

Extraneous attributes					
A. RHS : Give	: en F = {A→B(C, B→C} is C extraneous in A →BC?			
Ň	why or why n	ot?			
Ans: ye	s, because				
ŀ	A→C in { A→B	s, B→C}+			
Proof.	1. A→ B 2. B→C 3. A→C	transitivity using Armstrong's axioms			

Extraneous attributes				
B. LHS : Given F = {A \rightarrow B, AB \rightarrow C} is B extraneous in AB \rightarrow C?				
why or why not?				
Ans: yes, because				
A→C in F+				
Proof. 1. $A \rightarrow B$ 2. $AB \rightarrow C$ 3. $A \rightarrow C$ using pseudotransitivity on 1 and 2				
Actually, we have $AA \rightarrow C$ but $\{A, A\} = \{A\}$				

Minimal Cover Algorithm						
Example: determine the minimal cover $F = \{A \rightarrow BC, \}$	r of B→CE, A→E}					
Iteration 1: a. $F = \{A \rightarrow BCE, B \rightarrow CE\}$ b. Must check for up to 5 extraneo - B extraneous in $A \rightarrow BCE$? - C extraneous in $A \rightarrow BCE$? - E extraneous in $A \rightarrow BE$? 1. $A \rightarrow B -> 2$. $A \rightarrow CE -> A \rightarrow P$ - E extraneous in $B \rightarrow CE$ - C extraneous in $B \rightarrow CE$	us attributes No Yes E No No					
Iteration 2: a. F = { A → B, B→ CE} b. Extraneous attributes: - C extraneous in B → CE - E extraneous in B → CE DONE	No No					

Example.				-		_
	bname	bcity	assets	cname	lno	amt
P -	Downtown	Bkln	9M	Jones	L-17	1000
IX =	Downtown	Bkln	9M	Johnson	L-23	2000
	Mianus	Horse	1.7M	Jones	L-93	500
	Downtown	Bkln	9M	Hayes	L-17	1000
Univers: "Univers tuple n branch	al relation" neaning: Jor i in Bkln whi	nes has ch has	a loan (assets o	L-17) for \$ f \$9M	\$1000 t	aken ou
tuple n branch	al relation" neaning: Jor in Bkln whi	nes has ch has	a loan (assets o	L-17) for 5 f \$9M	\$1000 i	aken ou
tuple n tuple n branch Design:	al relation" neaning: Jor in Bkln whi	nes has ch has	a loan (assets o	L-17) for \$ f \$9M ins!)	\$1000	aken ou
tuple n branch Design: -	al relation" neaning: Jor in Bkln whi fast queries	nes has ch has s (no ne	a loan (assets o ed for jo	L-17) for \$ f \$9M ins!)	\$1000	aken ou

	bname	beity	assets	cname			cname	lno	amt
	Downtown	Bkln	9M	Jones			Jones	L-17	1000
	Downtown	Bkln	9M	Johnson		\bowtie	Johnson	L-23	2000
	Mianus	Horse	1.7M	Jones			Jones	L-93	500
	Downtown	Bkln	9M	Haves			Hayes	L-17	1000
	Downtown Mianus	Bkln Horse	9M 1.7M	Johnson Jones	L-93 L-23 L-17	2000 1000			
-	Mianus	Horse	1.7M	Jones	L-1/	500			
	Downtown	Bkln	9M	Haves	L-17	1000			
Downtown Bkln 9M Hayes L-17 1000 Problem: join adds meaningless tuples "lossy join": by adding noise, have lost meaningful information as a result of the decomposition									

Decomposition Goal #2: Dependency preservation

Goal: efficient integrity checks of FD's

An example w/ no DP: R = (bname, bcity, assets, cname, Ino, amt) bname → bcity assets Ino → amt bname

Decomposition: R = R1 U R2 R1 = (bname, assets, cname, Ino) R2 = (Ino, bcity, amt)

Lossless but not DP. Why?

