
MARPLOT® Technical

Documentation 3.2.3

Contents

Import/ Export

 MARPLOT Simple Point Format 2

 GENERATE format 3

 MARPLOT import/ export (MIE) file format 5

 MARPLOT 1.0.1 import file format 8

Map file formats 12

MARPLOT ID numbers 19

Vector field objects 20

MARPLOT colors 21

Polygon union 22

Advanced example: Editing roads using Export/ Import 24

Interapplication communication (IAC) dictionary 28

2

MARPLOT Simple Point Format

MARPLOT can import and export point (symbol) objects in a tab-delimited text file, where each line,

one per object, has the following format (<> represents a tab character):

longitude <> latitude <> name <> layer name <> map name <> symbol <> color <> ID

Only the first two fields (longitude and latitude) are required. The remaining fields are optional;

you can specify as many as you want. However, if you want to specify a field, you must also

include all fields to its left on the line. For instance, if you want to specify the symbol, you must also

include name, layer, and map, but including color and ID is still optional. For further flexibility in

cases where you want to specify a field to the right of an unspecified field, you can use a

placeholder for the unspecified field, which causes MARPLOT to use its default value. In the

example just given, suppose you wanted to specify the symbol, but not the layer or map. In this

case you would use the placeholder value 0 (zero) for both the layer name and map name fields.

The following table shows, for each field, the type of data in the field, the default value used if the

field is not present or is equal to the placeholder value, and the placeholder value to force

MARPLOT to assign the default.

field

format / example

default

value

placeholder

value

longitude decimal degrees (west negative) /

-122.123456

N/ A N/ A

latitude decimal degrees (south negative) /

47.123456

N/ A N/ A

name string of characters /

Observation Site

object’s ID

number

0

layer name string of characters /

My Sites

the name of

the topmost

layer

0

map name string of characters /

CAMEO Map

User’s Map 0

symbol either the symbol LANDMARK

(specifying the standard flag symbol)

or the ASCII value of the desired

symbol in the MARPLOT font

LANDMARK 0

color one of the names of the available colors

(as listed in MARPLOT Color menu)

BLACK 0

ID a 16-digit number (the digits are

actually hexadecimal so you can use A-

F in addition to 0-9)

NOTE: it is important that any IDs you

assign are unique on a given layer of a

given map (i.e., no two objects on a

given layer of a given map should have

the same ID)

a random

code

N/ A

MARPLOT Technical Documentation

3

GENERATE Format

This format is designed to be compatible with ArcInfo’s GENERATE command. This provides a

mechanism for transferring data between MARPLOT and ArcInfo, or any other program that can

read and write in the GENERATE format. It provides an intermediate option between the simplicity

of the MARPLOT Simple Point Format and the complexity of the MIE format. In contrast to the

Simple Point Format, it provides a mechanism for transferring polygons and polylines.

The basic coodinate information in the GENERATE format is kept in one of three types of text (TXT)

files, depending on the type of the objects in the file. For point objects, each line of the file contains a

longitude/ latitude coordinate pair, preceded by an index number. For polygon objects, the file

contains a sequence of polygons, where each polygon is a sequence of lines. The first line of a

polygon is a longitude/ latitude coordinate pair, preceded by an index number. This first

coordinate pair specifies a center or labelling point for the polygon (this point is not used by

MARPLOT). The remaining lines of a polygon are longitude/ latitude coordinate pairs, without an

index number. The final line of a polygon is the keyword END. For polyline objects, the file

contains a sequence of polylines, where each polyline is treated the same as a polygon in a polygon

file, except that the first line of each polyline contains only an index number (and not the

coordinates of a labelling point). In all cases, the file ends with the keyword END. Below are the

sample GENERATE TXT files, one for each type of object. Note that the index numbers are

arbitrary: the index numbers in a given file must be unique, but need not be sequential and need not

start with 1.

sample file of point objects:

POINTS1.TXT

sample file of polygon objects:

POLYS1.TXT

sample file of polyline objects:

LINES1.TXT

1 -77.518536 38.782300
2 -77.415016 38.774448
END

5 -77.595456 38.679660
-77.595456 38.679660
-77.565984 38.640400
-77.595456 38.679660
END
6 -77.373320 38.813708
-77.373320 38.813708
-77.379784 38.771644
-77.358224 38.735188
-77.339528 38.822120
-77.362536 38.803612
-77.373320 38.813708
END
END

3
-77.536512 38.764912
-77.502000 38.743600
-77.543696 38.729016
-77.495528 38.724528
-77.478280 38.693684
END
4
-77.464616 38.768840
-77.466056 38.743040
-77.398480 38.747528
-77.382664 38.720044
END
END

Numbers on a line can be delimted by spaces, tabs, or commas, or any combination of these.

MARPLOT’s GENERATE format extends these three basic TXT file formats with the option for two

additional files, corresponding to each basic TXT file, which specify attributes of each object in the

TXT file. The two files are the data (DAT) file and the field (FLD) file. When MARPLOT imports a

GENERATE TXT file, it looks for a file in the same folder as the TXT file, with the same name, except

with a “ .DAT” extension in place of the “ .TXT” extension. If a DAT file is present, it contains

attributes for the objects in the TXT file. The possible attributes are the same as those in the Simple

Point Format: object name, layer name, map name, symbol, color, ID. By default, MARPLOT

assumes that all of these fields are present in the DAT file, in the order just given, for each object in

the TXT file. The FLD file (a file with the same name as the TXT file but with a “ .FLD” extension)

4

can be used to override this default in order to specify only some of the fields and/ or to change their

order. A FLD file contains just a single line of text. The line contains one or more of the following

keywords, separated by spaces and/ or commas: INDEX, NAME, LAYER, MAP, SYMBOL, COLOR,

ID. The keywords specify which fields are present in the corresponding DAT file, and what their

order is on each line. A special case is the INDEX keyword, which must alway appear, and must

always be the first item on the line. This is because the object’s index number in the TXT file must

also appear as the index number of the corresponding line in the DAT file.

The following example shows the POINTS1.TXT file from above, along with corresponding DAT

and FLD files. In this case, just the color, symbol, and object name are specified.

(Note: an extended format is available for RGB colors; see MARPLOT colors)

POINTS1.TXT POINTS1.DAT POINTS1.FLD

1 -77.518536 38.782300
2 -77.415016 38.774448
END

1 BLUE 53 SITE_A;_CA
2 GREEN 51 SITE_B;_WA
END

INDEX COLOR SYMBOL NAME

Because spaces and commas are used as delimiters between fields in the DAT file (the same as with

the TXT file), spaces and commas may not be used within an object name, layer name or map name

in the DAT file. However, MARPLOT allows spaces and commas in names. To get around this

problem, MARPLOT automatically converts underscores to spacesand semicolons to commas when

importing, and does the reverse conversions when exporting. Thus, the name “ SITE_A;_CA” in the

file above actually represents “ SITE A, CA” in MARPLOT.

When MARPLOT exports a set of GENERATE TXT files, it writes corresponding DAT and FLD files

for each TXT file. The fields included in the FLD and DAT files are chosen by the user at the time of

the export. MARPLOT always writes a total of nine files for a GENERATE export, one of each type

of file (TXT, DAT, FLD) for each type of object (point, polygon, polyline). It does this even if not all

three types of objects are being exported. For instance, if you export just points, you will still get

TXT, DAT, and FLD files for polygons and polylines, but they will be empty.

MARPLOT Technical Documentation

5

MARPLOT import/export (MIE) file format

marplot-object = keys head body

keys = owner modifier location mod-date

owner = modifier = "4 (or fewer) character string"

location-code = "5 (or fewer) character string"

mod-date = "mm/dd/yyyy"

head = version-number prefix name alias-count layer map type id
 digitization-scale CFCC FIPS-place-code etc state-county

(Note: In head of ALIAS objects, all fields are same as original object, except id is prefixed with

unique digit(s) and prefix, name differ.)

alias-count = version-number = short

layer = prefix = name = "string"
map = "string" | "" (if empty, current "user's map" is used)

type = RECT | CIRCLE | POINT (SYMBOL) | POLYLINE | POLYGON | TEXT |
 PICTURE | ALIAS

id = "16-digit hex string" | "" (if empty, random ID is assigned)

digitization-scale = FIPS-place-code = state-county = long

etc = ONLY | ETC

CFCC = "XXX" (3-character string)
 -> for city/place polygon objects, CFCC is M00
 -> for county polygon objects, CFCC is M01
 -> for census block polygon objects, CFCC is M02
 -> for PICT objects, CFCC starts at X00 (unclassified)
 -> for TEXT objects, CFCC starts at X00 (unclassified)

body = color line-width symbol long lat ;;; for POINT

 | color line-width line-pat fill-pat
 lo-long low-lat hi-long hi-lat ;;; for RECT, CIRCLE

 | frame "filename" lo-long low-lat hi-long hi-lat ;;; for PICT

 | color frame font style "text"
 lo-long low-lat hi-long hi-lat ;;; for TEXT

 | color line-width line-pat
 fill-pat { segment ... segment } ; for POLYLINE, POLYGON

 | id ; for ALIAS

6

lat = long = low-lat = lo-long = hi-lat = hi-long = signed float
 | floatdirection | deg°min'sec"direction | signdeg°min'sec"

direction = N | S | W | E

sign = + | - (Note: western longitudes are -, eastern longitudes are +.)

color = BLACK | WHITE | DARKGRAY = DARKBLUE | GRAY | LIGHTGRAY | BROWN |
 LIGHTBROWN = OLIVE | DARKGREEN | GREEN | LIGHTBLUE | BLUE |
 PURPLE | PINK | RED | ORANGE = AQUA | YELLOW

 (Note: an extended format is available for RGB colors; see MARPLOT colors)

font = style = symbol = integer (short)

frame = YES | NO

line-width = 1 | 2 | 4 | 6 | 8 | 10

fill-pat = BLACK | WHITE (NONE) | DARKGRAY | GRAY | LIGHTGRAY
 | VERTSTRIPES | HORIZSTRIPES | UPSTRIPES | DOWNSTRIPES
 | BOXES

line-pat = BLACK | WHITE (NONE) | DARKGRAY = TWOPOINT
 | GRAY = THREEPOINT | LIGHTGRAY = FOURPOINT
 | VERTSTRIPES = DOTS | HORIZSTRIPES = DASHDOTDOT
 | UPSTRIPES = DASHDOT | DOWNSTRIPES = DASHES | RAILROAD

segment = { from-to long lat { attribute value } ... { attribute value } }

from-to = FROM | TO

attribute = TLID | CFCC | VERS | SAL | SAR | EAL | EAR | ZCL | ZCR | INVIS

value = integer (long)

Meaning of terms

owner, modifier = code of person/ organization that created/ modified object.

location-code = usually FIPS state/ county code of county the object is in.

version-number = version of MIE syntax used (current version is 2).

prefix = the prefix of the object’s name (usually for roads) such as “N” or “SW” .

alias-count = the number of alias “ objects” (alternate) names the object has.

digitization-scale = scale at which object was originally digitized.

CFCC = Census Feature Classification Code.

FIPS-place-code = city/ town FIPS number, unique within the given county.

etc = ETC if object crosses into other places (cities/ towns), otherwise ONLY.

state-county = usually the same as the location-code.

TLID = TIGER/ Line ID number of segment from TIGER record type 1.

VERS = TIGER/ Line database version number.

SAL, SAR, EAL, EAR = start address left/ right, end address left/ right

ZCL, ZCR = ZIP code left/ right

INVIS = segment is invisible (value = 0).

MARPLOT Technical Documentation

7

Sample MIE Entries

The text in the box represents an actual sample MIE file, except that the <bracketed> terms would

have to be filled in or left empty. This sample file contains two objects, a polygon and a point.

"FRED" "FRED" "00000" "05/24/1994" 2

"" "Central Park" 0 "layer name" "<map name>" POLYGON "<id number>" 0 "X00" 0 ONLY

0

BLACK 1 BLACK NONE { { FROM -76.992700 38.844000 }

 { TO -76.992400 38.842600 }

 { TO -76.992100 38.841100 }

 { TO -76.992200 38.840000 }

 { TO -76.991700 38.839200 } }

"MSIS" "MSIS" "00000" "05/24/1994" 2

"" "ABC Chemical" 0 "layer name" "<map name>" POINT "<id number>" 0 "X00" 0 ONLY 0

BLACK 1 LANDMARK -76.992700 38.844000

Note: Items in <brackets> can be empty (i.e., "").

Note: The constant LANDMARK can be replaced with any integer ascii value to specify any

character in the MARPLOT font.

Special MIE Symbols

ASCII code Macintosh character Windows character MIE value
---------- ------------------- ----------------- ---------
0x27 single quote single quote minutes
0x22 double quote double quote seconds

0xA1 degrees i (monetary unit) degrees
0xB0 infinity sign degrees degrees
0xBA integral sign degrees degrees

0xAB slanted apostrophe << (Romance quote) minutes
0xD5 smart apostrophe O with tilde minutes
0xB4 yen slanted apostrophe minutes
0x92 accented i smart apostrophe minutes

0xD3 smart close quotes O with accent seconds
0x94 i with caret smart close quotes seconds

8

MARPLOT 1.0.1 import/export file format

(Note: In MARPLOT 3.0, this format is used for the IMPT IAC message. Also, MARPLOT 3.0 can

import files in this format (useful for transferring objects from MARPLOT 1.0.1 to MARPLOT 3.0.

For all other purposes, use the new MIE format.)

The first line of the file contains just the number 1. This is a flag for MARPLOT

that the file is in the extended format.

The next lines, which are optional, associate overlay names with overlay ID numbers.

For each line, the format, including the leading asterisk, is: * <overlay ID> <overlay name>

Then, on the subsequent lines, each object is described by a group of eight or nine lines:

 first line (all on the same line even though there are three lines here):

 <object ID>, <overlay ID>, <type code>, <hilat>, <hilong>, <lowlat>, <lowlong>,

 <color>, , <size>, <style>, <fill pattern>, <line pattern>, <line width>,

 <symbol code or 0>, <object name>

 next line (for polygons only):

 [indent] <number of points>, <point1 lat>, <point1 long>, ... , <pointn lat>, <pointn long>

 next lines:

 [indent] <pseudo signature>

 [indent] <real signature>

 [indent] <alias>

 [indent] <application path>

 [indent] <document path>

 [indent] <record>

 [indent] <note>

Notes:

1) Each object is defined by 8 lines (9 for polygons). There are no blank lines between

objects; the ID of one object starts the line right after the note of the previous object.

