
1

Normal FormsNormal Forms

FunctionalFunctional dependenciesdependencies

Our goal:
given a set of FD set, F, find an alternative FD set, G that is:

smaller
equivalent

Bad news:
Testing F=G (F+ = G+) is computationally expensive

Good news:
Minimal Cover (or Canonical Cover) algorithm:

given a set of FD, F, finds minimal FD set equivalent to F

Minimal: can’t find another equivalent FD set w/ fewer FD’s

2

Minimal Cover AlgorithmMinimal Cover Algorithm

Given:
F = { A Æ BC,

B Æ CE,
A Æ E,
ACÆ H,
D Æ B}

Determines minimal cover of F:

Fc = { A Æ BH,
B Æ CE,
D Æ B}

•Fc = F
•No G that is equivalent

to F and is smaller than Fc

Another example:
F = { A Æ BC,

B Æ C,
A Æ B,
ABÆ C,
AC Æ D}

MC
Algorithm

Fc = { A Æ BD,
B ÆC}

Minimal Cover AlgorithmMinimal Cover Algorithm

Basic Algorithm

ALGORITHM MinimalCover (X: FD set)
BEGIN

REPEAT UNTIL STABLE
(1) Where possible, apply UNION rule (A’s axioms)

(e.g., A ÆBC, AÆCD becomes AÆBCD)
(2) remove “extraneous attributes” from each FD

(e.g., ABÆC, AÆB becomes
AÆB, BÆC

i.e., A is extraneous in ABÆC)

3

Extraneous AttributesExtraneous Attributes

(1) Extraneous is RHS?
e.g.: can we replace A Æ BC with AÆC?

(i.e. Is B extraneous in A ÆBC?)

(2) Extraneous in LHS ?
e.g.: can we replace AB ÆC with A Æ C ?
(i.e. Is B extraneous in ABÆC?)

Simple but expensive test:
1. Replace A Æ BC (or AB Æ C) with A Æ C in F

F2 = F - {A ÆBC} U {A ÆC}
or

F - {ABÆC} U {A ÆC}

2. Test if F2+ = F+ ?
if yes, then B extraneous

Extraneous AttributesExtraneous Attributes

A. RHS: Is B extraneous in A ÆBC?

step 1: F2 = F - {A ÆBC} U {A ÆC}
step 2: F+ = F2+ ?

To simplify step 2, observe that F2+ F+

i.e., not new FD’s in F2+)

Why? Have effectively removed AÆB from
F

When is F+ = F2+ ?
Ans. When (AÆB) in F2+

Idea: if F2+ includes: AÆB and AÆC,
then it includes AÆBC

⊆

4

Extraneous AttributesExtraneous Attributes

B. LHS: Is B extraneous in A BÆC ?

step 1: F2 = F - {AB ÆC} U {A ÆC}
step 2: F+ = F2+ ?

To simplify step 2, observe that F+ F2+

i.e., there may be new FD’s in F2+)

Why? AÆC “implies” ABÆC. therefore all FD’s in F+ also in F2+.
But ABÆC does not “imply” AÆC

When is F+ = F2+ ?

Ans. When (AÆC) in F+ Idea: if F+ includes: AÆC then it will include
all the FD’s of F+.

⊆

Extraneous attributesExtraneous attributes

A. RHS :
Given F = {AÆBC, BÆC} is C extraneous in A ÆBC?

why or why not?

Ans: yes, because

AÆC in { AÆB, BÆC}+

Proof. 1. AÆ B
2. B ÆC
3. AÆC transitivity using Armstrong’s axioms

5

Extraneous attributesExtraneous attributes

B. LHS :
Given F = {AÆB, ABÆC} is B extraneous in AB ÆC?

why or why not?

