Normal Forms

Functional dependencies

Qur goal:
given a set of FD set, F, find an alternative FD set, G that is:
smaller
equivalent

Bad news:
Testing F=G (F+ = G+) is computationally expensive

Good news:
Minimal Cover (or Canonical Cover) algorithm:
given a set of FD, F, finds minimal FD set equivalent to F

Minimal: can’t find another equivalent FD set w/ fewer FD’s

Minimal Cover Algorithm

Given:
F={A > BC,
B = CE,
A->E,
AC~-> H,
D > B}

Determines minimal cover of F:
‘Fc=F
Fc= {A->BH, No G that is equivalent

B > CE, to F and is smaller than Fc
D> B}

Another example: _
F={A QBC, FC—{A%BD,
MC — B >C}
B>C, = Algorithm
A>B, 9

AB- C,
AC = D}

Minimal Cover Algorithm
Basic Algorithm

ALGORITHM MinimalCover (X: FD set)
BEGIN
REPEAT UNTIL STABLE

(1) Where possible, apply UNION rule (A’s axioms)
(e.g., A>BC, A>CD becomes A>BCD)

(2) remove “extraneous attributes” from each FD
(e.g., AB>C, A>B becomes

A->B, B>C

i.e., Alis extraneous in AB->C)

Extraneous Attributes

(1) Extraneous is RHS?
e.g.. canwe replace A> BC with A->C?
(i.e. Is B extraneous in A >BC?)

(2) Extraneous in LHS ?
e.g.: can we replace AB >C withA > C?
(i.e. Is B extraneous in AB>C?)

Simple but expensive test:
1. Replace A> BC (orAB> C) withA>CinF

F2=F-{A>BC} U {A >C}
or
F - {AB>C} U {A >C}

2. Testif F2+=F+?
if yes, then B extraneous

Extraneous Attributes
A. RHS: Is B extraneous in A >BC?

step1: F2=F-{A>BC}U{A>C}
step2: F+=F2+7?

To simplify step 2, observe that Fo+ & F+

i.e., not new FD’s in F2+)

Why? Have effectively removed A->B from
F

i = ?
When'is F+&E2* Rihen (A>B) in Fo+

Idea: if F2+ includes: A->B and A=>C,
then itincludes A->BC

Extraneous Attributes
B. LHS: Is B extraneous in AB>C ?

step 1: F2=F - {AB >C} U {A >C}
step 2: F+=F2+7?
To simplify step 2, observe that F+ C F2+

i.e., there may be new FD’s in F2+)

Why? A->C “implies” AB->C. therefore all FD’s in F+ also in F2+.
But AB->C does not “imply” A>C

When is F+ = F2+ ?

Ans. When (A>C) in F+ Idea: if F+ includes: A->C then it will include
all the FD’s of F+.

Extraneous attributes

A. RHS:
Given F ={A->BC, B>C} is C extraneous in A >BC?

why or why not?

Ans: yes, because
A->Cin{A>B, B>C}+
Proof. 1. A> B

2. B>C
3. A>C transitivity using Armstrong’s axioms

Extraneous attributes

B. LHS:
Given F = {A>B, AB>C} is B extraneous in AB >C?

why or why not?

Ans: yes, because
A->Cin F+
Proof. 1. A> B
2. AB>C
3. A>C using pseudotransitivity on 1 and 2

Actually, we have AA->C but {A, A} = {A}

Minimal Cover Algorithm

ALGORITHM MinimalCover (F: set of FD’s)
BEGIN
REPEAT UNTIL STABLE
(1) Where possible, apply UNION rule (A’s axioms)

(2) Remove all extraneous attributes:
a. Testif B extraneous in A> BC
(B extraneous if
(A>B)in (F-{A>BC} U {A>C})+)
b. Test if B extraneous in AB>C
(B extraneous in AB>C if
(A>C)in F+)

Minimal Cover Algorithm

Example: determine the minimal cover of
F ={A >BC, B>CE, A>E}

Iteration 1:
a. F={A->BCE, B>CE}
b. Must check for up to 5 extraneous attributes

- B extraneous in A>BCE? No
- C extraneous in A > BCE?
yes: (A>C) in {A>BE, B>CE}
1.A>BE -> 2.A>B->3.A>CE >4 A>C

- E extraneous in A>BE?