2) [indent] indicates that the line must start with at least one space or tab character. Other

lines must NOT be indented.

3) If you want to leave one or more of the last 7 lines of a given object's definition blank,

you must still indent the line (a space followed immediately by a return would do).

4) Here is a description of each of the fields:

(a) The <object ID> is a 16-character hexadecimal string that MARPLOT uses to

uniquely identify objects. You should never invent object ID's yourself. When

importing a new object, use -1 for <object ID>. This is a flag to MARPLOT to

generate a new ID for this new object. You should fill in the <object ID> with a real

id only when you want to modify an object that you know is on the map. In this

case, MARPLOT will not create a new object but will modify the attributes of the

object whose id you specify. If you export objects from one MARPLOT map and

import them onto another, the objects will retain their IDs. Note, therefore, that

there are two ways in which an object can be imported. A "new" import creates a

new object with a new id. An "overwrite" import modifies an object that already

exists on the map. This new/ overwrite terminology is used below.

MARPLOT Technical Documentation

9

(b) The <overlay ID> is a small (base 10) integer indicating which overlay the object is

on. Each map contains at least one overlay, which has some ID number. If the

<overlay ID> number for an object being imported is the ID of an actual overlay on

the map, the object will be placed on that overlay. Otherwise, the object will be

placed on the top overlay. Since -1 is not a valid overlay number, you can use -1 for

<overlay ID> to put the object on the top overlay, for a new import, or retain the

object's previous overlay, for an overwrite import. If overlays have been defined on

starred lines at the top of the file, these can override the normal behavior. In

particular, if the <overlay ID> field of the object being imported matches one of the

<overlay ID> numbers at the top of the import file, the object will be placed on the

overlay with the name that is associated with this ID at the top of the file. If there is

no overlay with this name, a new overlay with this name is created. Thus, objects

"carry along" their overlays when they are exported from one map and imported

onto another.

(c) The <type code> is a small integer that detemines the type of the object. The type

codes are: line = 0, ellipse = 1, rectangle = 2, symbol = 5, polygon = 6. You can use -

1 to retain the object's type in an overwrite import. For new imports, you must

provide a type. On an overwrite import, it is an error to specify a type other than

the one the object previously had.

(d) The <hilat>, <hilong>, <lowlat> and <lowlong> fields specify the bounding

rectangle of the object. These are decimal numbers. The "hi" values are nothern-

and western-most, and the "low" values are southern and eastern-most. Negative

values indicate southern and eastern hemispheres. For point objects, <hilat> =

<lowlat> and <hilong> = <lowlong>. For polygon and ellipse objects, <hilat> =

highest latitude value, <lowlat> = lowest latitude value, etc. These fields can be -1

to keep the object in the same position for an overwrite import. For a new import,

you must provide real lat/ long values.

(e) The <color> is a small integer from 1 to 16 indicating the color of the object. The

colors are ordered in the same way as the Color menu in MARPLOT:

 black = 1, white = 2, dark grey = 3, grey = 4, off white = 5, brown = 6,

 light brown = 7, dark green = 8, green = 9, light blue = 10, blue = 11,

 purple = 12, pink = 13, red = 14, orange = 15, yellow = 16.

 For an overwrite import, use -1 to retain the object's previous color. On a new

import, -1 can be used to give the object the default color for its overlay.

(f) The is the number of the font in which the object's name is drawn.

 0 = Chicago, 3 = Geneva. Other font numbers can be found on page I-236 of Inside

Macintosh. For an overwrite import, use -1 to retain the object's previous font. On

a new import, -1 can be used to give the object the default font for its overlay.

(g) The <size> is the size in which the object's name is drawn. For an overwrite

import, use -1 to retain the object's previous size. On a new import, -1 can be used

to give the object the default size for its overlay.

(h) The <style> is the style in which the object's name is drawn. 0 = plain. Other style

numbers are generated by adding together constants as described on page I-152 of

Inside Macintosh. For an overwrite import, use -1 to retain the object's previous

style. On a new import, -1 can be used to give the object the default style for its

overlay.

(i) The <fill pattern> determines the pattern with which the object will be filled.

 0 = no fill, 1 = black, 2 = white, 3 = dark grey, 4 = gray, 5 = light gray,

 6 = vertical stripes, 7 = horizonal stripes, 8 = downward-sloping stripes,

 9 = upward-sloping stripes.

10

 Fill pattern has no meaning for symbol and line objects but you must still provide a

value. For an overwrite import, use -1 to retain the object's previous fill pattern. On

a new import, -1 can be used to give the object the default fill pattern for its overlay.

(j) The <line pattern> determines how the outline of the object will be drawn.

 1 = black, 2 = white, 3 = dark grey, 4 = gray, 5 = light gray,

 6 = vertical stripes, 7 = horizonal stripes, 8 = downward-sloping stripes,

 9 = upward-sloping stripes, 10 = plaid.

 Line pattern has no meaning for symbol objects but you must still provide a value.

For an overwrite import, use -1 to retain the object's previous line pattern. On a

new import, -1 can be used to give the object the default line pattern for its overlay.

(k) The <line width> is a small integer that determines the width (and height) of the

outline of the object. Line width must be one of 1, 2, 4, 6, 8 or 10. For symbol

objects, <line width> determines the size of the dots when symbols are shown as

dots in MARPLOT. For an overwrite import, use -1 to retain the object's previous

line width. On a new import, -1 can be used to give the object the default line

width for its overlay.

(l) The <symbol code or 0> field should be 0 for all objects except symbol objects. For

symbols, this field is the ascii number of the character in the Marplot font that is

drawn to represent the object. You can determine these ascii numbers by looking at

the Marplot font using the ResEdit utility program. Alternatively, you can figure

them out by looking at the symbol menu in MARPLOT, which shows all of the

characters in the Marplot font, five per line, starting at ascii 0. For an overwrite

import, use -1 to retain the object's previous icon. On a new import, -1 can be used

to give the object the default icon for its overlay.

(m) The <object name>, which ends the line, is any string of characters. Only the first

30 characters are used by MARPLOT in the object's name. For an overwrite import,

use -1 to retain the object's previous name. On a new import, you must provide a

name (which can of course be empty).

(n) If the type code of an object is 6, the object is a polygon, and MARPLOT expects

that the second line of the object's definition will contain the points that define the

polygon. The first number on this line indicates the number of lat/ long pairs to

follow. Then come the pairs, again using decimals with western longitudes

positive. Even if there are very many points, they must all be on this one line of the

file. To indicate that the polygon is "closed", the coordiates of the first point should

be the same as the coordiates of the last point. Otherwise the polygon is

considered "open". For an overwrite import, if you have specified the <type> with -

1, but the object is a polygon, you must NOT include this ine containing the

polygon points. On the other hand, if you do specify <type> 6, you MUST include

this line.

The next six lines of the object definition are used to define link information between

the object and an external application.

(o) The <pseudo signature> is a four character identifier, which is the pseudo

signature of the application to which the object is linked. Pseudo signatures are

explained below in the part of this document on IAC. For an overwrite import, use

-1 to retain the object's previous pseudo signature. On a new import, you must

provide a pseudo signature (which can be blank, indicating that the object is not

linked).

MARPLOT Technical Documentation

11

(p) The <real signature> is a four character identifier, which is the real signature of the

application to which the object is linked. The difference between real and pseudo

signatures is explained below. For an overwrite import, use -1 to retain the object's

previous real signature. On a new import, you must provide a real signature

(which can be blank, indicating that the object is not linked).

(q) The <alias> is a short string containing the "canonical" name of the application to

which the object is linked. For instance, if the object is linked to a program that

happens to be called "ALOHA 5.0 testing version", the <alias> might be just

ALOHA. Whenever you provide an <application path>, you must provide an

<alias>. Otherwise you can leave the <alias> blank to retain the previous alias of

the object.

(r) The <application path> is the full path name of the application to which the object

is linked. A full path name of the form "disk name:folder name:subfolder name: ...

:file name". This path name is self-correcting in the sense that if MARPLOT tries to

use it and finds that it is invalid, the user is asked to locate the file and the path is

repaired. Thus, you can export a linked object on one computer and import it on

another computer. The path names will be incorrect but will be corrected upon

their first use. You can leave the application path blank or use -1 to retain the

object's previous application path.

(s) The <document path> is the full path name of the document to which the object is

linked. It is self-correcting in the same way as the <application path>. You can

leave the application path blank or use -1 to retain the object's previous application

path.

(t) The <record> is an integer whose absolute value is smaller than 2 billion. It

indicates the record within the specified document to which the object is linked.

On an overwrite import, you can use -1 to retain the object's previous record. On a

new import you must provide a value (use 0 if the object is not linked).

(u) The <note> is a sequence of up to 80 characters containing an arbitrary note about

the object. The note must all be on one line and therefore cannot contain any return

characters. For an overwrite import, use -1 to retain the object's previous note. On

a new import, you must provide a note (which can of course be blank).

Example:

This sample import file contains two objects, each on a different overlay. They are both linked,

although the object linked to ALOHA is not linked to a document. The second object is a polygon

and thus its second line contains the polygon points.

1
* 1 Scenarios
* 0 Hospitals
A6CBE00FA0060404, 0, 5, 38.929328, 77.624480, 38.929328, 77.624480,14, 3, 9, 0, 0, 1, 1, 52, St. Mark's Hospital
 SPNT
 SPNT
 SuperPaint 2.0
 HD-120:Applications:SuperPaint:SuperPaint 2.0
 HD-120:Applications:SuperPaint:graph
 0
 This is the note for this symbol object.
A73158EFCC7044F0, 1, 6, 38.927548, 77.566264, 38.897768, 77.512048,1, 3, 9, 0, 4, 1, 1, 0, Facilities #CC7044F0
 5, 38.927548, 77.548000, 38.897768, 77.566264, 38.901768, 77.512048, 38.917768, 77.512616, 38.927548, 77.548000
 ALHA
 ALH5
 ALOHA
 HD-120:Newest CAMEO:ALOHA Folder:ALOHA

 0
 This plume was created by ALOHA.

12

Map file formats

Note: In short and long integers, the most significant byte is on the left (Mac

style, opposite of PC style).

MARPLOT Technical Documentation

13

OBJ (object) files

1: length of object (not counting the four bytes for the length) (long)

 owner code (long)

 modifier code (long)

 location code (state + county for TIGER objects) (5 bytes)

 modification date (number of seconds since midnight January 1, 1904 = long)

 version flags (nth even bit = app #n can read obj; nth odd bit = app #n can write obj) (long)

 type (high bit = 0, reserved for future use) (byte)

 id (8 bytes)

 object 1 low-long + 180000000 (long) low long/ lat used to hold ID of original

 object 1 low-lat + 90000000 (long) for alias objects

 object 1 hi-long + 180000000 (long)

 object 1 hi-lat + 90000000 (long)

 digitization scale (long)

 CFCC (long)

 FIPS place-code (place code of majority of segments,

 or 0 if no place;high order bit set if in more than one place) (long)

 state-county (long) / / holds the RGB values for RGB-colored objects (see MARPLOT colors)

 alias count (byte)

 length of prefix (total number of bytes allocated for prefix) (byte)

 prefix (variable, might contain 0-terminator and thus not use all bytes allocated)

 length of name (total number of bytes allocated for name) (byte)

 name (variable, might contain 0-terminator and thus not use all bytes allocated)

2: POINT OBJECTS:

 color (4 bits) + line-width (4 bits) (total = byte)

 symbol (byte)

 RECT/ CIRCLE OBJECTS:

 color (4 bits) + line-width (4 bits) (total = byte)

 line-pat (4 bits) + fill-pat (4 bits) (total = byte)

 PICT OBJECTS:

 frame (byte)

 file name (32 bytes)

 TEXT OBJECTS:

 color (4 bits) + frame (4 bits) (total = byte)

 font (short)

 style (byte)

 length of text (short)

 text (variable, might end with 0-space)

 POLYLINE/ POLYGON OBJECTS:

 color (4 bits) + line-width (4 bits) (total = byte)

 line-pat (4 bits) + fill-pat (4 bits) (total = byte)

 number of segments (long)

 segment 1 long + 180000000 (long; high order bit: 1 = FROM, 0 = TO)

 segment 1 lat + 90000000 (long)

 segment 1 flags (see below) (short)

14

 segment 1 attribute 0 (long)

 . . .

 segment 1 attribute n (n < 15) (long)

 < repeat for number of segments; possibility of extra 0-filled segment space at the end >

MARPLOT Technical Documentation

15

flags: bit indicates presence, in order, of

 0 TLID

 1 CFCC

 2 VERS (+ polyID * 100 for TIGER polygons)

 3 - 4 available for use by MARPLOT users

 5 start address left

 6 start address right

 7 end address left

 8 end address right

 9 zip code left

 10 zip code right

 11 - 14 reserved for future use

 15 segment is invisible (no corresponding attribute long is needed or used)

SUM (summary) files

 offset (long) / / byte index of start of object in OBJ file (negative -> object is deleted)

 low-long + 180000000 (long) <-

 low-lat + 90000000 (long) <- all 0 for

 hi-long + 180000000 (long) <- alias objects

 hi-lat + 90000000 (long) <-

 id (8 bytes)

 first four characters of object's name (null terminated if < 4 chars) (4 bytes)

 < repeat for number of objects >

SM2 (summary of summary) files

This file may not always exist for a given layer on a given map. When it does, it is a list of

bounding rectangles, one rectangle for each 1000 summary records. Each rectangle is the

union of its 1000 constituent object rectangles. The format of each rectangle is:

 low-long + 180000000 (long)

 low-lat + 90000000 (long)

 hi-long + 180000000 (long)

 hi-lat + 90000000 (long)

1000 * <number of SM2 records> may be less than <number of SUM records>, but not

greater.