Ans: yes, because

AÆC in F+

Proof. 1. AÆ B
2. AB ÆC
3. AÆC using pseudotransitivity on 1 and 2

Actually, we have AAÆC but {A, A} = {A}

Minimal Cover AlgorithmMinimal Cover Algorithm

ALGORITHM MinimalCover (F: set of FD’s)
BEGIN

REPEAT UNTIL STABLE
(1) Where possible, apply UNION rule (A’s axioms)

(2) Remove all extraneous attributes:
a. Test if B extraneous in AÆ BC

(B extraneous if
(AÆB) in (F - {AÆBC} U {AÆC})+)

b. Test if B extraneous in ABÆC
(B extraneous in ABÆC if

(AÆC) in F+)

6

Minimal Cover AlgorithmMinimal Cover Algorithm
Example: determine the minimal cover of

F = {A ÆBC, BÆCE, AÆE}

Iteration 1:
a. F = { AÆBCE, BÆCE}
b. Must check for up to 5 extraneous attributes

- B extraneous in AÆBCE? No
- C extraneous in A Æ BCE?

yes: (AÆC) in { AÆBE, BÆCE}
1. AÆBE -> 2. AÆB -> 3. AÆCE -> 4. A Æ C

- E extraneous in AÆBE?

Minimal Cover AlgorithmMinimal Cover Algorithm
Example: determine the minimal cover of

F = {A ÆBC, BÆCE, AÆE}

Iteration 1:
a. F = { AÆBCE, BÆCE}
b. Must check for up to 5 extraneous attributes

- B extraneous in AÆBCE? No
- C extraneous in A Æ BCE? Yes
- E extraneous in AÆBE?

1. AÆB -> 2. AÆCE -> AÆE
- E extraneous in BÆCE No
- C extraneous in BÆCE No

Iteration 2:
a. F = { A Æ B, BÆ CE}
b. Extraneous attributes:

- C extraneous in B Æ CE No
- E extraneous in B ÆCE No

DONE

7

Minimal Cover AlgorithmMinimal Cover Algorithm
Find the minimal cover of

F = { A Æ BC,
B Æ CE,
A Æ E,
AC Æ H,
D Æ B}

Ans: Fc= { AÆBH, BÆ CE, DÆB}

Minimal Cover AlgorithmMinimal Cover Algorithm

Find two different minimal covers of:
F = { AÆBC, BÆ CA, CÆAB}

Ans:
Fc1 = { A ÆB, BÆC, CÆA}

and

Fc2 = { AÆC, BÆA, CÆB}

8

FD so far...FD so far...
1. Minimal Cover algorithm

• result (Fc) guaranteed to be the minimal FD set equivalent to F

2. Closure Algorithms
a. Armstrong’s Axioms:

more common use: test for extraneous attributes
in C.C. algorithm

b. Attribute closure:
more common use: test for superkeys

3. Purposes
a. minimize the cost of global integrity constraints

so far: min gic’s = |Fc|

In fact.... Min gic’s = 0
(FD’s for “normalization”)

Another use of FD’s: Schema DesignAnother use of FD’s: Schema Design

Example:

bname bcity assets cname lno amt

Downtown Bkln 9M Jones L-17 1000

Downtown Bkln 9M Johnson L-23 2000

Mianus Horse 1.7M Jones L-93 500

Downtown Bkln 9M Hayes L-17 1000

R =

R: “Universal relation”
tuple meaning: Jones has a loan (L-17) for $1000 taken out at the Downtown
branch in Bkln which has assets of $9M

Design:
+ : fast queries (no need for joins!)
- : redudancy:

update anomalies examples?
deletion anomalies

9

DecompositionDecomposition

1. Decomposing the schema
R = (bname, bcity, assets, cname, lno, amt)

R1 = (bname, bcity, assets, cname) R1 = (cname, lno, amt)

2. Decomposing the instance

R = R1 U R2

bname bcity assets cname lno amt

Downtown Bkln 9M Jones L-17 1000

Downtown Bkln 9M Johnson L-23 2000

Mianus Horse 1.7M Jones L-93 500

Downtown Bkln 9M Hayes L-17 1000

bname bcity assets cname

Downtown Bkln 9M Jones

Downtown Bkln 9M Johnson

Mianus Horse 1.7M Jones

Downtown Bkln 9M Hayes

cname lno amt

Jones L-17 1000

Johnson L-23 2000

Jones L-93 500

Hayes L-17 1000

Goals of DecompositionGoals of Decomposition

1. Lossless Joins
Want to be able to reconstruct big (e.g. universal) relation by
joining smaller ones (using natural joins)