Minimal Cover Algorithm

Example: determine the minimal cover of
F ={A >BC, B>CE, A>E}

Iteration 1:
a. F={A->BCE, B>CE}
b. Must check for up to 5 extraneous attributes

- B extraneous in A>BCE? No
- C extraneous in A > BCE? Yes

- E extraneous in A>BE?
1.A>B ->2. A>CE -> A>E

- E extraneous in B=>CE No
- C extraneous in B>CE No
Iteration 2:

a. F={A~>B,B> CE}

b. Extraneous attributes:
- C extraneousinB > CE No
- E extraneous in B >CE No

DONE

Minimal Cover Algorithm

Find the minimal cover of
F={ A>BC,
B - CE,
A->E,
AC > H,
D -> B}

Ans: Fc={A->BH, B> CE, D>B}

Minimal Cover Algorithm

Find two different minimal covers of:
F={A>BC, B-> CA, C->AB}

Ans:
Fc1 ={A->B,B>C, C>A}

and

Fc2 = {A>C, B>A, C>B}

FD so far...

1. Minimal Cover algorithm
« result (Fc) guaranteed to be the minimal FD set equivalent to F

2. Closure Algorithms
a. Armstrong’s Axioms:
more common use: test for extraneous attributes
in C.C. algorithm
b. Attribute closure:
more common use: test for superkeys

3. Purposes
a. minimize the cost of global integrity constraints
so far: mingic’s = |Fc|

In fact.... Min gic’'s =0
(FD’s for “normalization”)

Another use of FD’s: Schema Design

Example:

bname beity assets [cname Ino amt
R = Downtown | Bkln M Jones L-17 1000
Downtown | Bkin IM Johnson |L-23 (2000
Mianus Horse 1.7M |Jones L-93 |500
Downtown |Bkin M Hayes L-17 1000

R: “Universal relation”
tuple meaning: Jones has a loan (L-17) for $1000 taken out at the Downtown
branch in Bkin which has assets of $9M

Design:
+: fast queries (no need for joins!)
-: redudancy:
update anomalies examples?

deletion anomalies

Decomposition

1. Decomposing the schema R=R1 UR2
R = (bname, bcity, assets, cname, Ino, amt)

/ N

R1 = (bname, bcity, assets, cname) R1=(cname, Ino, amt)

2D . the inst bname beity assets |cname Ino amt
- becomposing the instance Downtown |Bkin oM Jones L-17 1000
Downtown |BkIn oM Johnson |L-23 2000
Mianus Horse 1.7M Jones L-93 500
Downtown |Bkin M Hayes L-17 1000
bname beity assets |cname ciEmy |l amt

Jones L-17 1000
Johnson |L-23 |2000
Jones L-93 500

Hayes L-17 1000

Downtown |Bkin IM Jones
Downtown |Bkin IM Johnson
Mianus Horse 1.7M |Jones
Downtown | Bkln M Hayes

Goals of Decomposition

1. Lossless Joins
Want to be able to reconstruct big (e.g. universal) relation by
joining smaller ones (using natural joins)
(i.,e. R1DIR2=R)

2. Dependency preservation
Want to minimize the cost of global integrity constraints based on FD’s
(i.e. avoid big joins in assertions)

3. Redundancy Avoidance
Avoid unnecessary data duplication (the motivation for decomposition)

Why important?
LJ : information loss
DP: efficiency (time)
RA: efficiency (space), update anomalies

Dependency Goal #1: lossless joins

A bad decomposition:

bname beity assets |cname cname |Ilno amt
Downtown |Bkin M Jones Jones L-17 |1000
Downtown |Bkln oM Johnson ><] |Johnson |L-23 |2000
Mianus Horse 1.7M |Jones Jones L-93 |500
Downtown |Bkin M Hayes Hayes L-17 |1000
bname beity assets |cname [lno amt
Downtown | Bkin M Jones L-17 1000
—*|Downtown |Bkin M Jones L-93 |500
Downtown | Bkln IM Johnson |L-23 2000
—* |Mianus Horse 1.7M |Jones L-17 1000
Mianus Horse 1.7M |Jones L-93 500
Downtown |Bkin M Hayes L-17 1000
Problem: join adds meaningless tuples

“lossy join”: by adding noise, have lost meaningful information as a
result of the decomposition

Dependency Goal #1: lossless joins

Is the following decomposition lossless or lossy?

bname assets |cname Ino

Downtown |9M Jones L-17
Downtown |9M Johnson |L-23
Mianus 1.7M |Jones L-93
Downtown |9M Hayes L-17

Ans: Lossless:

Ino bcity |amt
L-17 |Bkln |1000
L-23 |Bkln |2000
L-93 |Horse [500

R=R1 P> R2, ithas 4 tuples

10

Ensuring Lossless Joins

A decomposition of R : R=R1 U R2 s lossless iff
R1NR2 > R1, or

R1NR2 <> R2

(i.e., intersecting attributes must be a superkey for one of the
resulting smaller relations)

Decomposition Goal #2: Dependency
preservation

Goal: efficient integrity checks of FD’s

An example w/ no DP:

R = (bname, bcity, assets, cname, Ino, amt)
bname - bcity assets
Ino = amt bname

Decomposition: R = R1 U R2
R1 = (bname, assets, cname, Ino)
R2 = (Ino, bcity, amt)

Lossless but not DP. Why?

