #401, Tupelo MS 34254 321-654-9874 halsonator@elvis.org

Kathy H Parker 12 RR2, Owen Sound ND 45698 412-582-2468 khparker@scusd.k12.ca.us

June Joyworth 431 Haliburton Lane #56A, Washington DC 12345 245-951-6874 junebug@b52.com

The first step is to read the data into a SAS dataset. The data is stored as ten records with one character variable
called string.

data contact_raw;
 infile "&data\contact.txt" missover pad;
 input string $ 1-100;
run;

The second step is to determine the regular expressions. The regexp for the domain name substitution will replace an
‘s’ followed by any word character followed by an ‘i’ and a period with ‘zap.’. The period in the regexp must be
preceded by a slash since periods have special meaning in the PERL syntax.

 domain_prx= prxparse("s/s\wi\./zap./");

The first name is at the beginning of the string and has the first character capitalized followed by zero or more lower
case letters.

 fname_prx= prxparse("/^[A-Z][a-z]*/");

2

The middle initial is a capital letter preceded and followed by a space character. Since what is needed is the letter
without the spaces, a capture-buffer can be created by using parentheses around the letter portion of the regular
expression definition.

 mi_prx= prxparse("/ ([A-Z]) /");

The last name is preceded by a space, starts with a capital letter and is followed by one or more lower case letters, a
space and a digit (the beginning of the address). Once again, a capture buffer is used to separate the portion of
interest.

 lname_prx= prxparse("/ ([A-Z][a-z]+) \d/");

The address starts with a digit followed by one or more word or non-word characters and ending with a comma. Use a
capture buffer to exclude the comma.

 address_prx= prxparse("/(\d(\w|\W)+),/");

The citystate regexp starts with the comma and a space, contains one or more word characters and spaces and ends
with a space and two capital letters. Two capture buffers are created: the first for the city name and the second for the
state abbreviation.

 citystate_prx= prxparse("/, ([\w|]+) ([A-Z]{2}) /");

The zip code regexp begins with the two capital letters for the state and a space followed by either 5 digits and a
space or five digits a dash, four more digits and a space. Once again a capture buffer is used to separate the
characters of interest.

 zip_prx= prxparse("/[A-Z]{2} (\d{5}|\d{5}-\d{4}) /");

The phone number regexp starts with one or zero open parentheses followed by three digits, exactly one character,
three digits again, exactly one character again and four more digits. Each sequence of three or four digits is assigned
its own capture buffer.

 phone_prx= prxparse("/ \(?(\d\d\d).(\d\d\d).(\d\d\d\d)/");

The email address is one or more letters, digits or periods, an @, and one or more letters, digits or periods. No
capture buffer is necessary here.

 email_prx= prxparse("/([A-Z]|[a-z]|\d|\.)+@([A-Z]|[a-z]|\d|\.)+/");

The program for defining the regular expressions, finding the lengths and positions of the strings and assigning values
to the new variables is displayed on the following page. A proc print of the final dataset follows the code.

The third step is to perform the string substitution on the email addresses with CALL PRXCHANGE. No new-string is
specified so the changes are made to the original string. A four character string is replacing a four character string,
thus the length and truncation variables are not necessary. Two domain names were changed in the output following
the code.

The fourth step is to determine the string start positions and lengths using CALL PRXSUBSTR and CALL PRXPOSN
as necessary. If PRXPOSN is used to find a match then PRXMATCH must be run for the regexp first. CALL
PRXSUBSTR is used for the first name since the regexp is exactly the first name. However, CALL PRXPOSN is
needed for the middle initial since the regexp includes the surrounding spaces and a capture buffer is needed to get
only the letter. Even though the length of the middle initial is known (1), CALL PRXPOSN returns the mi_len because
in some cases the middle initial is missing; in those cases, mi_len is zero. Passing a zero length to SUBSTRN will
cause it to return a missing value. Two capture buffers were used for the components of citystate and three capture
buffers were used for the components of phone number.

The fifth step is to assign values to the new variables using SUBSTRN. For the phone number two capture buffers
were concatenated with a hyphen between them.