(i.e. R1 R2 = R)

2. Dependency preservation
Want to minimize the cost of global integrity constraints based on FD’s
(i.e. avoid big joins in assertions)

3. Redundancy Avoidance
Avoid unnecessary data duplication (the motivation for decomposition)

Why important?
LJ : information loss
DP: efficiency (time)
RA: efficiency (space), update anomalies

10

Dependency Goal #1: lossless joinsDependency Goal #1: lossless joins

A bad decomposition:
bname bcity assets cname

Downtown Bkln 9M Jones

Downtown Bkln 9M Johnson

Mianus Horse 1.7M Jones

Downtown Bkln 9M Hayes

cname lno amt

Jones L-17 1000

Johnson L-23 2000

Jones L-93 500

Hayes L-17 1000

=

bname bcity assets cname lno amt

Downtown Bkln 9M Jones L-17 1000

Downtown Bkln 9M Jones L-93 500

Downtown Bkln 9M Johnson L-23 2000

Mianus Horse 1.7M Jones L-17 1000

Mianus Horse 1.7M Jones L-93 500

Downtown Bkln 9M Hayes L-17 1000

Problem: join adds meaningless tuples
“lossy join”: by adding noise, have lost meaningful information as a

result of the decomposition

Dependency Goal #1: lossless joinsDependency Goal #1: lossless joins

Is the following decomposition lossless or lossy?

bname assets cname lno

Downtown 9M Jones L-17

Downtown 9M Johnson L-23

Mianus 1.7M Jones L-93

Downtown 9M Hayes L-17

lno bcity amt

L-17 Bkln 1000

L-23 Bkln 2000

L-93 Horse 500

Ans: Lossless: R = R1 R2, it has 4 tuples

11

Ensuring Lossless JoinsEnsuring Lossless Joins

A decomposition of R : R = R1 U R2 is lossless iff

R1 ∩ R2 Æ R1, or

R1 ∩ R2 Æ R2

(i.e., intersecting attributes must be a superkey for one of the
resulting smaller relations)

Decomposition Goal #2: Dependency Decomposition Goal #2: Dependency

preservationpreservation
Goal: efficient integrity checks of FD’s

An example w/ no DP:
R = (bname, bcity, assets, cname, lno, amt)

bname Æ bcity assets
lno Æ amt bname

Decomposition: R = R1 U R2
R1 = (bname, assets, cname, lno)
R2 = (lno, bcity, amt)

Lossless but not DP. Why?

Ans: bname Æbcity assets crosses 2 tables

12

Decomposition Goal #2: Dependency Decomposition Goal #2: Dependency

preservationpreservation

To ensure best possible efficiency of FD checks

ensure that only a SINGLE table is needed in order to check each FD

i.e. ensure that: A1 A2 ... An Æ B1 B2 ... Bm

Can be checked by examining Ri = (..., A1, A2, ..., An, ..., B1, ..., Bm, ...)

To test if the decomposition R = R1 U R2 U ... U Rn is DP

(1) see which FD’s of R are covered by R1, R2, ..., Rn

(2) compare the closure of (1) with the closure of FD’s of R

Decomposition Goal #2: Dependency Decomposition Goal #2: Dependency

preservationpreservation

Example: Given F = { AÆB, ABÆ D, CÆ D}

consider R = R1 U R2 s.t.
R1 = (A, B, C) , R2 = (C, D) is it DP?

(1) F+ = { AÆBD, CÆD}+
(2) G+ = {AÆB, CÆD} +

(3) F+ = G+ ? No because (AÆD) not in G+

Decomposition is not DP

13

Decomposition Goal #2: Dependency Decomposition Goal #2: Dependency

preservationpreservation
Example: Given F = { AÆB, ABÆ D, CÆ D}

consider R = R1 U R2 s.t.
R1 = (A, B, D) , R2 = (C, D)

(1) F+ = { AÆBD, CÆD}+
(2) G+ = {AÆBD, CÆD, ...} +

(3) F+ = G+
note: G+ cannot introduce new FDs not in F+

Decomposition is DP

Decomposition Goal #3: Decomposition Goal #3: RedudancyRedudancy

AvoidanceAvoidance
Redundancy
for B=x , y and zExample: A B C

a x 1

e x 1

g y 2

h y 2

m y 2

n z 1

p z 1

(1) An FD that exists in the above relation is: B Æ C

(2) A superkey in the above relation is A, (or any set containing A)

