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Normal FormsNormal Forms

FunctionalFunctional dependenciesdependencies

Our goal:
given a set of FD set, F, find an alternative FD set, G that is:

smaller
equivalent

Bad news:
Testing F=G (F+ = G+) is computationally expensive

Good news:
Minimal Cover  (or Canonical Cover) algorithm:

given a set of FD, F, finds minimal FD set equivalent to F

Minimal: can’t find another equivalent FD set w/ fewer FD’s
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Minimal Cover AlgorithmMinimal Cover Algorithm

Given:
F =  { A  Æ BC,

B Æ CE,
A Æ E,
ACÆ H,
D Æ B}

Determines minimal cover of F:

Fc =   { A Æ BH,                                  
B Æ CE,
D Æ B}                                   

•Fc = F
•No G that is equivalent 

to F and is smaller than Fc

Another example:
F =  { A  Æ BC,

B Æ C,
A Æ B,
ABÆ C,
AC Æ D}

MC 
Algorithm

Fc = { A Æ BD,
B ÆC}

Minimal Cover AlgorithmMinimal Cover Algorithm

Basic Algorithm

ALGORITHM MinimalCover (X: FD set)
BEGIN

REPEAT UNTIL STABLE
(1)  Where possible, apply UNION rule (A’s axioms)

(e.g., A ÆBC,  AÆCD  becomes AÆBCD)
(2)  remove “extraneous attributes” from each FD

(e.g., ABÆC,  AÆB   becomes
AÆB,  BÆC

i.e., A is extraneous in ABÆC)
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Extraneous AttributesExtraneous Attributes

(1)      Extraneous is RHS?
e.g.:  can we replace A Æ BC     with     AÆC?

(i.e.   Is B extraneous in A ÆBC?)

(2)      Extraneous in LHS ?
e.g.: can we replace AB ÆC    with A  Æ C ?
(i.e.  Is B extraneous in ABÆC?)

Simple but expensive test:
1.  Replace  A Æ BC  (or AB Æ C)   with A Æ C in F

F2 = F - {A ÆBC} U {A ÆC}
or

F - {ABÆC} U {A ÆC}

2. Test if    F2+ = F+ ?
if yes, then B extraneous

Extraneous AttributesExtraneous Attributes

A. RHS:  Is B extraneous in A ÆBC?

step 1:  F2 = F - {A ÆBC} U {A ÆC}
step 2:  F+ = F2+ ?

To simplify step 2, observe that        F2+             F+

i.e., not new FD’s in F2+)

Why?    Have effectively removed    AÆB from 
F

When is F+ = F2+ ?
Ans.    When (AÆB)  in  F2+

Idea:  if F2+  includes:    AÆB and AÆC,
then it includes    AÆBC

⊆
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Extraneous AttributesExtraneous Attributes

B. LHS:  Is B extraneous in A BÆC ?

step 1:  F2 = F - {AB ÆC} U {A ÆC}
step 2:  F+ = F2+ ?

To simplify step 2, observe that        F+          F2+

i.e., there may be new  FD’s in F2+)

Why?   AÆC  “implies” ABÆC. therefore all FD’s in F+ also in F2+.
But    ABÆC  does not “imply” AÆC

When is F+ = F2+ ?

Ans.    When (AÆC)  in  F+ Idea:  if F+  includes:    AÆC then it will include
all the FD’s of F+.

⊆

Extraneous attributesExtraneous attributes

A.   RHS :
Given F = {AÆBC, BÆC}  is C extraneous in A ÆBC?

why or why not?

Ans: yes, because

AÆC in { AÆB, BÆC}+

Proof.   1.  AÆ B
2.  B ÆC
3.  AÆC           transitivity using Armstrong’s axioms
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Extraneous attributesExtraneous attributes

B.   LHS :
Given F = {AÆB, ABÆC}  is B extraneous in AB ÆC?

why or why not?