16

NNX (name index) files
 NOTE: NNX files are no longer used in MARPLOT.

This file may not always exist for a given layer on a given map. When it does, it applies to

all layers whose layer names match the prefix of the NNX file, possibly including an

extension in parentheses. For instance, if there is an NNX file "ROADS.NNX", this file

contains is an index into both the "ROADS" and "ROADS (MAJOR)" layers on that map.

The NNX file is a list of pairs. Each pair contains a long, which is an offset into an OBJ file,

and a small integer n, where n determines which of the layers with the same name (modulo

parenthetical extensions) the object belongs to. n ranges from 1 to the number of layers

with the given name. n indexes the layers in alphabetical order. For instance, in the case of

the roads example, if n = 1 the object is on the "ROADS" layer, and if n = 2, the object is on

the "ROADS (MAJOR)" layer, since it is alphabetically second.

 Here is the format:

 offset (long)

 layer n (byte)

 < repeat for number of objects in union of files with the given name >

 The file is ordered according to the following sort expression:

 name + prefix + place name + CFCC

LYR (layer information) files

 layer name (32 chars)

 layer's world rectangle on this map

 low-long + 180000000 (long)

 low-lat + 90000000 (long)

 hi-long + 180000000 (long)

 hi-lat + 90000000 (long)

 number of object on layer on this map (long)

MAP (map information) files

 map name (42 chars)

 map ID (long; unused)

 default location / owner (5 characters) ***

 inUse (char; unused)

 searchMe (char)

 intersectMe (char)

 *** either a state-county code or

SSSS0, where SSSS = owning application signature (first char non-digit)number of

object on layer on this map (long)

FNT (alternate font) files

MARPLOT Technical Documentation

17

This optional file contains just a string of characters that specify the name of the font to be

used on the given layer (on all maps, not just the map in which this file is included) in

place of the MARPLOT font.

18

VEW (view information) files

 view name (32 chars)

 map map (42 chars)

 view's world rectangle

 low-long + 180000000 (long)

 low-lat + 90000000 (long)

 hi-long + 180000000 (long)

 hi-lat + 90000000 (long)

 scale at which view was saved (long)

 user owned flag (char; unused)

 owned flag (char; unused)

 fileName (32 chars; unused)

 volume reference number (short; unused)

 directory ID (long; unused)

MSC (MARPLOT search collection) files

 These files contain one line per object. Each line has the format:

 "<map name>" "<layer name>" "<id>" <flags> <offset>

 Where

 <map name> is the name of the object’s map

 <layer name> is the name of the object’s layer

 <id> is the object’s 16-digit MARPLOT id number

 <flags> is an integer meaningful to MARPLOT

 <offset> is the offset in the given OBJ file of the object

 Note: <offset> is currently unused; for each object, MARPLOT searches for the given

<id> on the given layer file, if it exists.

 Note: <flags> is a combination of the following bits:

 OP_SORTED = 1 ; used internally by MARPLOT

 OP_ALIAS = 2 ; object is an ALIAS

 OP_MARKED = 4 ; not used

MARPLOT Technical Documentation

19

VWR and MNU files

These are files that store information about friend applications and their Sharing menus.

PROG.VWR contains the "business card" information about a friend application.

It has the form:

signature

pseudo-signature

application name

application path

document path

For example, here is a file called CAMEO.VWR:

WILD

CAMO

CAMEO

C:\APPS\FOXPRO

C:\CAMEO\CAMEO.PRG

Not all applications need a corresponding document; in fact most don't. In this case the

fourth line can just be blank (but you need to extra return).

PROG.MNU contains the text of the Sharing menu for the friend.

It has the form:

signature

pseudo-signature

menu name

menu item 1

...

menu item n

For example, here is a file called CAMEO.MNU:

WILD

CAMO

CAMEO

Help...

-

Get Info

Link

-

Go to CAMEO

If a line starts with a dash, it represents a dividing line in the menu.

20

CDMAPS files

These files are used by MARPLOT to access large collections of maps on CDs or other media

without having to read each .MAP and .LYR file at startup.

The format is as follows: The first line gives the volume label (disc name) of the CD or drive

containing the maps. This is followed by n lines, one for each layer that is represented in any of the

maps on the CD. Each line has the following format:

 N FILENAME, Layer Name

where N is a unique character, such as a digit, used to flag the layer throughout the file, FILENAME is

the name of the files, without the suffix, that the layer is stored in on the disc, and Layer Name is the

name of the layer as it appears in MARPLOT.

Following these layer definitions is one line that contains just the word MAPS, which flags the start

of the maps section. For each map, the first line is of the format:

 path FIPS Map Name

where path is the DOS-format path to the map’s directory on the disc, starting from but not

including the root directory, FIPS is the 5-digit FIPS state/ county code for the map, and Map Name is

the name of the map as it appears in MARPLOT.

After this first line, there is one line for each layer represented on the map. Each of these layer lines

is of the format:

 N LOLONG LOLAT HILONG HILAT NUMOBJECTS

where is N is the unique character corresponding to the layer, as specified at the top of the file, the

next 4 fields are the MARPLOT-format low longitude, low latitude, high longitude and high

latitude of the bounding world rectangle of the layer on the map, NUMOBJECTS is the number of

objects in the layer on the map. To convert to the MARLOT fomat from a decimal lat/ long value

(using negative numbers in the western and southern hemispheres), write the value to six decimal

place accuracy, but leave out the decimal, then add 180000000 to longitude values and 90000000 to

latitude values.

A sample file follows.

Atlas
4 PLACES, Places
8 WATER, Water
MAPS
\SHIO\MAPS\09\09007\ 09007 MIDDLESEX COUNTY, CT
4 107246597 131177673 107693992 131646900 16
8 107250747 131177673 107692817 131644699 870
\SHIO\MAPS\09\09009\ 09009 NEW HAVEN COUNTY, CT
4 106672447 131087009 107471633 131644214 19
8 106672447 131087009 107471633 131643100 1012
.
.
.

MARPLOT Technical Documentation

21

MARPLOT ID numbers

MARPLOT ID numbers are 8 bytes. They are often interpreted as two sequential long values (the

"hi" and "lo" fields of the ObjectID structure) or as a 16-character hex string.

A) ID numbers randomly assigned by MARPLOT.

When an object is created by hand in MARPLOT, or is imported with an ID of -1, MARPLOT

assigns the objects a new ID number which is designed to be random enough to be universally

unique. The following function is used to generate the ID.

void GenerateNewID(ObjectID *id)

{

 static long ticks = 0, count = 0;

 unsigned long seconds;

 if (!ticks) ticks = TickCount();

 GetDateTime(&seconds);

 id->lo = (ticks << 16) + (++count);

 id->hi = seconds;

}

This function builds the 8 random bytes out of (1) the computer’s tick count the first time

GenerateNewID() is called during this run of MARPLOT, (2) the computer’s second count at the

time the ID is being generated, and (3) a running count of the total number of objects made during

this run of MARPLOT.

B) ID numbers pre-set to help an external application identify an object. (In the following, ssccc

stands for the two-digit state code and three-digit county code.)

 - A Census Block Group polygon object is output from the TIGER Translator with its

 id = "000Asscccttttxxb"

 where tttt is the four-digit basic Census Tract number (padded on the left with 0's)

 xx is the two-digit Census Tract suffix (padded on the left with 0's)

 b is the first digit of the Block Number of the blocks that make up the group

 - A city/ place polygon object is output from the TIGER Translator with its

 id = "00000Bsscccppppp"

 where ppppp is the five-digit FIPS place code (padded on the left with 0's)

 - A county polygon object is output from the TIGER Translator with its

 id = "0000000000Cssccc"

 NOTE: A thinned county polygon object has the same ID as its complete couterpart.

 - A landmark polygon object, such as a water body or university, is output from the

 TIGER Translator with its

 id = "Dsscccpppppppppp"

 where pppppppppp is the ten-digit polygon code (padded on the left with 0's)

 - A landmark point object, such as a school or lighthouse, is output from the

 TIGER Translator with its

 id = "Esscccllllllllll"

 where llllllllll is the ten-digit landmark code (padded on the left with 0's)

 - A polyline object, such as a road, is output from the TIGER translator with its

 id = "Fssccctttttttttt"

 where tttttttttt is the ten-digit TIGER line ID of one of the segments making up

 the object; the segment chosen is the one with the lowest TIGER line ID

 number of all the segments making up the object (padded on the left with 0's)

22

 - An alias object for a polyline object is output from the TIGER translator with its

 id = "FFn000tttttttttt"

 where n (1 - 9) is the alias count (e.g., 5 for the 5th alias of the original)

 tttttttttt matches the tttttttttt part of the of the original (padded left)

MARPLOT Technical Documentation

23

Vector field objects

If a polyline object has a CFCC code of “V00” it is treated specially by MARPLOT as a vector field.

A vector field object is assumed to be a a sequence of FROM-TO point pairs. Vector fields are treated

specially in the following ways:

• The name of the object is always in the format “ 1 in = 2 m/s” . Here, the “ in” may be

replaced by “ cm” if desired, the “ 2” can be any value, and the “ m/s” may be replaced by any unit

desired. In other ways, the name must match the given format exactly, including spaces.

• The “digitization scale” field of an object normally stores the number N to indicate that the

object’s original digitization resolution was 1:N. For a vector fild object, the digitization scale

indicates the maximum length of a vector component unit in millionths of a degree latitude. For

instance, if this number is 1000000, MARPLOT can assume it will never have to display this object

at a scale such that a unit length of any vector’s u or v component, when translated from inches on

the screen to real world coordinates at the current scale, exceeds one degree latitude (60 nautical

miles). If the user zooms out far enough that this condition is violated, MARPLOT displays a gray

box in place of the vector field. The purpose of this scale limit is the enable MARPLOT to deal

efficiently with vector objects by placing an upper bound on their real-world extents. It is up to the

application that creates the vector field object’s MIE file to set this number appropriately. Using a

large number like 1000000 will work for most purposes. Using the smallest number possible will

give maximum efficiency.

• The “ state-county” field of an object normally stores a 5-digit number that encodes the state and

county to which the object belongs (since MARPLOT data is often derived from county-based

census data). For a vector field object, this number is a scale factor with an implied six decimal

places. Thus, 1000000 indicates a scale factor of 1, meaning no scaling, while 2000000 indicates a

scale factor of 2, meaning that each vector’s u-v values are considered to be twice their original

value.

• When a vector field object is created during an MIE import (this is the only way to create a vector

object), MARPLOT checks to make sure the name is in the proper format, and sets the state-

county/ scale factor to 1000000. It uses the imported digitization scale/ max length value to store

the vector field using specially encoded latitude/ longitude coordinates. The MIE record is

assumed to contain a list of FROM-TO point pairs, with the FROM points in latitude/ longitude

coordinates, and the TO points in the vector field’s u-v units.

• When a vector field field is drawn, the length of an individual vector is based on that vector’s u-v

values, and the scale specified by the object’s name. If the user renames the vector to change this

scale, the field is redisplayed accordingly (MARPLOT will not allow the user to enter an vector field

name that is not in the proper format). If the user clicks and drags the end of any vector in the field,

the state-county/ scale factor is modified accordingly. Conceptually, this can be thought of as

simultaneously scaling the u-v values of all vectors in the field.

• When a vector field object is exported back into an MIE file, any scaling that has taken place is

reflected in scaled u-v vlaues, and the scale written to the MIE file is always 1000000.

24

MARPLOT colors

Millions of colors

With the release of MARPLOT 3.2, MARPLOT allows each object to carrys its own RGB color value,

allowing for millions of colors. You can assign colors to objects by hand, using the Color menu in

MARPLOT’s menu bar and the color popup menu in the Object Settings dialog box, or via import.

The three MARPLOT import formats (MIE, Simple Point, and GENERATE) have been extended to

allow an RGB value in the fields where previously a short (1 -16) integer value (or an equivalent

constant name) was allowed. In place of a constant such as RED, for example, you could use the

string of characters R200G100B50. This value represents the RGB color with a red value of 200, a

green value of 100, and a green value of 50. These values are each in the range of 0 (least bright) to

255 (most bright).

NOTE: Internally, MARPLOT stores the RGB values for an object in its state-county field. The high

byte of this long is used for flags. If bit 0 of the high byte is set, the field represents an RGB value (as

opposed to an obsolete state-county value). If bit 1 of the high byte is set, the RGB value is active

and overrides the object’s old style (1 – 16) color. The remaining three bytes hold, from right to left,

the red, green and blue values. Note that it is possible to transfer RGB-colored objects in import files

without the use of the extended color format (e.g., R200G100B50) in the color field; the state-county

field contains all of the information necessary and the extended color format is provided only for

encoding convenience.

“Ideal” and ESI colors

MIE value MARPLOT 3.0 “ ideal”

color

MARPLOT 3.2 color Old ESI color New ESI color

(* = change)

1 black black black black

2 white white white white

3 dark-gray dark-gray brown brown

4 gray gray purple purple

5 light-gray light-gray light-purple light-purple

6 brown brown blue blue

7 light-brown light-brown light-blue light-blue

8 dark-green dark-green blue-green blue-green

9 green green green green

10 light-blue light-blue green-yellow green-yellow

11 blue blue yellow yellow

12 purple dark-blue (MIE = 15) orange light-brown *

13 pink purple (MIE = 12) red orange *

14 red pink (MIE = 13) pink red *

15 orange red (MIE = 14) light-brown pink *

16 yellow yellow off-white TBA

MARPLOT Technical Documentation

25

Polygon union

This section describes some technical problems related to polygon union, and

how these problems are solved by MARPLOT 3.0 and MARPLOT 3.2.

Figure A above shows two overlapping polygons. When the union of these two

polygons is computed, we would like to get the polygon in figure D. In most

cases, it is not difficult to compute results as in figure D. However, in the case of

very convoluded polygons, and especially polygons that have one or more sides

in common, computing the “ right” answer as in figure D is quite difficult.