When do you have redundancy?
Ans: when there is some FD, XÆY covered by a relation

and X is not a superkey

14

NormalizationNormalization

Decomposition techniques for ensuring:

Lossless joins

Dependency preservation

Redundancy avoidance

We will look at some normal forms:

Boyce-Codd Normal Form (BCNF)

3rd Normal Form (3NF)

BoyceBoyce--CoddCodd Normal Form (BCNF)Normal Form (BCNF)

What is a normal form?

Characterization of schema decomposition
in terms of properties it satisfies

BCNF: guarantees no redundancy

Defined:
relation schema R, with FD set, F is in BCNF if:

For all nontrivial XÆY in F+:
XÆR (i.e. X a superkey)

15

BCNFBCNF

Example: R=(A, B, C)
F = (AÆB, BÆC)

Is R in BCNF?

Ans: Consider the non-trivial dependencies in F+:

AÆB, AÆR (A a key)
AÆC, -//-
BÆC, B-/-> R (B not a superkey)

Therefore not in BCNF

BCNFBCNF

Example:
R= R1 U R2

R1 = (A, B) , R2 = (B,C)
F = (AÆB, BÆC)

Are R1, R2 in BCNF?

Ans: Yes, both non-trivial FDs define a key in R1, R2

Is the decomposition lossless? DP?

Ans: Losless: Yes. DP: Yes.

16

BCNFBCNF
Decomposition Algorithm

Algorithm BCNF(R: relation, F: FD set)

Begin
1. Compute F+
2. Result Æ {R}
3. While some Ri in Result not in BCNF Do

a. Chose (XÆY) in F+ s.t.
(XÆY) covered by Ri

X -/-> Ri (X not a superkey for Ri)
b. Decompose Ri on (XÆY)

Ri1  X U Y
Ri2  Ri - Y

c. Result  Result - {Ri} U { Ri1, Ri2}

4. return Result
End

BCNF DecompositionBCNF Decomposition

Example:
R= (A, B, C, D)
F = (AÆB, ABÆD, BÆC)

Decompose R into BCNF

Ans: Fc = {A ÆBD, BÆC}
R=(A, B, C, D)

BÆ C is covered by R and B not a superkey

R1 = (B,C)
In BCNF:
BÆC and B key

R2 = (A, B, D)
In BCNF: AÆB, AÆD, AÆBD
and A is a key

17

BCNF DecompositionBCNF Decomposition

Example:
R = (bname, bcity, assets, cname, lno, amt)
F = { bname Æbcity assets,

lno Æ amt bname}

Decompose R into BCNF Ans: Fc = F

R , and bname Æ bcity covered by R, bname not a key

R1 = (bname, bcity)
In BCNF

R2 = (bname, assets, cname, lno, amt)
lno Æ amt bname covered by R2 and lno not a key

R3 = (lno, amt, bname)
In BCNF

R4 = (assets, cname, lno)
lno Æ assets

R5 = (lno, assets) R6=(lno, cname)

key= superkey here

Not DP! bname Æassets is not covered by any relation AND cannot be
implied by the covered FDs. Covered FDs: G = { bname Æ bcity, lno Æ amt bname,

lno Æ assets}

BCNF DecompositionBCNF Decomposition

Can there be > 1 BCNF decompositions?

Ans: Yes, last example was not DP. But...

Given Fc = { bname Æ bcity assets, lno Æ amt bname}

R=(bname, bcity, assets, cname, lno, amt)
bname Æ bcity assets and bname -/-> R

R1 = (bname, bcity, assets)
BCNF: bname ÆR1 R2 = (bname, cname, lno, amt)

lno Æ amt bname, lno -/-> R2

R3 = (lno, amt, bname)
BCNF: lno Æ R3

R4 = (lno, cname)

Is R = R1 U R3 U R4 DP?
Yes!!