3

Example program

data contacts (keep= firstname middleinitial lastname address city state zip areacode
phonenumber email);
 set contact_raw;
* Define the PERL regular expressions using PRXPARSE;
 if _n_ = 1 then do;
 domain_prx= prxparse("s/s\wi\./zap./");
 fname_prx= prxparse("/^[A-Z][a-z]*/");
 mi_prx= prxparse("/ ([A-Z]) /");
 lname_prx= prxparse("/ ([A-Z][a-z]+) \d/");
 address_prx= prxparse("/(\d(\w|\W)+),/");
 citystate_prx= prxparse("/, ([\w]+) ([A-Z]{2}) /");
 zip_prx= prxparse("/[A-Z]{2} (\d{5}|\d{5}-\d{4}) /");
 phone_prx= prxparse("/ \(?(\d\d\d).(\d\d\d).(\d\d\d\d)/");
 email_prx= prxparse("/([A-Z]|[a-z]|\d|\.)+@([A-Z]|[a-z]|\d|\.)+/");
 end;
 retain domain_prx fname_prx mi_prx lname_prx address_prx citystate_prx zip_prx
phone_prx email_prx;
* Perform string substitution on the email domain names;
 call prxchange(domain_prx, 1, string);
* Use call prxsubstr and call prxposn to determine start position and length of
strings;
* PRXMATCH must be run to fill the capture buffers prior to executing CALL PRXPOSN;
 call prxsubstr(fname_prx, string, fname_pos, fname_len);
 pos_mi= prxmatch(mi_prx,string);
 call prxposn(mi_prx, 1, mi_pos, mi_len);
 pos_lname= prxmatch(lname_prx,string);
 call prxposn(lname_prx, 1, lname_pos, lname_len);
 pos_address= prxmatch(address_prx,string);
 call prxposn(address_prx, 1, address_pos, address_len);
 pos_citystate= prxmatch(citystate_prx,string);
 call prxposn(citystate_prx, 1, city_pos, city_len);
 call prxposn(citystate_prx, 2, state_pos);
 pos_zip= prxmatch(zip_prx,string);
 call prxposn(zip_prx, 1, zip_pos, zip_len);
 pos_phone= prxmatch(phone_prx,string);
 call prxposn(phone_prx, 1, areacode_pos);
 call prxposn(phone_prx, 2, phone1_pos);
 call prxposn(phone_prx, 3, phone2_pos);
 call prxsubstr(email_prx, string, email_pos, email_len);
* Set lengths of new variables;
 length firstname $30
 middleinitial $1
 lastname $30
 address $40
 city $30
 state $2
 zip $10
 areacode $3
 phonenumber $8
 email $40;
* Use SUBSTRN function to extract strings into variables;
 firstname= substrn(string,fname_pos,fname_len);
 middleinitial= substrn(string, mi_pos, mi_len);
 lastname= substrn(string, lname_pos, lname_len);
 address= substrn(string, address_pos, address_len);
 city= substrn(string, city_pos, city_len);
 state= substrn(string, state_pos, 2);
 zip= substrn(string, zip_pos, zip_len);
 areacode= substrn(string, areacode_pos, 3);
 phonenumber= substrn(string, phone1_pos, 3) || "-" || substrn(string,
phone2_pos, 4);
 email= substrn(string, email_pos, email_len);
run;

4

proc print data= contacts noobs;
 title "Contact information stored as ten variables";
run;

Contact information stored as ten variables

firstname middleinitial lastname address city

 John Q Smith 123 Elm St Mountain View
 Sandra J Jones 357 Main Ave Sunnyvale
 Alfred P Dolittle 369 Dalrimple Blvd London
 Henry L Higgins 7541 El Camino Real Redwood City
 James T Kirk 852 Asteroid Lane Plutopolis
 Frances Z Smith 65487 Paco Drive Los Altos
 G Guzman 3636 California Ave Ste 100 Mountain View
 J B Halson 8956 Oak St #401 Tupelo
 Kathy H Parker 12 RR2 Owen Sound
 June Joyworth 431 Haliburton Lane #56A Washington

state zip areacode phonenumber email

 CA 94040 650 987-6543 john.smith@jones.com
 CA 94263-4321 408 456-7891 sjjones@hotmail.com
 NV 74028 728 738-4567 slacker@slouch.com
 CA 94064 650 964-7895 nerd@linguist.net
 NY 10026-0042 218 423-7536 jim@enterprise.com
 CA 94022 650 964-4678 fzs@zap.com
 CA 94041 650 971-4523 gigi@zap.com
 MS 34254 321 654-9874 halsonator@elvis.org
 ND 45698 412 582-2468 khparker@scusd.k12.ca.us
 DC 12345 245 951-6874 junebug@b52.com

CONCLUSION
The output above illustrates the remarkable ability of PERL regexp to impose order on long, messy strings of
characters. The strings have been properly parsed into ten variables. In summary, we have combined the PERL
regexp syntax and the SAS functions PRXPARSE and PRXMATCH presented in Part I with the call routines CALL
PRXSUBSTR, CALL PRXPOSN and CALL PRXCHANGE to locate, replace and manipulate text. PERL regexp
capabilities of SAS 9 can help programmers tame even the wildest character data.

REFERENCES
Cody, Ron (2004) SAS Functions by Example, SAS Institute Inc., Cary, NC, USA

CONTACT INFORMATION
Your comments and questions are valued and encouraged. Contact the authors at:

James J. Van Campen

SRI International

333 Ravenswood Avenue, BS-153

Menlo Park CA 94025-3493

Mary McCracken

SRI International

333 Ravenswood Avenue, BS-165

Menlo Park CA 94025-3493

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS
Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

5