A backup method is simply to take the two component polygons and “ throw

them together” in a “poly-polygon,” that is, a single polygon object that retains

both component polygons as pieces. This would work, except that normally,

when a polygon in MARPLOT is made up of more than one piece (more than

one connected “ island” , “ loop” or “ chain”), it is the case for any two given

pieces either that they do not overlap at all (imagine a lake that is made up of

two disjoint water bodies), or that one is included entirely in the other (imagine

a lake with an island in the middle). MARPLOT’s general rule is that when two

pieces of a poly-polygon overlap, the overlapping area is treated a hole (again,

think of a lake with an island). But in the case of unions, thinking of the

overlapping area as a whole is not what we want (see figure B above).

The solution to this problem in MARPLOT is to give these union polygons a line

pattern of Ø (null or white). This is a flag for MARPLOT not to treat the

overlapping areas as holes. Thus, if we give the polygon in figure B a Ø line

pattern, it appears in MARPLOT as in figure C. Figure C looks good, but

remember that there are really two separate pieces there. This fact can be

ignored until we try to compute the polygon’s area. MARPLOT 3.0 will report

an area that is too large, being the sum of the areas of the two components.

MARPLOT 3.2 simply does not report an area at all for polygons that have a Ø

line pattern.

26

With all of this as background, here is the situation with polygon unions in

MARPLOT 3.0 and MARPLOT 3.2.

Because of the possibility of being unable to compute the “ right” answer (as in

figure D), MARPLOT 3.0 always makes a poly-polygon with a Ø line pattern

(figure C). These polygons look OK, but their area is reported incorrectly by

MARPLOT 3.0 and not reported at all by MARPLOT 3.2.

When MARPLOT 3.2 computes a union, it checks whether the two pieces have

segments in common. If so, it gives up on computing the “ right” answer, and

creates a poly-polygon as in MARPLOT 3.0. If there are no overlapping

segments, it creates (or at least attempts to create) the right answer as in figure D.

When MARPLOT (version 3.0 or version 3.2) computes an “envelope” or “buffer

zone” polygon around a polyline, this is really just a complicated case of several

successive polygon unions. Because these unions almost always involve shared

or very close segments, both versions of MARPLOT revert to the poly-

polygon/ Ø line pattern solution. This means that the areas of these envelope

polygons is reported incorrectly by MARPLOT 3.0, and not at all by MARPLOT

3.2.

More on polygon areas

When MARPLOT 3.0 computes the area of a poly-polygon, it simply adds up

the areas of the component pieces. This gives the right answer if the components

pieces are all disjoint, but gives the wrong answer if the component pieces

contain one another (i.e., if there are holes in the polygon).

MARPLOT 3.2 checks each component piece to see how many other component

pieces it is contained within. If it is contained within an odd number of the other

component pieces, the given piece is considered to be a hole, and its area is

subtracted from the total area of the polygon. Otherwise the area of the given

piece is added to the total area of the polygon. This when pieces completely

contain one another, but there are still problems when two pieces intersect but

one is not completely contained within the other. In this latter case MARPLOT

3.2 will give an incorrect area (but remember that if the polygon’s line pattern is

Ø MARPLOT 3.2 does not report an area at all).

MARPLOT Technical Documentation

27

Advanced example: Editing roads using Export/Import

MARPLOT provides a number to tools for editing roads: dragging points, inserting points, moving

points to the marked point, setting segment attributes.

However, there are a number of changes you might want to make, to roads or to other types of

objects, that cannot be done, or cannot be done in an efficient manner, using MARPLOT’s built-in

editing mechanisms. In this section, we present one such example, and explain how you can effect

the desired change using MARPLOT Export and Import functions.

WARNING: Back up any map directory (folder) that you plan to alter using Export and Import. It is

very easy to lose data by using these functions incorrectly.

The sample Prince William County map includes two roads, Broadlands Road and Broadlands

Lane, which are shown in the picture below. The objects have been modified using MARPLOT’s

Object Settings dialog box to make them stand out. The gray piece in the center is Broadlands Lane.

Broadlands Road is split. Part of it is north of the Lane, and part of it is south of the Lane.

Suppose that the name “Broadlands Lane” is outdated or incorrect. Suppose that we want to

consolidate all of the thick segments in the picture into a single road object called Broadlands Road.

It is possible to do this using the tools seen in the previous example, by extending one or both

halves of Broadlands Road, segment by segment, setting the address ranges to match the

corresponding segments of Broadlands Lane, and finally deleting Broadlands Lane. In this

particular case, Broadlands Lane happens to have only two segments, so this approach could be

done without too much pain. However, if there were many segments in Broadlands Lane, this

segment-by-segment editing would take forever.

A smarter and more general approach is to use Export and Import. The idea is to select one or more

objects, export them to a MARPLOT Import/ Export (MIE) text file, use a text editor to make changes

28

to the MIE file, and then import the modified MIE file back into MARPLOT, which will cause the old

objects to be replaced by the new objects in the file. This technique is very powerful, since any type

of object editing, in princple, can be accomplished this way.

For the purpose of this example, very little understanding of the MIE format is required.

To start, we select both Broadlands Road and Broadlands Lane on the map by clicking each while

holding down the shift key. Then we choose the Export command from the File menu, and choose

to write the objects to an MIE file called TWOROADS.MIE.

Then, using a text editor (such as Notepad on Windows or Simple/ Teach Text on Macintosh), we

open TWOROADS.MIE. Here is how the text of the file appears in the text editor.

We can see that there are two objects in the file. The first “paragraph” is the information for

Broadlands Lane. The second paragraph is Broadlands Road. We see that Broadlands Land is on

the “Roads” layer of the “Prince William County, VA” map, that it’s a POLYLINE, and that its

pattern is DARKGRAY.

The information inside the { braces } specifies the latitude/ longitude values for the points of the

roads, along with the segment attributes such as addresses and ZIP codes. We can select this

coordinate/ segment data for Broadlands Lane in the text editor.

MARPLOT Technical Documentation

29

Notice that we select everything except the starting and ending braces.

Using the cut and paste functions in the editor, we move the selected text from Broadlands Lane to

Broadlands Road.

Notice that we inserted the text just after the first brace in Broadlands Road.

We then delete the remaining text of Broadlands Lane.

That’s it. The segments of Broadland Lane have been assimilated into Broadlands Road.

30

We now save the modified TWOROADS.MIE file (be sure to save it in text-only format) and exit

from the text editor.

Back in MARPLOT, we unlock the Roads layer, and then delete both Broadlands Lane and

Broadlands Road (in fact, it is not necessary to delete Broadlands Road, because the Import would

replace the old one with the new one, but it doesn’t hurt to delete it now anyway; we do have a

backup of this map, right?).

Then we choose Import from the File menu and select the modified TWOROADS.MIE file.

The Import occurs and we see the new Broadlands Road. If we had made an error in editing the

text of the MIE file, MARPLOT would give an error message during the Import, and we would have

to go back to the text editor to fix the file before trying to import it again.

The point of this example has been to show that using Export and Import often provides a

convenient and powerful way to perform MARPLOT edits that would otherwise be very difficult.

For some of these edits, only superficial understanding of the MIE format is required. For others, a

more detailed understanding is needed.

MARPLOT Technical Documentation

31

Interapplication communication (IAC) dictionary

Introduction

This is the MARLOT IAC dictionary. It specifies the messages sent to and from MARPLOT via

Apple Events on the Macintosh and via the NOAA IAC DLLs on Windows.

Overview of CAMEO/MARPLOT/ALOHA IAC Mechanism

These programs send each other messages. On the Macintosh this is done through Apple Events.

On Windows it is done through a combined mechanism of DLL calls, window messages and file

passing. In both cases, an IAC message can be thought of much like a function call to another

program. The name of the function and each of its parameters are specified by 4–character strings.

Unlike a regular function call, some of the parameters in an IAC message are sometimes optional.

Also unlike a regular function call, all parameters in an IAC message are strings.

The exact mechanism for sending a message is technical and machine/ application-dependent.

There are different low-level mechanisms for sending and recieving messages in Macintosh C

programs, Macintosh Hypercard programs, Macintosh FoxPro programs, Windows 16-bit C

programs, Windows 32-bit C programs and Windows FoxPro programs. Fortunately, the actual

low-level code for sending and receiving the messages is short.

Besides sending each other messages, the programs need to be able to do things like launch each

other, bring each other forward, check if another program is running, ask the user to locate a

program that it knows about but can’t find, etc. All of this is machine and application-dependent.

On both the Macintosh and Windows, there is the option for the client to wait for a reply to a

message before continuing on. For a number of reasons, we don’t use this option. When any

CAMEO program sends a message, it simply sends it and goes on. If the application sends a

response in another message a moment later, great, if not, oh well. The main drawback to this

scheme is that applications can lose track of conversations that require a number of messages back

and forth. However, this can be solved by the use of global status variables, or better yet by the use

of the XTRA standard parameter.

Standard Parameters

Each message includes the four parameters MSSG, SIGN, PSIG and XTRA.

The data for the MSSG parameter is the 4-character “ function name” for the IAC function that is

being invoked.

The data for the SIGN parameter is the “ signature” of the client (calling) application. This is

Macintosh terminology for a 4-character code that identifies the application. MARPLOT's

signature is MRP1, CAMEO's signature is WILD, and ALOHA's signature is ALH5. On Windows,

the signatures is used as the server name of the application.

To allow for greater flexibility, and to accomodate some quirks of Hypercard, we use a two-level

application identification scheme. Each application, in addition to its signature, also has a

“ pseudo-signature,” which is sent in the PSIG parameter. MARPLOT’s pseudo-signature is PLOT,

CAMEO’s pseudo-signature is CAMO, and ALOHA’s pseudo-signature is ALHA.

32

Finally, each message includes a parameter called XTRA. When an application receives a message,

it should store the contents of the XTRA parameter in a static/ global variable. When it sends a

message, it should pass the current contents of the XTRA global again as the XTRA parameter.

This allows the XTRA parameter to serve as a transaction identifier. An application can send off a

request for information, tagged in a certain way through the use of the XTRA parameter. When it

gets a reply from the other application, it can “ remember” what it was doing, by looking at the

XTRA parameter. Of course, in the case that an application sets the XTRA parameter, it cannot

simultaneously return another application's previous XTRA parameter. Fortunately, we never

want to do this, since an application is generally either “ asking” or “ responding,” not both.

MARPLOT Technical Documentation

33

Mechanism on Macintosh (System 7 or higher)

To send a message:

Check if the receiving application is running. If not, try to launch it. Create an Apple Event

of type 'NOAA', class 'AEVT'. The individual parameters are packed as Apple Event

parameters, where the keyword of the parameter is the 4-character parameter name, and the

data of the parameter is the data string for the IAC parameter. The parameters are added

with AEPutParamPtr(), and the entire message is sent with AESend().

To recieve a message:

At startup, install an AE handler to handle 'NOAA', 'AEVT' events:

 AEInstallEventHandler('NOAA', 'AEVT', MyHandler, 0, false);

In the event loop, process Apple Events:

 case kHighLevelEvent: AEProcessAppleEvent(&event); break;

In MyHandler, extract parameters "MSSG", "SIGN", and "XTRA". Extract additional

parameters as needed for the given message. Process message.

To see if an application is running:

Boolean SigToProcessInfo(char *sig, ProcessInfoRec *pInfo,
 char *name, FSSpec *spec)
{
 char dummyName[32];
 ProcessSerialNumber PSN;
 FSSpec dummySpec;

 pInfo->processInfoLength = sizeof(ProcessInfoRec);
 pInfo->processName = (name ? name : dummyName);
 pInfo->processAppSpec = (spec ? spec : &dummySpec);

 PSN.highLongOfPSN = 0;
 PSN.lowLongOfPSN = kNoProcess;

 while (GetNextProcess(&PSN) != procNotFound) {
 GetProcessInformation(&PSN, pInfo);
 if (!strncmp((char *)&pInfo->processSignature, sig, 4))
 return TRUE;
 }

 return FALSE;
}

Boolean AppIsRunning(char *sig)
{
 ProcessInfoRec pInfo;

 return SigToProcessInfo(sig, &pInfo, 0, 0);
}

34

Mechanism on Windows

The message sent is a string of the following form:

param 1 name • param 1 • param 2 name • param 2 • . . . • param n name • param n ø

 where • is the vertical tab character (ascii 11) ø is a null-terminator

 param 1 is always MSSG

 param 2 is always SIGN

 param 3 is always PSIG

 param 4 is always XTRA

 of the remaining paramters, the largest should come last, for efficiency

The following constants are used below:

 #define WM_IAC (WM_USER + 1)
 #define NE_GET_ALL_MESSAGES 1
 #define NE_APP_IS_RUNNING 2
 #define NE_TRANSFER_MESSAGE 3

Mechanism used by MARPLOT (a 32-bit application)

Note: Currently MARPLOT is the only 32-bit application among the communicating NOAA

Windows programs. In the future, when there is more than one 32-bit application, there will be a

NOAA32 DLL analogous to the NOAA16 DLL. 32-bit applications will send messages via the

NOAA32 DLL, which will communicate with the NOAA16 DLL via files. Eventually, when there

are no 16-bit applications left, all applications will communicate via NOAA32, without file

passing.

To start:

You may either assume that the NOAA_32.DLL is in the system directory, or, if your

application has a copy of NOAA_32.DLL , it can check whether its copy is newer than the

one currently in the system directory, and replace it if so.