18

BCNF DecompositionBCNF Decomposition

Can we decompose on FD’s in Fc to get a DP, BCNF
decomposition?

Usually, yes, but ...

Consider: R = (J, K, L)
F = (JKÆL, LÆK} (Fc = F)

We can apply decomposition either using: JKÆL , LÆK or the oposite

Dec. #1

Using LÆK

R1 = (L, K)
R2 = (J, L) Not DP.

Dec. #2

Using JKÆL

R1 = (J, K, L) not BCNF
R2 = (J, K)

So, BCNF and DP decomposition may not be possible.

AsideAside

Is the example realistic?

Consider: BankerName Æ BranchName

BranchName CustomerName Æ BankerName

19

3NF: An alternative to BCNF3NF: An alternative to BCNF

Motivation:

sometimes, BCNF is not what you want

E.g.: street city Æ zip and zip Æ city

BCNF: R1 = { zip, city} R2 ={ zip, street}

No redundancy, but to preserve 1st FD requires assertion with join

Alternative: 3rd Normal Form

Designed to say that decomposition can stop at {street, city, zip}

3NF: An alternative to BCNF3NF: An alternative to BCNF

BCNF test: Given R with FD set, F: For any non-trivial FD,

XÆY in F+ and covered by R, then XÆR

3NF test: Given R with FD set, F:

For any non-trivial FD,

XÆY in F+ and covered by R, then

XÆ R or

Y is a subset of some candidate key of R

Thus, 3NF a weaker normal form than BCNF:

i.e. R in BCNF => R in 3NF
but R in 3NF =/=> R in BCNF (not sure than R is in BCNF)

20

3NF: An alternative to BCNF3NF: An alternative to BCNF

Example:
R=(J, K, L) F = {JKÆL, LÆK}

then R is 3NF!

Key for R: JK

JKÆL covered by R, JKÆR
LÆK, K is a part of a candidate key

3NF3NF
Example:

R=(bname, cname, lno, amt)
F=Fc = { lnoÆ amt bname,

cname bname Æ lno}

Q: is R in BCNF, 3NF or neither?

Ans:
R not in BCNF: lno Æ amt , covered by R and lno -/->R

R not in 3NF: candidate keys of R: lno cname
or

cname bname

lno Æ amt bname covered by R
{amt bname} not a subset of a candidate key

21

3NF3NF
Example: R = R1 U R2

R1 = (lno, amt, bname)
R2 = (lno, cname, bname), F=Fc = { lnoÆ amt bname,

cname bname Æ lno}

Q: Are R1, R2 in BCNF, 3NF or neither?

Ans: R1 in BCNF : lnoÆamt bname covered by R1 and lno ÆR1

R2 not in BCNF: lno Æbname and lno-/-> R2

R1 in 3NF (since it is in BCNF)

R2 in 3NF: R2’s candidate keys: cname bname and lno cname

lno Æ bname, bname subset of a c.key
cname bname Æ lno , lno subset of a c. key

3NF Decomposition Algorithm3NF Decomposition Algorithm

Algorithm 3NF (R: relation, F: FD set)

1. Compute Fc

2. i  0

3. For each XÆY in Fc do

if no Rj (1 <= j <=i) contains X,Y

ii+1

Ri  X U Y

4. If no Rj (1<= j <= i) contains a candidate key for R

i  i+1

Ri  any candidate key for R

5. return (R1, R2, ..., Ri)

22

3NF Decomposition Example3NF Decomposition Example

Example:
R = (bname, cname, banker, office)
Fc = { banker Æ bname office,

cname bname Æ banker}

Q1: candidate keys of R: cname bname or cname banker

Q2: decompose R into 3NF.

Ans: R is not in 3NF: banker Æ bname office
{bname, office} not a subset of a c. key

3NF: R1 = (banker, bname, office)
R2 = (cname, bname, banker)
R3 = ? Empty (done)

Theory and practiceTheory and practice
Performance tuning:

Redundancy not the sole guide to decomposition

Workload matters too!!
• nature of queries run
• mix of updates, queries
•.....

Workload can influence:
BCNF vs 3NF
may further decompose a BCNF into (4NF)

may denormalize (i.e., undo a decomposition or add new columns)