Ans: bname > bcity assets crosses 2 tables

11

Decomposition Goal #2: Dependency
preservation

To ensure best possible efficiency of FD checks
ensure that only a SINGLE table is needed in order to check each FD
i.e. ensure that: A1 A2...An > B1B2..Bm

Can be checked by examining Ri = (..., A1, A2, ..., An, ..., B1, ..., Bm, ...)

To test if the decomposition R=R1UR2U .. URn isDP
(1) see which FD’s of R are covered by R1, R2, ..., Rn

(2) compare the closure of (1) with the closure of FD’s of R

Decomposition Goal #2: Dependency
preservation

Example: Given F={A->B, AB> D, C> D}

consider R =R1 U R2s.t.
R1=(A,B,C) , R2=(C,D) isitDP?

(1) F+={A>BD, C>D}+
(2) G+={A>B,C>D}+

(3) F+ =G+ ? No because (A>D) not in G+

Decomposition is not DP

12

Decomposition Goal #2: Dependency
preservation
Example: Given F={A->B, AB> D, C> D}

consider R =R1 U R2s.t.
R1=(A,B,D) , R2=(C,D)

(1) F+={A>BD, C>D}+
(2) G+={A>BD,C->D,..}+

3) F+=G+
note: G+ cannot introduce new FDs not in F+

Decomposition is DP

Decomposition Goal #3: Redudancy

Avoidance

Redundancy
forB=x,yandz

Example:

N N« x x| W
—_— —_ N NN =~ 0

S S5 BonR o | >

(1) An FD that exists in the above relationis: B> C

(2) A superkey in the above relation is A, (or any set containing A)

When do you have redundancy?
Ans: when there is some FD, XY covered by a relation
and X is not a superkey

13

Normalization

Decomposition techniques for ensuring:
Lossless joins

Dependency preservation

Redundancy avoidance

We will look at some normal forms:
Boyce-Codd Normal Form (BCNF)
3rd Normal Form (3NF)

Boyce-Codd Normal Form (BCNF)

What is a normal form?

Characterization of schema decomposition
in terms of properties it satisfies

BCNF: guarantees no redundancy

Defined:
relation schema R, with FD set, F is in BCNF if:

For all nontrivial XY in F+:
X->R (i.e. X a superkey)

14

BCNF

Example: R=(A, B, C)
F =(A>B, B>C)

Is R in BCNF?

Ans: Consider the non-trivial dependencies in F+:

A-B, A>R (A akey)
A->C, -/1-
B->C, B-/-> R (B not a superkey)

Therefore not in BCNF

BCNF

Example:
R=R1 UR2
R1=(A, B) , R2=(B,C)
F=(A->B,B->C)

Are R1, R2 in BCNF?
Ans: Yes, both non-trivial FDs define a key in R1, R2

Is the decomposition lossless? DP?

Ans: Losless: Yes. DP: Yes.

15

BCNF

Decomposition Algorithm

Algorithm BCNF(R: relation, F: FD set)
Begin

1. Compute F+

2. Result > {R}

3. While some R;in Result notin BCNF Do
a. Chose (X-2Y) inF+s.t.

(X->Y) covered by R;

X-/->R; (X not a superkey for R;)
b. Decompose R; on (X->Y)

Ry € XUY

R, €R-Y
c. Result € Result-{R} U{R;, Ry}

4. return Result

End
BCNF Decomposition
Example:
R= (A, B, C, D)
F=

(A>B, AB>D, B>C)

Decompose R into BCNF

Ans: Fc={A->BD, B>C}

R=(A, B, C, D)
B-> C is covered by R and B not a superkey

/ \

R2 = (A, B, D)
R1=(B,C)

In BCNF: A->B, A>D, A>BD
In BCNF: and Ais a key
B->C and B key

16

BCNF Decomposition

Example:
R = (bname, bcity, assets, cname, Ino, amt)
F = { bname —>bcity assets,
Ino > amt bname}
key= superkey here
Decompose R into BCNF Ans: Fc=F

R, and bname = bcity covered by R, bname not a key

/

R1 = (bname, bcity)

R2 = (bname, assets, cname, Ino, amt)
In BCNF

Ino = amt bname covered by R2 and Ino not a key

— \

R3 = (Ino, amt, bname) R4 = (assets, cname, Ino)
In BCNF Ino > assets

. N\

R5 = (Ino, assets) R6=(Ino, cname)

Not DP! bname —>assets is not covered by any relation AND cannot be
implied by the covered FDs. Covered FDs: G = { bname - bcity, Ino - amt bname,
Ino > assets}

BCNF Decomposition

Can there be > 1 BCNF decompositions?
Ans: Yes, last example was not DP. But...