Load the NOAA32 DLL and register with it by calling its NERegister() function. For

example, here is how an application named MARPLOT, with signature MRP1, would

register:

MARPLOT Technical Documentation

35

HINSTANCE gNOAADLLInst = NULL;

short CallNERegister(void) // 32 bit version
{
 Boolean doCopy = FALSE;
 short err;
 char theirPath[256], myPath[256];
 unsigned long theirTime, myTime;
 FARPROC proc;

 GetSystemDirectory(theirPath, 255);
 strcat(theirPath, "\\NOAA_32.DLL");
 _getcwd(myPath, 255);
 strcat(myPath, "\\NOAA_32.DLL");
 if (err = GetFileModDate(0, 0, theirPath, (long *)&theirTime))
 doCopy = TRUE;
 else
 if (!GetFileModDate(0, 0, myPath, (long *)&myTime))
 if (myTime > theirTime)
 doCopy = TRUE;

 if (doCopy)
 CopyFile(myPath, theirPath, FALSE);

 gNOAADLLInst = LoadLibrary(theirPath);

 if (!gNOAADLLInst) { SysBeep(1); return -1; }

 proc = GetProcAddress(gNOAADLLInst, "NERegister");
 if (proc) {
 if (err = proc((Ptr)"MRP1", // signature
 (HWND)mapWindow, // main window
 (Ptr)"MARPLOT", // main window class name
 (Ptr)0, // reserved for future use
 (Ptr)"MARPLOT", // application name
 (Ptr)0, // reserved for future use
 (Ptr)0, // reserved for future use
 (UINT)WM_IAC, // or use your own value
 (WORD)0, // wParam for WM_IAC
 (LONG)0)) // lParam for WM_IAC
 { SysBeep(1); return err; }
 }
 else
 { SysBeep(1); return -1; }

 return 0;
}

36

To send a message:

First make sure the receiving application is running. If not, launch it. Then:

short CallNESendMessage(Ptr toSignature, Ptr messageStr) // 32 bit
{
 short err;
 FARPROC proc;

 proc = GetProcAddress(gNOAADLLInst, "NESendMessage");
 if (proc)
 err = proc((Ptr)toSig, // signature
 (Ptr)messageStr, // message
 (UINT)0, // reserved for future use
 (Ptr)"MARPLOT", // application name
 (Ptr)0); // reserved for future use
 else
 err = -1;

 return err;
 }

MARPLOT Technical Documentation

37

To receive a message:

In your WndProc(), check for WM_IAC messages (whatever message you sent as the eighth

parameter to NERegister()). When this message is received:

short HandleNEMessage(short wParam, long lParam) // 32 bit version
{
 Boolean result;
 long length;
 CHARH h;
 FARPROC proc;

 proc = GetProcAddress(gNOAADLLInst, "NEGetNextMessageLength");
 if (!proc) { SysBeep(1); return -1; }

 length = (long)proc((Ptr)"MRP1");

 if (!length) return 0;

 h = (CHARH)NewHandle(length + 1);
 if (!h)
 { SysBeep(1); return -1; }

 proc = GetProcAddress(gNOAADLLInst, "NEGetNextMessage");
 if (!proc)
 { SysBeep(1); DisposeHandle((Handle)h); return -1; }

 INDEXH(h, length) = 0;

 result = (Boolean)proc((Ptr)"MRP1", // signature
 (Ptr)*h, // data pointer
 (long)length); // max length

 if (!result)
 { DisposeHandle((Handle)h); return -1; };

 // process the message in h (you may want to queue h and
 // process it when you have free time)

 return 0;
}

To see if an application is running:

Boolean CallNEAppIsRunning(char *sig) // 32 bit version
{
 FARPROC proc;

 proc = GetProcAddress(gNOAADLLInst, "NEAppIsRunning");
 if (proc)
 return (Boolean)proc((Ptr)sig);

 SysBeep(1);

 return FALSE;
}

38

To quit:

void CallNEBye() // 32 bit version
{
 FARPROC proc;

 proc = GetProcAddress(gNOAADLLInst, "NEBye");
 if (proc)
 proc((Ptr)"MRP1", // signature
 (HWND)mapWindow, // main window
 (Ptr)class, // main window class name
 (Ptr)0); // reserved for future use
 else
 SysBeep(1);

 // freeing the DLL can cause complications and is unnecessary
 // FreeLibrary(gNOAADLLInst);
}

MARPLOT Technical Documentation

39

Mechanism used by 16-bit applications that communicate via the NOAA16 DLL

To start:

The file NOAA_16.DLL must be in the path. Load the NOAA16 DLL and register with it by

calling its NERegister() function. For example, here is how an application named ALOHA,

with signature ALH5, would register:

HINSTANCE gNOAADLLInst = NULL;

void CallNERegister(void) // 16 bit version
{
 char fullPath[256];
 FARPROC proc=NULL;

 if (gNOAADLLInst == NULL)
 gNOAADLLInst = LoadLibrary("NOAA_16.DLL");

 if ((UINT)gNOAADLLInst > 32) // we have the library
 if (proc = GetProcAddress(gNoaaDllInst, "NERegister")) {
 GetPathToMe(fullPath); // path (incl. EXE file)
 (*proc)((Ptr)"ALH5 ", // signature
 (HWND)myMainWnd, // window handle
 (Ptr)myMainClassName, // window class
 (Ptr)NULL, // reserved for future use
 (Ptr)"ALOHA", // “human readable” app name
 (Ptr)"ALOHA.exe", // EXE file name
 (Ptr)fullPath,
 // the last three parameters specify the
 // window message (including wParam and
 // lParam) that you want the DLL to send
 // to your application when it has an IAC
 // message for it
 (UINT)WM_MY_WAKEUP,
 (WORD)0,
 (LONG)0);
 }

}

40

To send a message:

First make sure the receiving application is running. If not, launch it. Then:

Boolean CallNESendMessage(Ptr toSignature, Ptr messageStr) // 16 bit
{
 FARPROC proc;
 long err = -1;

 if ((UINT)gNOAADLLInst > 32) { // we have the library
 proc = GetProcAddress(gNOAADLLInst,"NESendMessage");

 if (proc)
 err = (*proc)(toSignature, // signature of receiver
 messageStr, // the message string
 FALSE, // reserved for future use
 NULL, // reserved for future use
 NULL); // reserved for future use

 return err == 0;
 }

MARPLOT Technical Documentation

41

To receive a message:

In your WndProc(), check for WM_MY_WAKEUP messages (whatever message you sent as the

eighth parameter to NERegister()). When this message is received:

Boolean HandleNEMessage(void) // 16 bit version
{
 FARPROC proc;
 Ptr message;
 long len, maxLength;

 if (gNOAADLLInst == NULL)
 gNOAADLLInst = LoadLibrary(gDllFileName);

 if ((UINT)gNOAADLLInst <= 32) // we do not have the library
 return FALSE;

 if (!(proc = GetProcAddress(gNOAADLLInst,
 "NEGetNextMessageLength")))
 return FALSE;

 if ((len = (long)(*proc)((Ptr)"ALH5")) <= 0) return FALSE;

 if (!(proc = GetProcAddress(gNOAADLLInst,
 "NEGetNextMessage")))
 return FALSE;

 if (!(message = MyAllocatePointer(len + 1))) return FALSE;

 if ((*proc)((Ptr)"ALH5", message, len + 1) == FALSE)
 { MyFreePointer(messageString); return FALSE; }

 MyHandleIACMessage(&message);
 MyFreePointer(messageString);

 return TRUE;
}

To see if an application is running:

Boolean CallNEAppIsRunning(Ptr appSignature) // 16 bit version
{
 FARPROC proc;

 if (gNOAADLLInst == NULL)
 gNOAADLLInst = LoadLibrary(gDllFileName);

 if ((UINT)gNOAADLLInst > 32) { // we have the library
 proc = GetProcAddress(gNoaaDllInst,"NEAppIsRunning");
 if (proc)
 return (Boolean)(*proc)((Ptr)appSignature);
 }

 return FALSE;
}

42

To quit:

Send a message to the DLL to let it know you’re quitting. Then free the DLL.

void CallNEBye(void) // 16 bit version
{
 char sigStr[6];
 FARPROC proc;

 if ((UINT)gNOAADLLInst > 32) { // we have the library
 proc = GetProcAddress(gNOAADLLInst, "NEBye");
 if (proc)
 (*proc)((Ptr)"ALH5", // signature
 (HWND)myMainWnd, // window handle
 (Ptr)myMainClassName, // window class
 (Ptr)NULL); // reserved for future use
 FreeLibrary(gNOAADLLInst);
 gNOAADLLInst= NULL;
 }
}

MARPLOT Technical Documentation

43

History of MARPLOT's Linking Scheme

In the beginning, there was MARPLOT DOS, which allows objects on the map to be linked to

records in the CAMEO database. This was straightforward, since MARPLOT and CAMEO shared

database files directly. MARPLOT used database files just like CAMEO, and knew all about

CAMEO’s database files, where they were, and which direct calls/ pass files to use to get CAMEO

do display certain records. Similarly, there was an agreed-upon way for CAMEO to say “display

this object” to MARPLOT.

With MARPLOT 1.0.1 on the Macintosh, we wanted to get away from the “hard-coded” connection

between MARPLOT and CAMEO. The idea was that CAMEO was “ just another database” that

could contact MARPLOT and share information, but without MARPLOT knowing anything about

CAMEO's database structure etc. To accomplish this, we developed a system of two-way links

between applications that introduce themselves to each other. Each application was responsible

for maintaining a complete reference to the linked record in the other application. This meant that

CAMEO needed to know, for a given record, that it was linked to the object with identification

number X on map M (in previous versions of MARPLOT, you could only work with one map at a

time, so it was necessary to “ open” the proper map in order to view an object it contained; also in

previous versions, you could only link to user-created (as opposed to “basemap”) objects, and since

there were relatively few of these, it wasn’t necessary for the database application to know about

which layer the linked object was on). And MARPLOT needed to know, for a given object, that it

was linked to record number R of document D of application A. Besides being burdensome for both

programs, this double-linking scheme had a number of drawbacks. The most important was the

possibility it presented of inconsistent links, where one application thought a record was linked to

a certain object, and MARPLOT thought the object wasn't linked or was linked to a different record.

Another problem was that it didn't allow the possibility of linking two records to a given object. For

instance, two different database applications might have information on a given facility plotted on

a map.

In MARPLOT (SPEARS), which is a special version of MARPLOT developed for the Coast Guard,

we introduced a utilty program called Linker whose eventual role was to serve as a central link

clearing house for all CAMEO-related applications. Linker would be launched in the background

whenever any CAMEO application was running. The individual applications would not store the

links themselves, but would ask Linker to record a link between, say, this CAMEO record and this

MARPLOT object. When CAMEO wanted to show a given record on the map, or MARPLOT

wanted to get linked information about a given object, they would both ask the Linker to get the

needed information, launching the required application if necessary. In the actual SPEARS

implementation, we did not have the resources to upgrade CAMEO to full Linker-centered

operation. So MARPLOT talked to Linker and had it store its links, but CAMEO talked directly to

MARPLOT and stored its own links. This worked tolerably well, but the didn't really exploit the

Linker concept. In effect, MARPLOT had been split into two parts, a mapping component and a

link database component.

With the desire to get rid of two-way links and simplify MARPLOT, and with the complications

inherent in the Linker in mind, we invented a simplified linking scheme that we called “hooking.”

The idea was that MARPLOT would be basically blind to any linking activity. It would be the

responsibility of the external database application to keep track of the fact that such-and-such

record is linked to such-and-such map object. The application would need to remember the object's

ID number, and the name of the map and layer it was on. The application could easily request that

MARPLOT show object X on map M, layer L. Going the other way is more problematic: the user

44

cannot simply select the object in MAPLOT and say "find the associated record" as they could

before, since now MARPLOT doesn't know anything about whether the object is linked, and to

whom. This is a drawback, but not so serious because applications like CAMEO that link to

MARPLOT objects generally install sub-menus in MARPLOT's Sharing menu (the Sharing menu

has been around since version 1.0.1). These menus typically include an item named “Get Info.”

The user can select an object in MARPLOT, and go to the CAMEO:Get Info menu item, at which

point CAMEO is invoked and gives information for the selected objects. Thus, the user is required

to pick an application to get information from, before requesting information. Our feeling is that

this is a relatively small price to pay for the benefits of (1) no two-way links, with all of the

associated headache of keeping links consistent and fixing them when they become inconsistent,

(2) the possibility of linking many records to a single object, (3) many simplifications to MARPLOT

and IAC with MARPLOT in general.

More History: How Applications Greet Each Other

A central design goal has been not to hard-code information about these applications within each

other. We have since revised this to say that MARPLOT should not have any hard-coded

information about CAMEO, ALOHA and other “ clients,” but those applications can “know” about

MARPLOT, since they specifically use MARPLOT as a tool (this is much the same as saying that

your C program can reference the stdio library by name, but that that program shouldn't be required

to know specifically about your C program).

In any event, we needed to develop schemes, involving both technical and user interface issues, to

allow programs to work with each other in a natural way without knowing about each other ahead

of time. For the user interface, we invented Sharing menus. The idea is that each application

(MARPPLOT in particular, since it is the “ server”) has a menu called Sharing. Other application

can send MARPLOT the MENU message, which contains the text of a new sub-menu to install in

the Sharing menu. When the user chooses an item from, say, CAMEO’s Sharing sub-menu in

MARPLOT, MARPLOT does not take any action except to send a message to CAMEO (an MHIT

message) informing it that item n of its Sharing sub-menu was just selected. CAMEO can then take

the appropriate action, usually by initiating another IAC conversation with MARPLOT. There are

two key advantages to the use of Sharing sub-menus. First, it allows the user to operate naturally

within the server program, while actually performing functions in the client application. For

instance, it would be much more awkward if the user had to select the object in MARPLOT, then

switch to the CAMEO application and choose a Get Info function from CAMEO’s own menu.

Second, because applications can save the state of their Sharing menu between runs, and can

launch applications as they are needed to respond to Sharing menu selections (when an

application installs a Sharing menu in another application, it also provides that other application

with the information nessary to launch it in the future), this gives the user the illusion that all of

these related applications are always “ up and running.” Normally, the user would have to

explicity start each of the programs that were meant to talk to each other in a given session.

This scheme works well once all of the Sharing menus are installed, but there are some tricky issues

about how the Sharing menus get installed in the first place. The basic idea has been for client

applciations, when they start, to “broadcast” HOLA (hello) messages to their sever application(s) if

they are running. Those server applications respond with OKHI messages, and the client can the

send the appropriate Sharing sub-menus with MENU messages. Thus, this scheme requires that

the applications get run simultaneously “ by hand” just one time, and from then on can launch each

other as needed.