Ans: yes, because

AÆC in  F+

Proof.   1.  AÆ B
2.  AB ÆC
3.  AÆC           using pseudotransitivity on 1 and 2 

Actually, we have    AAÆC   but {A, A} = {A}

Minimal Cover AlgorithmMinimal Cover Algorithm

ALGORITHM MinimalCover (F: set of FD’s)
BEGIN

REPEAT  UNTIL STABLE
(1)   Where possible, apply UNION rule (A’s axioms)

(2)  Remove all extraneous attributes:
a.  Test if B extraneous in AÆ BC

(B extraneous if 
(AÆB) in (F - {AÆBC} U {AÆC})+ )

b. Test if B extraneous in ABÆC
(B extraneous in ABÆC if

(AÆC) in F+)
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Minimal Cover AlgorithmMinimal Cover Algorithm
Example:     determine the minimal cover of  

F = {A ÆBC, BÆCE, AÆE}

Iteration 1:
a.   F = { AÆBCE,  BÆCE}
b.   Must check for up to 5 extraneous attributes

- B extraneous in AÆBCE?              No
- C extraneous in A Æ BCE?

yes:  (AÆC)  in { AÆBE, BÆCE}
1. AÆBE   ->  2. AÆB -> 3. AÆCE  -> 4. A Æ C

- E extraneous in AÆBE?

Minimal Cover AlgorithmMinimal Cover Algorithm
Example:     determine the minimal cover of  

F = {A ÆBC, BÆCE, AÆE}

Iteration 1:
a.   F = { AÆBCE,  BÆCE}
b.   Must check for up to 5 extraneous attributes

- B extraneous in AÆBCE?              No
- C extraneous in A Æ BCE?            Yes
- E extraneous in AÆBE?

1. AÆB -> 2. AÆCE -> AÆE
- E extraneous in  BÆCE                 No
- C extraneous in  BÆCE                 No

Iteration 2:
a.   F = { A Æ B, BÆ CE}
b.   Extraneous attributes:

- C extraneous in B Æ CE    No
- E extraneous in B ÆCE      No

DONE
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Minimal Cover AlgorithmMinimal Cover Algorithm
Find the minimal cover of     

F = {  A Æ BC, 
B Æ CE,
A Æ E,
AC Æ H,
D Æ B}

Ans:    Fc= { AÆBH,  BÆ CE, DÆB}

Minimal Cover AlgorithmMinimal Cover Algorithm

Find two different minimal covers of:
F = { AÆBC,    BÆ CA,   CÆAB}

Ans:   
Fc1  = { A ÆB, BÆC,  CÆA}

and

Fc2 = { AÆC, BÆA, CÆB}
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FD so far...FD so far...
1. Minimal Cover algorithm 

• result (Fc) guaranteed to be the minimal FD set equivalent to F

2. Closure Algorithms
a.  Armstrong’s Axioms:

more common use: test for extraneous attributes
in C.C. algorithm

b.  Attribute closure:
more common use: test for superkeys

3. Purposes
a. minimize the cost of global integrity constraints

so far:    min gic’s =  |Fc|

In fact.... Min gic’s = 0
(FD’s for “normalization”)

Another use of FD’s: Schema DesignAnother use of FD’s: Schema Design

Example:

bname bcity assets cname lno amt 

Downtown Bkln 9M Jones L-17 1000 

Downtown Bkln 9M Johnson L-23 2000 

Mianus Horse 1.7M Jones L-93 500 

Downtown Bkln 9M Hayes L-17 1000 
 

 

R = 

R:  “Universal relation”
tuple meaning: Jones has a loan (L-17) for $1000 taken out at the Downtown
branch in Bkln which has assets of $9M

Design:
+ :    fast queries (no need for joins!)
- :    redudancy:

update anomalies        examples?
deletion anomalies
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DecompositionDecomposition

1. Decomposing the schema   
R = ( bname, bcity, assets, cname, lno, amt)

R1 = (bname, bcity, assets, cname) R1 = (cname, lno, amt)

2. Decomposing the instance

R = R1  U R2

bname bcity assets cname lno amt 

Downtown Bkln 9M Jones L-17 1000 

Downtown Bkln 9M Johnson L-23 2000 

Mianus Horse 1.7M Jones L-93 500 

Downtown Bkln 9M Hayes L-17 1000 
 

 

bname bcity assets cname 

Downtown Bkln 9M Jones 

Downtown Bkln 9M Johnson 

Mianus Horse 1.7M Jones 

Downtown Bkln 9M Hayes 
 

 

cname lno amt 

Jones L-17 1000 

Johnson L-23 2000 

Jones L-93 500 

Hayes L-17 1000 
 

 

Goals of DecompositionGoals of Decomposition

1. Lossless Joins
Want to be able to reconstruct big (e.g. universal) relation by 
joining smaller ones (using natural joins)   