Given Fc = { bname - bcity assets, Ino - amt bname}

R=(bname, bcity, assets, cname, Ino, amt)
/ bname - bcity assets and bname -/-> R

R1 = (bname, bcity, assets) \

BCNF: bname >R1 R2 = (bname, cname, Ino, amt)

Ino = amt bname, Ino -/-> R2

R3 = (Ino, amt, bname) R4 = (Ino, cname)
BCNF: Ino > R3

IsR=R1UR3UR4 DP?
T Yesll

17

BCNF Decomposition
Can we decompose on FD’s in Fc to get a DP, BCNF
decomposition?

Usually, yes, but ...

Consider: R=(J,K, L)
F=UK=>L, L>K} (Fc=F)

We can apply decomposition either using: JK->L , L>K or the oposite

Dec. #1 Dec. #2

Using LK Using JK->L

R1=(L, K) R1=(J, K, L) not BCNF
R2=(J,L) NotDP. R2 = (J, K)

So, BCNF and DP decomposition may not be possible.

Aside

Is the example realistic?

Consider: BankerName = BranchName
BranchName CustomerName - BankerName

18

3NF: An alternative to BCNF

Motivation:
sometimes, BCNF is not what you want

E.g.: street city > zip and zip > city
BCNF: R1 = { zip, city} R2 ={ zip, street}

No redundancy, but to preserve 1st FD requires assertion with join

Alternative: 3rd Normal Form
Designed to say that decomposition can stop at {street, city, zip}

3NF: An alternative to BCNF

BCNF test: Given R with FD set, F: For any non-trivial FD,
X-2Y in F+ and covered by R, then X>R

3NF test: Given R with FD set, F:
For any non-trivial FD,
X->Y in F+ and covered by R, then
X-> Ror
Y is a subset of some candidate key of R

Thus, 3NF a weaker normal form than BCNF:

ie. R in BCNF => R in 3NF
but Rin3NF =/=> Rin BCNF (not sure than R is in BCNF)

19

3NF: An alternative to BCNF

Example:
R=(J, K, L) F={JK>L,L>K}

then R is 3NF!
Key for R: JK

JK->L covered by R, JK>R
L>K, Kis a part of a candidate key

3NF

Example:
R=(bname, cname, Ino, amt)
F=Fc = {Ino> amt bname,
cname bname - Ino}

Q: is R in BCNF, 3NF or neither?

Ans:
R notin BCNF: Ino > amt , covered by R and Ino -/->R

R not in 3NF: candidate keys of R: Ino cname
or
chame bname

Ino > amt bname covered by R
{amt bname} not a subset of a candidate key

20

3NF

Example: R=R1UR2
R1 = (Ino, amt, bname)
R2 = (Ino, cname, bname), F=Fc = {Ino> amt bname,
cname bname - Ino}

Q: Are R1, R2 in BCNF, 3NF or neither?
Ans: R1in BCNF : Ino>amt bname covered by R1 and Ino >R1

R2 not in BCNF: Ino >bname and Ino-/-> R2

R1 in 3NF (since it is in BCNF)
R2in 3NF: R2’s candidate keys: cname bname and Ino cname

Ino > bname, bname subset of a c.key
cname bname - Ino , Ino subset of a c. key

3NF Decomposition Algorithm

Algorithm 3NF (R: relation, F: FD set)
1. Compute Fc
2.i€0
3. For each XY in Fc do
if no Rj (1 <=j <=i) contains X,Y

i<i+1
Ri< XUY

4. If no Rj (1<=j <=1i) contains a candidate key for R
i & i+1

Ri € any candidate key for R
5. return (R1, R2, ..., Ri)

21

3NF Decomposition Example

Example:
R = (bname, cname, banker, office)
Fc = { banker > bname office,
cname bname - banker}

Q1: candidate keys of R: cname bname or cname banker

Q2: decompose R into 3NF.

Ans: Ris notin 3NF: banker - bname office
{bname, office} not a subset of a c. key

3NF: R1 = (banker, bname, office)
R2 = (cname, bname, banker)
R3 = ? Empty (done)

Theory and practice

Performance tuning:

Redundancy not the sole guide to decomposition

Workload matters too!!
« nature of queries run
» mix of updates, queries

Workload can influence:
BCNF vs 3NF
may further decompose a BCNF into (4NF)
may denormalize (i.e., undo a decomposition or add new columns)

22