MARPLOT Technical Documentation

45

To help with this problem, we have introduced the .VWR and .MNU files. A .VWR file contains

essentially the same information that is passed in an HOLA or OKHI message, and a .MNU file

contains the information passed in a MENU message. When MARPLOT starts up, it looks for

.VWR and .MNU files in its “FRIENDS” directory and adds the found menus to its Sharing menu

and makes a note of its "friends". This allows an application to “ greet” MARPLOT simply by

putting a couple of files in MARPLOT's directory.

Dictionary notes

This is version 3.0 of the IAC dictionary. Many of the messages are the same as for

MARPLOT 1.0.1, but many have been changed. In general, it is necessary to update old

applications in order for them to communicate with MARPLOT 2.x or MARPLOT 3.0. The addition

of the VERS parameter in HOLA, OKHI and MENU messages allows MARPLOT to identify older

friend applications that are not compatible with the 3.0 dictionary. When MARPLOT hears from

such an application, it puts up a note to the user that a newer version of the application is needed,

and doesn’t add the application as a friend.

 =====> indicates the appropriate response to a message.

 # indicates parameters or options that were not yet implemented as of the

 date this document was printed

It is not considered an error to send parameters in addition to those required for a certain message.

In fact, one way to stay compatible with multiple versions of MARPLOT is to take advantage of

parameter name changes by sending parameters under both the new and the old names; newer

versions of MARPLOT ignore the old name, and older versions ignore the new names.

46

Messages From MARPLOT

(all messages include 'SIGN' ('MRP1'), 'PSIG' ('PLOT'), 'MSSG' and
'XTRA' parameters)

Message Parameters Description

'BYE ' MARPLOT is quitting. This is to inform you that if you plan to send

MARPLOT any more messages, you will have to wait until it gets

started again (perhaps by your launching it) and sends you an HOLA

message. This message is sent to all friend applications that are

currently running.

'CPT!' Here is the Click Point. You have sent MARPLOT a 'CPT?' message

requesting the location of the Click Point. MARPLOT is responding

to give you the coordinates. In MARPLOT 1.0.1 western longitudes

were given as positive numbers, with eastern longitudes negative.

This is the reverse of the standard convention. In newer versions, if

you provide the 'VERS' parameter in the 'CPT?' message, the

standard conventions are used for the longitude sign in the 'CPT!'

message.

 'LAT ' latitude (decimal format)

 'LONG' longitude (decimal format)

MARPLOT Technical Documentation

47

'CTL!' You have sent MARPLOT a 'CTRL' message, requesting to control

the look of objects on a certain map/ layer, and MARPLOT is

responding. MARPLOT has written out a file containing the ID

numbers of all of the objects on the map/ layer that are inside of or

touching the current view rectangle. Each ID number is a 16-digit

hexadecimal string. There is no delimiter between the the ID

numbers; the 17th character in the file is the first digit of the second

ID number. Some of the ID numbers may be all zeros:

0000000000000000. These represent objects that have been deleted or

that for some other reason will not be drawn. When writing the

TDO file (explained below), you need to include entries for these

non-drawn objects; any four bytes will do, since these entries will be

skipped by MARPLOT.

The PATH parameter is the full path to the file of ID numbers. This

file has a name of the form "X.IDS". The task of your application at

this point is to read through the IDS file and create a TDO (thematic

draw override) file. The name of the file is of the form "X.TDO" (i.e.,

the same name as the IDS file, but with the TDO suffix) and it goes in

the same directory (folder) as the IDS file (i.e., the path stays the

same; just the file name changes).

The TDO file contains, corresponding to each ID number in the IDS

file, five characters, again without any delimiting characters. The

four chars specify the look of the object with the given ID number.

So the basic routine is to step through the IDS file and for each ID,

look up the corresponding record in your database and write five

chars into the TDO file. You must write the five chars for each object

even if the ID is not found in your database. The meaning of the five

chars is as follows:

char 1: Color. Use a digit from ‘1’ through ‘G’ (i.e., “hex” digits),

corresponding to the colors in MARPLOT's Color menu. 1

is BLACK, 2 is WHITE, ... , G is YELLOW.

char 2: Fill Pattern. Use a digit from ‘1’ to ‘A’, corresponding to the

patterns represented in MARPLOT's Fill Pattern menu.

char 3: Line Pattern. Use a digit from ‘1’ to ‘A’, corresponding to

the patterns represented in MARPLOT's Line Pattern menu.

char 4: Symbol. Use the ASCII value of the character you want to

use from the MARPLOT font (or from the substitute font

that is in use for the given layer).

char 5: Width. Use a digit from ‘1’ to ‘6’ , corresponding to the line

widths represented in MARPLOT's Line Width menu. The

width value determines the width of lines, as well as the

size of the dots when symbols show as dots for the given

layer.

If any of the five chars is ‘0’ , the object will not be displayed at all in

MARPLOT. If any of the five chars is ‘X’, the given attribute will be

displayed as it would if the layer were not being controlled.

Once you have finished writing the TDO file and have closed it, you

must send a DRW+ message to MARPLOT to force it to update its

display. MARPLOT will continue to draw using your TDO file until

you send a CTRL message with "OFF" for the MODE parameter.

48

 'PATH' full path to IDS file

'HOLA' Initial greeting from MARPLOT. MARPLOT sends this message to

all running friend applications when it starts up. This tells any

friend applications that MARPLOT is alive and ready to handle

messages.

 'NAME' "MARPLOT"

 'PATH' full path to MARPLOT

 empty string; provided for consistency with other applications

 "2"

 =====> When you get an HOLA message from MARPLOT, you should

respond with an OKHI message.

'IMP!' Report on result of MIE import. You sent an 'IMP2' message to

MARPLOT. MARPLOT has attempted to import the specified MIE

file.

 'STAT' "Y" = import was successful, "C" = user canceled import, "E" = error

 NOTE: If the 'IDS ' parameter of the IMP2 message was "Y",

MARPLOT also writes a file into the same directory as the MIE file to

report the ID numbers that were assigned to the objects as they were

imported. The name of the file is X.OUT, where the name of the MIE

file was X.MIE. X.OUT contains one line for each object ID generated

by MARPLOT during the import. Each line has the following

format:

<app ID> "<MARPLOT ID>" "<layer>" "<map>"

<app ID> is the integer identifier that the calling application

included at the start of each object line in the extended MIE file,

<MARPLOT ID> is the ID number that MARPLOT assigned to the

object,

<layer> and <map> are the layer and map names of the object.

The calling application is responsible for deleting the X.OUT file.

'INFO' Please show information about this object. The user has selected one

or more objects that are linked to your application and has chosen

the generic "Get Info" item from the Sharing menu (not the "Get Info"

item from your application's Sharing sub-menu). Typically, your

application will want to bring itself to the foreground and display

information about the selected objects. If you have nothing to

display for the selected objects, you should still respond to the user

in some way, perhaps by displaying a message in MARPLOT with an

ALRT message.

 'LST2' a return-delimited string where each line (one per object) has the

format:

 <object id> \t <layer name> \t <map name> \t <app ID>

<app ID> is the friend-application-owned ID associated with the

record at the time it was linked to MARPLOT

NOTE: This message is only sent by the SPEARS version of

MARPLOT for the Macintosh.

MARPLOT Technical Documentation

49

'MAPA' The user has performed or wants to perform an action on a map that

the receiving application owns. LSTA contains the list of objects

before the action took place. LSTB contains the same objects after the

action took place. In the case of DELETE, which is sent before the

objects are actually deleted, LSTB is empty. When you receive a

DELETE ACTN, you must decide which if any of the listed objects

may be deleted, warn or alert the user if necessary, update your

database appropriately, and then send MARPLOT a DELO message,

if you actually want to delete some or all of the listed objects. When

you receive any other ACTN, just update your database

appropriately; no special response to MARPLOT is required.

 'ACTN' the type of action: one of DELETE, MOVEMAP, MOVELAYER,

DRAG, or ADD

 'LSTA' a return-delimited string where each line (one per object) has the

format:

 <object id> \t <layer name> \t <map name>

 'LSTB' a return-delimited string where each line (one per object) has the

format:

 <object id> \t <layer name> \t <map name>

 NOTE: In the case that ACTN is DRAG, the LST lines have the

format:

 <object id> \t <layer name> \t <map name> \t <lat> \t

<long>

'MHIT' Your menu item was selected. Once you have installed a menu in

MARPLOT's Sharing menu, MARPLOT will send you this message

whenever the user selects an item in your menu. You can then take

whatever actions are necessary to respond to the menu selection.

 'YRPS' Pseudo -signature of menu hit; you can ignore this unless you have

installed multiple menus in MARPLOT

 'ITEM' item number hit (the first item is number 1)

 'TEXT' text of item hit (i.e., the menu item text)

'NBH!' Neighborhood result. You have sent MARPLOT an NBH? message

to create a neighborhood/ threat zone around an existing object, P.

MARPLOT is reporting information about the newly created object,

N.

 'OBJ2' a string of the format

 <object id> \t <layer name> \t <map name>

 NOTE: If OBJ2 is empty, an error ocurred during the creation of the

neighborhood object, probably because P was not found.

'OBID' Here are ID's generated by the most recent old-style import. You

have sent MARPLOT an IMPT message to import a list of objects in

the 1.0.1 import format. MARPLOT is reporting the ID numbers that

were assigned to the imported objects (this includes both newly

created ID numbers for new imports and old ID numbers for

overwrite imports). Both the 'IDS ' and 'LST2' parameters are sent,

but an application will typically use just one or the other.

 'IDS ' string of ID's, each (including the last) followed by a return; the

order of the ID's is the same as the order of objects in the import file;

the string might contain fewer ids than were imported, in case of an

error part-way through importing

 'LST2' a return-delimited string where each line (one per object) has the

format:

 <object id> \t <layer name> \t <map name>

50

'OKHI' Acknowledge receipt of HOLA. MARPLOT has received an HOLA

message from an application that just started up and is

acknowledging so the other application will know MARPLOT is

alive. You should treat an incoming OKHI message the same as an

incoming HOLA message; they give the same information but you

will get one or the other depending on whether your application or

MARPLOT is started first.

 'NAME' alias name of MARPLOT (i.e., "MARPLOT")

 'PATH' full path to MARPLOT

 'VERS' "2"

 'DOC ' empty string; included for consistency with other applications

'OVL!' This layer does or does not exist. If you have sent MARPLOT an

OVX? message asking if a particular layer exists. MARPLOT is

responding to tell you the answer. If you have sent MARPLOT a

MKOV message, MARPLOT is informing you of the layers ID.

 'ANSR' "Y" if the layer exists, "N" if not

 'OVID' ID of layer if it exists

'ATBS' attributes of the layer if it exists (see 'SLAT' message for a

description of this parameter and the possible values that come with

it)

 NOTE: The names 'OVL!' and 'OVID' and historical, from when

layers were called overlays.

'USR!' Here is information about the current MARPLOT user.

 'NAME' the user’s name; for a system not in multi-user mode, this will be

User

 'CODE' the user’s 4-character code name; for a system not in multi-user

mode, this will be USER

 'PERM' either EDIT or BROWSE, depending on whether the user has

permission to make global changes in MARPLOT

 'PATH' full path to the user’s directory; for a system not in multi-user mode,

this will be the MARPLOT directory

'VER!' Here is MARPLOT's version number.

 'VNUM' the version number

 NOTE: Do not confuse VNUM with the VERS parameters in other

messages; VNUM is MARPLOT's version number while VERS is a

shared IAC version number

'VEW!' Here's the current view.

 'LLAT' low latitude, as a decimal string (South is negative)

 'LLNG' low longitude, as a decimal string (West is negative)

 'HLAT' high latitude, as a decimal string (South is negative)

 'HLNG' high longitude, as a decimal string (West is negative)

MARPLOT Technical Documentation

51

'YROD' YouR Object Data.

You have sent MARPLOT a MYOD or SRCH message requesting

information about certain objects. This message contains the

requested information. If you specified the "SELECTED" keyword in

the OPTN parameter with MYOD, information about all currently

selected objects is given. If you specified the "COLLECTED"

keyword, information about all objects currently in the search

collection is given. If you specified the "IDS" keyword, it is expected

that you provided a list of MARPLOT object references in the LST2

parameter. In this case, and according to whether you have included

"ANYLAYER", "ANYUMAP, or "ANYMAP" in the OPTN parameter,

MARPLOT returns information about all of the objects from the LST2

that it is able to locate.

If you have included the "FILE" keyword in the OPTN parameter, the

LST2 parameter to MYOD (when it is provided) is taken as the full

path to the file containing the LST2 information. Similarly, when

"FILE" is specified, the LST2 parameter with YROD is the path name

of the file containing the LST2 information.

Depending on the OPTN parameter sent with MYOD, the resulting

object data contains different information.

In all cases information is reported one object per line, with the

format

 <object id> \t <layer name> \t <map name> ... RETURN

The "..." in the above line represent extra text that is included with

each object, according to the keywords included in the OPTN

parameter sent with MYOD. The various keywords, along with the

included information, are specified below. The order in which the

extra information appears in the text is the same as the order of

theentries in the table.

OPTN keyword extra info format

TYPE \t <type> one of POINT, POLYGON,

POLYLINE, RECTANGLE,

CIRCLE, TEXT or PICT

NAME \t <name> name of the object

LATLONG \t <lat> \t <long> decimal strings, S and W

negative, center of object

GRAPHICS \t C \t S \t P \t L \t W

C = color number, 1 - 16, see MARPLOT menu for

values

S = symbol, 1 - 255, see MARPLOT menu for values

P = fill pattern, 1 - 10, see MARPLOT menu for values

L = line pattern, 1 - 10, see MARPLOT menu for

values

W = line/ dot width, 1 - 6, see MARPLOT menu for

values

Another OPTN keyword is "TAGS". When you include the "TAGS"

52

 'NUM ' the number of objects in the LST2

 'LST2' the requested object information

 'TYPE' MYOD is this YROD message is in response to a MYOD message, or

SRCH if it is in response to a SRCH message

MARPLOT Technical Documentation

53

Messages To MARPLOT

(all messages include 'SIGN', 'PSIG', 'MSSG' and 'XTRA'
parameters)

Message Parameters Description

'ALRT' Show alert dialog in MARPLOT with beep. This message causes

MARPLOT to beep and to display an alert window with the given

text and the given icon in the upper-left corner. The alert has an OK

button that the user clicks to dismiss it.