(i.e.    R1       R2 = R)

2. Dependency preservation
Want to minimize the cost of global integrity constraints based on FD’s
( i.e. avoid big joins in assertions)

3. Redundancy Avoidance
Avoid unnecessary data duplication (the motivation for decomposition)

Why important?
LJ :  information loss
DP:  efficiency (time)
RA: efficiency (space), update anomalies
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Dependency Goal #1: lossless joinsDependency Goal #1: lossless joins

A bad decomposition: 
bname bcity assets cname 

Downtown Bkln 9M Jones 

Downtown Bkln 9M Johnson 

Mianus Horse 1.7M Jones 

Downtown Bkln 9M Hayes 
 

 

cname lno amt 

Jones L-17 1000 

Johnson L-23 2000 

Jones L-93 500 

Hayes L-17 1000 
 

 

=

bname bcity assets cname lno amt 

Downtown Bkln 9M Jones L-17 1000 

Downtown Bkln 9M Jones L-93 500 

Downtown Bkln 9M Johnson L-23 2000 

Mianus Horse 1.7M Jones L-17 1000 

Mianus Horse 1.7M Jones L-93 500 

Downtown Bkln 9M Hayes L-17 1000 
 

 

Problem:      join adds meaningless tuples
“lossy join”: by adding noise, have lost meaningful information as a 

result of the decomposition

Dependency Goal #1: lossless joinsDependency Goal #1: lossless joins

Is the following decomposition lossless or lossy? 

bname assets cname lno 

Downtown 9M Jones L-17 

Downtown 9M Johnson L-23 

Mianus 1.7M Jones L-93 

Downtown 9M Hayes L-17 
 

 

lno bcity amt 

L-17 Bkln 1000 

L-23 Bkln 2000 

L-93 Horse 500 
 

 

Ans: Lossless:    R = R1          R2,  it has 4 tuples
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Ensuring Lossless JoinsEnsuring Lossless Joins

A decomposition of R  :   R = R1 U R2 is lossless  iff

R1 ∩ R2  Æ R1,   or

R1 ∩ R2  Æ R2

(i.e., intersecting attributes must be a superkey for one of the 
resulting smaller relations) 

Decomposition Goal #2: Dependency Decomposition Goal #2: Dependency 

preservationpreservation
Goal: efficient integrity checks of FD’s

An example w/ no DP:
R = ( bname, bcity, assets, cname, lno, amt)

bname Æ bcity assets
lno Æ amt bname

Decomposition: R = R1 U R2
R1 = (bname, assets, cname, lno)
R2 = (lno, bcity, amt)

Lossless but not DP. Why?

Ans: bname Æbcity assets  crosses 2 tables
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Decomposition Goal #2: Dependency Decomposition Goal #2: Dependency 

preservationpreservation

To ensure best possible efficiency of FD checks

ensure that only a SINGLE table is needed in order to check each FD

i.e. ensure that:   A1 A2 ... An Æ B1 B2 ... Bm

Can be checked by examining Ri = ( ..., A1, A2, ..., An, ..., B1, ..., Bm, ...)

To test if the decomposition  R = R1 U R2 U ... U Rn is DP

(1)   see which FD’s of R are covered by R1, R2, ..., Rn

(2) compare the closure of (1) with the closure of FD’s of R

Decomposition Goal #2: Dependency Decomposition Goal #2: Dependency 

preservationpreservation

Example:      Given    F = { AÆB,  ABÆ D, CÆ D}

consider   R  = R1  U  R2 s.t. 
R1 = (A, B, C)    ,  R2 = (C, D)     is it DP?

(1)   F+ = { AÆBD,  CÆD}+
(2)   G+ = {AÆB, CÆD} +

(3)  F+ = G+ ? No because (AÆD) not in G+  

Decomposition is not DP



13

Decomposition Goal #2: Dependency Decomposition Goal #2: Dependency 

preservationpreservation
Example:      Given    F = { AÆB,  ABÆ D, CÆ D}

consider   R  = R1  U  R2 s.t. 
R1 = (A, B, D)    ,  R2 = (C, D)