 'TEXT' text to show

 'ICON' resource ID of icon to show (0 = stop, 1 = note, 2 = warning)

'BYE ' The friend application is quitting. MARPLOT should not send any

more messsages to it.

'CPT?' Where is the click point? In MARPLOT 1.0.1 western longitudes

were given as positive numbers, with eastern longitudes negative.

This is the reverse of the standard convention. In newer versions, if

you provide the 'VERS' parameter in the 'CPT?' message, the

standard conventions are used for the longitude sign in the 'CPT!'

message.

 'VERS' (optional) any value "2" or greater

 =====> MARPLOT responds with the 'CPT!' message.

'CTRL' Control the look of objects on a certain map/ layer within the

current view. The MODE parameter determines whether you want

to start (on) or stop (off) controlling the layer. When you start

controlling a layer, it is automatically put into "show" mode. Note

that you must specify a map and a layer. Objects on the given layer

but on a different map will appear as they would normally, as will

objects on the given layer and map, but not in the current view at the

time the CTRL message is sent.

 'MAPN' name of the map

 'LAYR' name of the layer

 'MODE' "ON" or "OFF"; ON means you want to start controlling the layer;

OFF means you are done controlling the layer. "ON2" is the same as

"ON" except the IDS file returned by MARPLOT in the CTL! message

will be empty. Use ON2 when you have already computed the TDO

file for a given layer (a layer that is pretty certain not to have

changed since your last use of it), and you want to avoid the

overhead of MARPLOT having to write out the IDS file again. If you

use ON2 you must send the VIEW parameter.

 'VIEW' (send only if MODE is ON2) a string containing four decimal

numbers separated by spaces; the numbers represent, in order, low

latitude, low longitude, high latitude, high longitude (south and

west are negative); the view should be the same view as was shown

on the map (as determined using the VEW? message) at the time the

layer was originally controlled (MARPLOT needs to know this view

to know what the “ clipping rectangle” is for the TDO file).

 =====> MARPLOT writes out an ".IDS" file (which is empty if MODE was

ON2) and responds with the 'CTL!' message.

54

'DELO' Delete a set of objects. Use this message with caution. You can

specify an arbitrary set of objects to be deleted using the LST2

parameter, or delete objects from a single layer using the LAYR

parameter. In the latter case, you can use the ' IDS ' and 'MAP '

parameters to delete only certain objects on the layer.

 'LST2' (must be given if LAYR is not given) a return-delimited string where

each line (one per object) has the format:

 <object id> \t <layer name> \t <map name>

for a large number of objects, as an alternative to sending a large

LST2 parameter, the LST2 information can be written to a file; in this

case, the LST2 parameter should be the word FILE, followed by a tab,

followed by the full path to the file, that is

 FILE\t <path>

MARPLOT does not delete the file after reading it

 'IDS ' (must be given if LST2 is not given) return delimited and return-

terminated list of ID’s of objects on the named layer to be deleted

 'LAYR' (must be given if LST2 is not given) the name of the layer on which

the objects are to be found

 'MAP ' (optional) the name of the map from which objects on the named

layer are to be deleted (objects on the layer but on other maps will

not be touched); use the name "USER" to indicate the current user

map. Default is the the current user map.

'DLOV' This message is used to delete all the objects from a layer; unless the

REMOVELAYER option is used, the layer itself is still retained in

MARPLOT, in its specified position in the layer list.

 'LAYR' The name of the layer

 'MAP ' (optional) The name of the map from which the named layer is to be

deleted (objects on the layer but on other maps will not be touched);

use the name "USER" to indicate the current user map.;use the name

ALLMAPS to delete the layer on all maps.;Default is the the current

user map.

 'OPTN' (optional) a string containing keywords from the following table:

keyword meaning

REMOVELAYER this keyword requests that the the layer

be deleted from MARPLOT’s layer list,

after the specified layer map combination

specifed is deleted; Note: the layer will

not be deleted from the layer list if there

are objects remaining on this layer on

another map

'DRW+' Re-enable map window updates, and update the map window.

MARPLOT Technical Documentation

55

'FRWD' There are a number of technical issues involved in getting an

application to come automatically to the foreground. These issues

are different for each platform/ system. In some cases, when an

application wants to bring some application (often itself) to the

foreground, it is easier (and sometimes more polite) to ask another

application to do the job. Your application can ask MARPLOT to

bring it to the foreground using this message.

 'WHO ' signature of application to bring forward (usually the sending app

itself)

 'NAME' name of application to bring forward; on Windows, NAME should

be the title of your main window, or the name of your main window

class.

 NOTE: On the Macintosh, it is sometimes better to use the

Notification Manager and let the user bring you forward.

'GOTO' Set the Focus Point at this location and center on it, using this scale.

 'LAT ' latitude value, as decimal string (South is negative)

 'LONG' longitude value, as decimal string (West is negative)

 'SCAL' (optional) n, where desired scale is 1:n (if not given, scale is not

changed)

'HOLA' Initial greeting from a friend application. The friend sends this

message to MARPLOT when it starts up and sees that MARPLOT is

running. This tells MARPLOT that the friend is alive and ready to

handle messages.

 'VERS' "2" or greater; needed to show MARPLOT you are using the updated

IAC messages

 'NAME' name of the friend application

 'PATH' full path to friend applications's executable file

 'DOC ' (optional) full path to default document to be opened when

MARPLOT launches the friend

'IMP2' Import this MIE file.

 'FILE' full path of MIE file to import

 'IDS ' "Y" = return a list of the IDs assigned to the imported objects, "N" =

no list (default)

 NOTE: When the 'IDS ' parameter is "Y", the MIE file is expected to be

in a slightly modified format, where each object is preceded by an

integer chosen by the calling application. When MARPLOT writes

out the file of generated IDs, each ID is preceded by its object

number.

 =====> MARPLOT responds with an 'IMP!' message.

56

'IMPT' Old-style import (MARPLOT 1.0.1 format).

 'TEXT' text of "file" to be imported; instead of importing from an actual file

on disk, you simply send the text of the old-style import file with

your message by using this parameter; see the MARPLOT 1.0.1

import format for the format of an old-style import file

 'MAP ' (optional) the name of the map onto which the objects should be

imported; if this parameter is not specified, the current "user's map"

is used

 'MOD?' (optional)

"R" (default) = if an ID in the import file matches the ID of an object

on the given layer, overwrite the object with the import file data; if

there is no object with a matching ID, create a new object with the ID

"M" = if an ID in the import file matches the ID of an object on the

given layer, overwrite the object with the import file data; if there is

no object with a matching ID, do NOT create a new object with the

ID

"N" = ignore the object ID's in the import file and generate a new

object with a new ID for each import file entry

 'SEL?' (optional)

"Y" (default) = when objects have been imported, select only

imported objects in MARPLOT

"N" = don't change selections after import, don't select imported

objects

 'SHOW' (optional)

"Y" (default) = bring MARPLOT forward once the import is complete

and change the view if necessary so that all imported objects are

visible

"N" = do not bring MARPLOT forward and do not change the view

 'DIST' (optional)

"Y" = interpret all coordinate values in the import file not as absolute

positions, but as distance offsets from the point given in the CNTR

parameter

"N" (default) = treat coordinate values in the import file normally as

absolute lat/ long values

 'CNTR' this is a string of the format "lat, long", where lat and long are

decimals; this parameter must be provided if the DIST parameter is

"Y"; these lat/ long values define the point from which all coordinate

values in the import file are interpreted as offsets

MARPLOT Technical Documentation

57

 'UNIT' (optional) this is only used when the DIST parameter is "Y"; it

specifies the the units that the offset values in the import file

represent

"M" (default) = miles

"Y" = yards

"K" = kilometers

"E" = meters

 =====> MARPLOT responds to an IMPT message with an OBID message in

order to tell the sending application the ID's of the objects that were

created and/ or overwritten as a result of the import.

 NOTE: All longitude values in this file are oriented in the reverse

from the normal convention: increasing positive to the West and

decreasing negative to the East.

58

'LGND' Define and show a legend on the map. The legend can be specified

as a bitmap (picture) file with the PATH parameter or as a list of

names and attributes with the LIST parameter. The legend

temporarily overrides any legend the user is currently using. Send a

LGND message with no parameters to remove the previously-sent

legend and revert back to the user’s legend (if any).

 'PATH' full path to the picture (or bitmap) file to be used as a legend; this

file should not already be in the MARPLOT directory; the file is not

deleted after it is copied to the MARPLOT directory by MARPLOT

 'LIST' return-delimited and return-terminated list of lines for the legend;

each line contains the name to be shown on the list, a tab, and then

five characters that specify the graphical attributes to be shown on

the line; the five characters specify color, fill pattern, line pattern,

symbol and line width, as explained in the CTL! message but there

is also an expanded format to allow RGB colors as explained below;

the symbol characters corresponding to ASCII values 33 and 34

(decimal) are special: 33 means to show just a polyline graphic using

the given color, fill pattern, line pattern, and width, while 34 means

to show just a polygon graphic using the given color, fill pattern,

line pattern, and width; for all other ASCII values, the corresponding

symbol is shown in the given color (and the fill pattern, line pattern,

and width are not used)

note: if the user is showing a layer-list legend at the time the LGND

message is received, the layer-list lines are retained at the bottom of

the legend, below the lines specified in LIST

RGB extension: The first 5 characters continue to represent the color,

fill pattern, line pattern, symbol and line width, but if the color char

is an 'R', then the color is an RGB color specified by 9 additional

characters following the original 5, specifying the red, green and

blue values on a scale of 0 to 255.

 'XOUT' (optional) return-delimited and return-terminated list of names of

layers NOT to be included in the legend when the user is showing a

layer-list legend at the time the LGND message is received; that is,

these specific layers are not retained in the new legend, but other

layers that the user was showing in the legend are retained

MARPLOT Technical Documentation

59

'MAP ' Use this map. This message adds a map to MARPLOT's map list and

by default considers the map to be "owned" by the sending

application. If the map is already in the map list, it changes to

"owned" status. MARPLOT does not allow the user to delete layers if

they contain objects on owned maps. Owned maps can be removed

by the user if the owning application is not running. MARPLOT

does not allow the user to rename owned maps.

New feature:You can specify a parameter to indicate that your

application does not wish to be the owner. Using this parameter

allows your application to add maps to MARPLOT's map list

without becoming the owner.

 'PATH' full path name to map folder, including the ':' or '\' terminator

60

 'OPTN' a string containing keywords from the following table:

keyword meaning

DEFAULTMAP the specified map becomes the default map (when

the user creates an object, it will go on this map by

default)

NODEFAULT (default) the specified map does not become the

default

DELETENO (default) objects on this layer may not be deleted

DELETEYES or DELETEOK objects on this layer

may be freely deleted by the user

DELETEALERT when the user attempts to delete objects on this

layer, MARPLOT sends a MAPA message to the

owning application (the owning application must

be running BEFORE the user makes the change)

MOVEMAPNO (default) objects on this map may not be moved to

other maps

MOVEMAPYES or MOVEMAPOK objects on this map may be

freely moved to other maps by the user

MOVEMAPALERT when the user moves an object on this

map to another map, MARPLOT sends a MAPA

message to the owning application (the owning

application must be running BEFORE the user

makes the change)

MOVELAYERNO (default) the user cannot change the layer of objects

on this map

MOVELAYERYES or MOVELAYEROK the user can freely

change the layer of objects on this map

MOVELAYERALERT when the user changes the layer of objects

on this map, MARPLOT sends a MAPA message to

the owning application (the owning application

must be running BEFORE the user makes the

change)

DRAGNO (default) the user cannot change the position of

objects on this map

DRAGYES or DRAGOK the user can freely change the position of

objects on this map

DRAGALERT when the user changes the position of objects on this

map, MARPLOT sends a MAPA message to the

owning application (the owning application must

be running BEFORE the user makes the change)

ADDNO the user cannot add objects to this map, either by

using tools or moving them from other maps

ADDYES or ADDOK (default) the user can add objects to this

map

ADDALERT when the user adds objects to this map, MARPLOT

sends a MAPA message (the owning application

must be running BEFORE the user makes the

change)

OWNEDNO add the map to MARPLOT's map list but do NOT

consider the map to be "owned" by the sending

application.

MARPLOT Technical Documentation

61

'MENU' Install sub-menu in MARPLOT's Sharing menu. This adds a new

sub-menu to MARPLOT's Sharing menu. If a sub-menu with the

same name already exists, it is replaced with the new menu. (Thus, a

friend application can send a MENU message each time it greets

MARPLOT, without worrying about duplicating the menu.) Menus

installed in MARPLOT are automatically saved by MARPLOT. They

can be used later, even when the friend application is not running.

In this case, MARPLOT launches the friend application before

sending it the MHIT message.

 'VERS' "2" or greater; needed to show MARPLOT you are using the updated

IAC messages

 'NAME' name of menu

 'ITMS' return-delimited string of menu items

 'PATH' full path to the friend application's executable file

 'DOC ' (optional) full path to default document to be opened when the

friend is launched

 NOTE: If for some reason the MARPLOT user wants to remove a sub-

menu from the Sharing menu, the user can delete the appropriate

".MNU" file from the MARPLOT "FRIENDS" directory.

'MKOV' Make layer. This message asks MARPLOT to create a new layer.

This will not create a new layer if one with the same name already

exists.

 'NAME' name of overlay to create

 'ATBS' attributes of the new layer (see 'SLAT' message for a description of

this parameter and the possible values that come with it)

 =====> MARPLOT responds with an 'OVL!' message to communicate the

layer ID of the newly created layer.

 NOTE: This message should be called MKLR but is misnamed to support

existing applications.

62

'MYOD' MY Object Data.

This message is used to request information about one or more

objects in MARPLOT. The OPTN parameter is used to specify which

objects you would like information about, and what types of

information you want for the chosen objects. OPTN is a string

containing any number of keywords separated by spaces, tabs or

commas. The meanings of the various keywords possible in the

OPTN string are given in the following table and are explained

more fully in the documentation for the 'YROD' message.

keyword meaning

The following three keywords are mutually exclusive.

SELECTED give info for the objects currently selected in

MARPLOT

COLLECTED give info for the objects currently in the search

collection

IDS give info for the specific objects specified in the

LST2 parameter

FILE write the data to a file and pass its path in the LST2

parameter from YROD; also, if “ IDS” is specified

and “FILE” is also specified, the “LST2” parameter

is taken as a path to a file containing the LST2

information

The following three keywords only have meaning when used with

"IDS".

ANYLAYER if an object is not found on the given layer, search

all layers

ANYMAP if an object is not found on the given map, search

all maps

ANYUMAP if an object is not found on the given map, search

all "universal" maps

MIE write the data using the full MIE format (using one

line per object)

The remaining keywords cannot be used with the "MIE" keyword

TAGS prefix each data element with a tag

TYPE include the type of the objects in the data

NAME include the name of the objects in the data

LATLONG include the lat/ long of the centers of the objects in

the data

GRAPHICS include the graphical attributes of the objects in the

data

MARPLOT Technical Documentation

63

 'OPTN' a string containing keywords from the table above

 'LST2' (only necessary when the "IDS" keyword is specified in OPTN) a

return-delimited string where each line (one per object) has the

format:

 <object id> \t <layer name> \t <map name>

if you have specified ANYLAYER in OPTN, you can leave the <layer

name> empty and MARPLOT will search all layers; similarly, if you

have specified ANYMAP or ANYUMAP, you can leave the <map

name> blank and MARPLOT will search; if "FILE" is specified in

OPTN, LST2 is the full path to the file containing the information

 =====> MARPLOT responds with the YROD message.

'NAME' Set the name of an object. Note: The object's name on the screen

only changes visually when MARPLOT is the front application (or

when it later becomes the front application after a NAME message).

When using NAME, you should either be sure MARPLOT is or is

about to become the front application, or else use a DRW+ message

to force an update in the background.

 'OBJ ' a string of the format

 <object id> \t <layer name> \t <map name>

 'NAME' the new name for the object

 'PFIX' (optional) the prefix of the name (such as "N." or "NW"); if the prefix

is included in this parameter, it should not also be part of NAME

 'ID ' (optional) a 16-characater (hex) ID number to replace the object's

current ID number

64

'NBH?' Make a neighborhood/ threat zone about a symbol or polyline

object by creating a circle or a polygon made up of many pieces.

This message is useful for friend applications that want to indicate

the area on a map within a given distance from a given object. For

instance, if the object is a polyline representing a transportation

route, this message could be used create a threat zone "tube" with a

certain radius about the polyline to show the area that would be

affected by a spill of a certain chemical anywhere along the route.

The neighborhood about a polyline is constructructed from several

polygon pieces: each vertex of the polyline is surrounded by a

circular polygon piece and each segment is surrounded by a four-

sided polygon piece that forms a box about it. The union of all of

these pieces in the single threat zone object covers the area of the

map within the specified distance from any point on the polyline.

For the purposes of the following parameter descriptions, let P be

the polyline or symbol object about which the neighborhood is to be

built, and let N be the neighborhood object.

 'OBJ1' information about P in a string of the form

 <object id> \t <layer name> \t <map name>

 'LYR2' the name of the layer on which N is to be created

 'MAP2' (optional) the name of the map on which N is to be created (default =

user's map)

 'ID2 ' (optional) the id number of N (default = a MARPLOT-generated ID)

 'RAD ' radius of N in miles

 'NAME' (optional) name assigned to N (default = "")

 'SHOW' (optional)

"Y" (default) = bring MARPLOT forward once N is created and

change the view if necessary so that N is visible

"N" = do not bring MARPLOT forward and do not change the view

 =====> MARPLOT responds with a 'NBH!' message.

'OKHI' Acknowledge receipt of HOLA from MARPLOT. The friend

application has received an HOLA message from MARPLOT, and is

acknowledging so that MARPLOT will know the friend is running.

 'VERS' "2" or greater; needed to show MARPLOT you are using the updated

IAC messages

 'NAME' name of the friend application

 'PATH' full path to the friend application's executable file

 'DOC ' (optional) full path to default document to be opened when

MARPLOT launches the friend

'OVX?' Does this layer exist?

 'NAME' name of layer

 =====> MARPLOT responds with an 'OVL!' message.

MARPLOT Technical Documentation

65

'SHOW' Show certain objects in MARPLOT, either on the map or in the search

collection.

 'LST2' a return-delimited string where each line (one per object) has the

format:

 <object id> \t <layer name> \t <map name>

<map name> (in this message and in other messages with LST2

parameters) can be either the actual name of the map, or the (5)

digits of the map's default location code (which usually corresponds

to a TIGER state+count)

if you have specified ANYLAYER in OPTN, you can leave the <layer

name> empty and MARPLOT will search all layers; similarly, if you

have specified ANYMAP or ANYUMAP, you can leave the <map

name> blank and MARPLOT will search

 'FILE' (optional) full path to file containing LST2 information; in this case

you should not include a LIST2 parameter

66

 'OPTN' a string of keywords separated by spaces, tabs or commas; the

meanings of the various keywords are given in the following table:

keyword meaning

>>>>>> The following two keywords are mutually exclusive.

 DRAW show the given objects on the map; this is the

default if no keyword is given

COLLECTION put the given objects in the search collection

<<<<<<<<<<<<<<<<<<<<<<<<<<<

ANYLAYER if an object is not found on the given layer, search

all layers

ANYMAP if an object is not found on the given map, search

all maps

ANYUMAP if an object is not found on the given map, search

all "universal" maps

>>>>>> The following four keywords are mutually exclusive and

only have meaning if the DRAW keyword is given

YESZOOM change the scale of the map to cover just enough

area to show the objects

NOZOOM leave the scale of the map unchanged, except

possibly zoom out to encompass all shown objects

; this is the default if no keyword is given

NEVERZOOM leave the scale of the map unchanged, even if it

means leaving some shown objects off the screen

SAMEVIEW leave the current view unchanged, even if it means

leaving some shown objects off the screen

<<<<<<<<<<<<<<<<<<<<<<<<<<<

>>>>>> The following two keywords are mutually exclusive and

only have meaning if the DRAW keyword is given.

YESSELECT select the shown objects, deslecting any others; this

keyword is equivalent to the old keyword SELECT

which is still supported

NOSELECT do not select or deselect any objects; this is the

default if no keyword is specified

<<<<<<<<<<<<<<<<<<<<<<<<<<<

CTRL take control of the layer map these objects are on

and hide all objects not in the list.of objects in this

message; this keyword will be ignored unless the

objects are all on a single layer on a single map;

using this keyword here is similar to the CTRL

message, but the bounding rect is the entire world;

calling program is responsible for turning the

control off; this only has meaning if the DRAW

keyword is given

MARPLOT Technical Documentation

67

 NOTE: When the objects are put in the search collection, and the

sending application is a known friend, MARPLOT changes the title

of the Search Collection dialog box to "Search Collection From N",

where N is the name of the friend application.

'SLAT' Set the attributes of a layer.

 'NAME' the name of the layer

 'ATBS' a string containing any of the following keywords, plus their

associated data, separated tabs or commas; if a keyword has an "extra

data" entry, it is expected that that data is the next item or items in

the ATBS string.

keyword meaning [extra data]

LOCKEDYES layer is locked

LOCKEDNO or UNLOCKED layer is unlocked

TEMPORARY layer is temporary

PERMANENT layer is permanent

APPOWNED layer is owned by sending app

MARPLOTOWNED layer is owned by MARPLOT

DELETEOK even if layer is owned, user

 can delete objects on layer

DELETENO when layer is owned, user

 cannot delete objects on layer

GRAPHICS default layer graphics [C, S, P, L, W (see YROD)]

INDIVIDUAL individual graphics

COMMON use default graphics

HIVISSCALE scale at which layer shows [n, where scale is 1:n]

LOVISSCALE scale at which layer hides [n, where scale is 1:n]

DOTSSCALE scale at which symbols->dots [n, where scale is

1:n]

NAMESSCALE scale at which names show [n, where scale is 1:n]

SHOWNAMESMODE show + names mode

SHOWMODE show mode

RANGEMODE range mode

HIDEMODE hide mode

NAME name of layer

POSITION position of layer in list ["TOP", "BOTTOM" or n (1

= top)]

68

'SRCH' Search for objects.

 'FUNC' a keyword specifying the type of search you want to perform

keyword meaning

ANYNAME show the given objects on the map

NAMESTARTS names that start with...

NAMECONTAINS names that contain...

WITHIN objects within a certain distance of...

NOTWITHIN objects not withing a certain distance of...

TOUCHING objects that touch..

NOTTOUCHING objects not touching...

NOTE: To have the found objects in the resulting YROD message

sent in a file, the recommended method is to use the OPTN

parameter described below., but you can also use the older method

of appending a space and the word FILE to the FUNC parameter.

For example:

WITHIN FILE

In this case, the LST2 parameter with YROD is the path name of the

file containing the LST2 information (i.e., the found objects).

 'NAME' the text to match for a NAMESTARTS or NAMECONTAINS search

 'DIST' the distance for a WITHIN or NOTWITHIN search

Required for WITHIN and NOTWITHIN searches.

 'UNIT' (optional; default = MI) one of the following keywords, specifying

the units of the values in the DIST parameter: FT, YDS, M, KM, MI,

NM.

 'OF ' (optional; default = FOCUSPOINT) referent for a WITHIN ,

NOTWITHIN, TOUCHING or NOTTOUCHING search; one of the

following keywords: FOCUSPOINT, MARKEDPOINT,

SELECTEDOBJECTS, PREVCOLLECTION.

 'LYRS' a return-delimited list of the layers to be searched; an empty string

indicates that all layers should be searched. Note that unless the

SEARCHSIMILARLAYERS option key is used, layers must be

explicitly listed. For example, if the parameter is "Roads ", the

"Roads" layer will be searched but the "Roads (Major)" layer will not

be searched. If you want MARPLOT to search "Roads" and all of the

similar layers, use the SEARCHSIMILARLAYERS key in the OPTN

parameter.

 'MAPS' a return-delimited list of the maps to be searched; an empty string

indicates that all maps in the current view should be searched; # the

special value SEARCHALLMAPS indicates that all maps should be

searched

MARPLOT Technical Documentation

69

 'OPTN' The OPTN parameter is used to specify what to do with the found set

of objects and what types of information you want returned for the

found objects. OPTN is a string containing any number of keywords

separated by spaces, tabs or commas. The meanings of the various

keywords possible in the OPTN string are given in the following

table and are similar to those in the 'MYOD'" message.

keyword meaning

SEARCHSIMILARLAYERS search layers with names similar

to the names in the LYRS parameter. For example,

if the LYRS parameter is "Roads ", both the "Roads"

layer and the "Roads (Major)" layer will be

searched when this keyword is used.

SHOWINCOLLECTION show the found objects in the MARPLOT

search results dialog. MARPLOT will come

forward, perform the search and present the user

with the results. Note that the search results are

not returned via a YROD message.

The remaining keywords apply to the returnedYROD message and

have no meaning when used with the "SHOWINCOLLECTION"

keyword.

FILE write the data to a file and pass its path in the LST2

parameter from YROD.

Depending on the keys sent in the OPTN parameter the resulting

object data contains different information.

In all cases information is reported one object per line.

The default format is

 <object id> \t <layer name> \t <map name> ... RETURN

The following keywords can be used.

MIE write the data using the full MIE format (using one

line per object)

The remaining keywords cannot be used with the "MIE" keyword

TAGS prefix each data element with a tag

TYPE include the type of the objects in the data

NAME include the name of the objects in the data

LATLONG include the lat/ long of the centers of the objects in

the data

GRAPHICS include the graphical attributes of the objects in the

data

70

 =====> Unless the keyword SHOWCOLLECTION is used, MARPLOT

responds with a YROD message, with SRCH in the TYPE parameter.

The LST2 parameter of the YROD message contains the results of the

search.

'TRNG' Put MARPLOT into training mode. This simply removes, for the

remainder of the present session, all of the maps in the map list. It

adds the map given in PATH as the one map in the list, which is

treated as the User’s map. When in training mode, the Map List

dialog box is unavailable.

 'PATH' full path to the new User’s map, including final directory delimiter

but not including the NAME.MAP file name

'USR?' Who is the current MARPLOT user?

 =====> MARPLOT responds with a 'USR!' message.

'VER?' What is MARPLOT's version number?

 =====> MARPLOT responds with a 'VER!' message.

‘VEW?' What is the current view?

 =====> MARPLOT responds with a 'VEW!' message.

'VIEW' Show this world rect on the map.

 'LLAT' low latitude, as a decimal string (south is negative)

 'LLNG' low longitude, as a decimal string (west is negative)

 'HLAT' high latitude, as a decimal string (south is negative)

 'HLNG' low longitude, as a decimal string (west is negative)

MARPLOT Technical Documentation

71

Messages specific to ALOHA

'MAPA' I'm the mapping application. By default, MARPLOT is the mapping

application with which ALOHA communicates. If another mapping

application wants to take over that role, and is capable of supporting

all of the MARPLOT-ALOHA IAC communication, it should send

ALOHA this message when it starts up and/ or detects that ALOHA

is running. ALOHA then uses the signature and pseudo -signature of

the sending application for all mapping IAC.

 'SIGN' the signature of the sending application

 'PSIG' the pseudo -signature of the sending application

 'PATH' the full path to the sending application's executable file

 'DOC ' the full path to the sending application's default document (or

empty)

 'SAVE' "YES" means that ALOHA should record the sender as the permanent

mapping application; "NO" means that ALOHA should use this

sender for this session only and go back to MARPLOT for the next

session; "ON" means to use this mapping application now during

this session; "OFF" means to resume using MARPLOT now during

this session.