(1)   F+ = { AÆBD,  CÆD}+
(2)   G+ = {AÆBD, CÆD, ...} +

(3)  F+ = G+   
note: G+ cannot introduce new FDs not in F+

Decomposition is DP

Decomposition Goal #3: Decomposition Goal #3: RedudancyRedudancy

AvoidanceAvoidance
Redundancy 
for B=x , y and zExample: A B C 

a x 1 

e x 1 

g y 2 

h y 2 

m y 2 

n z 1 

p z 1 
 

 

(1)  An FD that exists in the above relation is:    B Æ C

(2) A superkey in the above relation is A, (or any set containing A)

When do you have redundancy?  
Ans:  when there is some FD, XÆY   covered by a relation 

and X is not a superkey
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NormalizationNormalization

Decomposition techniques for ensuring:

Lossless joins

Dependency preservation

Redundancy avoidance

We will look at some normal forms:

Boyce-Codd Normal Form (BCNF)

3rd Normal Form (3NF)

BoyceBoyce--CoddCodd Normal Form (BCNF)Normal Form (BCNF)

What is a normal form?

Characterization of schema decomposition
in terms of properties it satisfies

BCNF:  guarantees no redundancy

Defined: 
relation schema R, with FD set, F is in BCNF if:

For all nontrivial XÆY in F+:
XÆR (i.e.  X a superkey)
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BCNFBCNF

Example:       R=(A,  B, C)
F = (AÆB, BÆC)

Is R in BCNF?

Ans: Consider the non-trivial dependencies in F+:

AÆB,                        AÆR (A a key)
AÆC,                             -//-
BÆC,                        B-/-> R (B not a superkey)

Therefore not in BCNF

BCNFBCNF

Example:       
R= R1 U R2

R1 = (A,  B)   ,   R2 = (B,C)
F = (AÆB, BÆC)

Are R1, R2  in BCNF?

Ans: Yes, both non-trivial FDs define a key in R1, R2

Is the decomposition lossless?   DP?

Ans: Losless: Yes. DP: Yes.



16

BCNFBCNF
Decomposition Algorithm

Algorithm  BCNF(R: relation, F: FD set)

Begin
1. Compute   F+
2. Result Æ {R}
3. While some Ri in Result   not in BCNF Do

a. Chose  (XÆY)  in F+ s.t.
(XÆY) covered by Ri

X -/-> Ri ( X not a superkey for Ri )
b. Decompose Ri on (XÆY)

Ri1   X U Y
Ri2  Ri - Y

c. Result   Result - {Ri}  U { Ri1, Ri2}

4. return Result
End

BCNF DecompositionBCNF Decomposition

Example:       
R= (A, B, C, D)
F = (AÆB, ABÆD, BÆC)

Decompose R into BCNF

Ans:   Fc = {A ÆBD, BÆC}
R=(A, B, C, D)

BÆ C is covered by R and B not a superkey

R1 = (B,C)
In BCNF: 
BÆC and B key

R2 = (A, B, D)
In BCNF:  AÆB, AÆD, AÆBD
and  A is a key
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BCNF DecompositionBCNF Decomposition

Example:  
R = (bname, bcity, assets, cname, lno, amt)
F = { bname Æbcity assets,

lno Æ amt  bname}

Decompose R into BCNF Ans:      Fc = F

R , and  bname Æ bcity covered by R, bname not a key

R1 = (bname, bcity)
In BCNF

R2 = (bname, assets, cname, lno, amt)
lno Æ amt bname covered by R2 and lno not a key

R3 = (lno, amt, bname)
In BCNF

R4 = (assets, cname, lno)
lno Æ assets ....

R5 = (lno, assets) R6=(lno, cname)

key= superkey here

Not DP!  bname Æassets is not covered by any relation AND cannot be 
implied by the covered FDs.  Covered FDs: G = { bname Æ bcity, lno Æ amt bname,

lno Æ assets}

BCNF DecompositionBCNF Decomposition

Can there be   > 1 BCNF decompositions?

Ans:  Yes, last example was not DP. But...

Given Fc = { bname Æ bcity assets,    lno Æ amt bname}

R=(bname, bcity, assets, cname, lno, amt)
bname Æ bcity assets    and bname -/-> R

R1 = (bname, bcity, assets)
BCNF: bname ÆR1 R2 = (bname, cname, lno, amt)

lno Æ amt bname, lno -/-> R2

R3 = (lno, amt, bname)
BCNF: lno Æ R3

R4 = (lno, cname)

Is R = R1 U R3 U R4  DP?
Yes!!
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BCNF DecompositionBCNF Decomposition

Can we decompose on FD’s in Fc to get a DP, BCNF 
decomposition?

Usually, yes, but ...

Consider:    R = (J, K, L)
F = (JKÆL,  LÆK}      (Fc = F)

We can apply decomposition either using:    JKÆL , LÆK or the oposite

Dec.  #1

Using LÆK

R1 = (L, K)
R2 = (J, L)     Not DP.

Dec.  #2

Using JKÆL

R1 = (J, K, L)   not BCNF
R2 = (J, K)     

So, BCNF and DP decomposition may not be possible.

AsideAside

Is the example realistic?

Consider:  BankerName Æ BranchName

BranchName CustomerName Æ BankerName
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3NF: An alternative to BCNF3NF: An alternative to BCNF

Motivation:

sometimes, BCNF is not what you want

E.g.:  street  city Æ zip      and   zip Æ city

BCNF: R1 = { zip, city}     R2 ={ zip, street}

No redundancy, but to preserve 1st FD requires assertion with join

Alternative: 3rd Normal Form

Designed to say that decomposition can stop at {street, city, zip}

3NF: An alternative to BCNF3NF: An alternative to BCNF

BCNF test:   Given R with FD set, F:  For any non-trivial FD, 

XÆY  in F+ and covered by R, then XÆR

3NF test: Given R with FD set, F:

For any non-trivial FD,

XÆY in F+ and covered by R, then    

XÆ R or

Y is a subset of some candidate key of R

Thus, 3NF a weaker normal form than BCNF:

i.e.       R in BCNF => R in 3NF
but     R in 3NF   =/=>  R in BCNF (not sure than R is in BCNF)
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3NF: An alternative to BCNF3NF: An alternative to BCNF

Example:    
R=(J, K, L)    F = {JKÆL, LÆK}

then R is 3NF!

Key for R:   JK

JKÆL covered by R, JKÆR
LÆK,   K is a part of a candidate key

3NF3NF
Example:  

R=(bname, cname, lno, amt)
F=Fc = { lnoÆ amt bname,

cname bname Æ lno}

Q: is R in BCNF, 3NF or neither?

Ans: 
R not in BCNF:   lno Æ amt  , covered by R and lno -/->R

R not in 3NF:  candidate keys  of R:    lno cname
or  

cname bname

lno Æ amt bname covered by R
{amt bname}  not a subset of a candidate key
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3NF3NF
Example:    R = R1 U R2

R1 = (lno, amt, bname)
R2 = (lno, cname, bname),        F=Fc = { lnoÆ amt bname,

cname bname Æ lno}

Q: Are R1, R2 in BCNF, 3NF or neither?

Ans:  R1 in BCNF    :  lnoÆamt bname covered by R1 and lno ÆR1

R2 not in BCNF:   lno Æbname and lno-/-> R2

R1 in 3NF (since it is in BCNF)

R2 in 3NF:   R2’s candidate keys:  cname bname and lno cname

lno Æ bname,   bname subset of a c.key
cname bname Æ lno , lno subset of a c. key

3NF Decomposition Algorithm3NF Decomposition Algorithm

Algorithm 3NF ( R: relation, F: FD set)

1. Compute Fc

2.  i  0

3. For each XÆY in Fc do

if no Rj (1 <= j <=i) contains X,Y

ii+1

Ri  X U Y

4. If no Rj (1<= j <= i) contains a candidate key for R

i  i+1

Ri  any candidate key for R

5. return  (R1, R2, ..., Ri)
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3NF Decomposition Example3NF Decomposition Example

Example:
R = ( bname, cname, banker, office)
Fc = { banker Æ bname office,

cname bname Æ banker}

Q1: candidate keys of R:      cname bname or cname banker

Q2: decompose R into 3NF.

Ans:  R is not in 3NF:   banker Æ bname office  
{bname, office}  not a subset of a c. key

3NF:   R1 = (banker, bname, office)
R2 = (cname, bname, banker)
R3 = ? Empty (done)

Theory and practiceTheory and practice
Performance tuning: 

Redundancy not the sole guide to decomposition

Workload matters too!!
• nature of queries run
• mix of updates, queries
•.....    

Workload can influence:
BCNF vs 3NF
may further decompose a BCNF into (4NF)

may denormalize (i.e., undo a decomposition or add new columns)