Ans: bname \rightarrow bcity assets crosses 2 tables

Decomposition Goal #2: Dependency preservation

To ensure best possible efficiency of FD checks

ensure that only a SINGLE table is needed in order to check each FD

i.e. ensure that: A1 A2 ... An \rightarrow B1 B2 ... Bm

Can be checked by examining Ri = (..., A1, A2, ..., An, ..., B1, ..., Bm, ...)

To test if the decomposition R = R1 U R2 U ... U Rn is DP

(1) see which FD's of R are covered by R1, R2, ..., Rn

(2) compare the closure of (1) with the closure of FD's of R

Decomposition Goal #2: Dependency preservation

Example: Given $F = \{A \rightarrow B, AB \rightarrow D, C \rightarrow D\}$

consider R = R1 U R2 s.t. R1 = (A, B, C) , R2 = (C, D) is it DP?

(1) $F + = \{ A \rightarrow BD, C \rightarrow D \} +$ (2) $G + = \{ A \rightarrow B, C \rightarrow D \} +$

(3) F+ = G+? No because $(A \rightarrow D)$ not in G+

Decomposition is not DP

Normalization

Decomposition techniques for ensuring:

Lossless joins

Dependency preservation

Redundancy avoidance

We will look at some normal forms: Boyce-Codd Normal Form (BCNF) 3rd Normal Form (3NF)

Boyce-Codd Normal Form (BCNF)

What is a normal form?

Characterization of schema decomposition in terms of properties it satisfies

BCNF: guarantees no redundancy

Defined: relation schema R, with FD set, F is in BCNF if:

For all nontrivial $X \rightarrow Y$ in F+: $X \rightarrow R$ (i.e. X a superkey)

Example: $R=(A, B, C)$ $F = (A \rightarrow B, B \rightarrow C)$ Is R in BCNF?Ans: Consider the non-trivial dependencies in F+: $A \rightarrow B$, $A \rightarrow C$, $B \rightarrow C$, $A - R$ (A a key) $A - C$, $B - I - > R$ (B not a superkey)Therefore not in BCNF		BCNF
Is R in BCNF? Ans: Consider the non-trivial dependencies in F+: $A \rightarrow B$, $A \rightarrow R$ (A a key) $A \rightarrow C$, -//- $B \rightarrow C$, B-/-> R (B not a superkey) Therefore not in BCNF	Example:	R=(A, B, C) F = (A→B, B→C)
Ans: Consider the non-trivial dependencies in F+: $A \rightarrow B$, $A \rightarrow R$ (A a key) $A \rightarrow C$, -//- $B \rightarrow C$, B-/-> R (B not a superkey) Therefore not in BCNF	Is R in BCN	F?
$A \rightarrow B$, $A \rightarrow R$ (A a key) $A \rightarrow C$,-//- $B \rightarrow C$,B-/-> R (B not a superkey)Therefore not in BCNF	Ans: Conside	r the non-trivial dependencies in F+:
Therefore not in BCNF	A→B, A→C, B→C,	A→R (A a key) _//- B-/-> R (B not a superkey)
	Therefore no	t in BCNF

BCNF	
Example: R= R1 U R2 R1 = (A, B) , R2 = (B,C) F = (A→B, B→C)	
Are R1, R2 in BCNF?	
Ans: Yes, both non-trivial FDs define a key in R1, R2	
Is the decomposition lossless? DP? Ans: Losless: Yes. DP: Yes.	

BCNF Decomposition			
Can we decompose on FD's in Fc to get a DP, BCNF decomposition?			
Usually, yes, but			
Consider: R = (J, K, I F = (JK→I	_) _, L→K} (Fc = F)		
We can apply decomp	osition either using: $JK \rightarrow L$, $L \rightarrow K$ or the oposite		
Dec. #1	Dec. #2		
Using L→K	Using JK→L		
R1 = (L, K) R2 = (J, L) Not DP.	R1 = (J, K, L) not BCNF R2 = (J, K)		
So, BCNF and DP decc	emposition may not be possible.		

Aside
Is the example realistic?
Consider: BankerName → BranchName
BranchName CustomerName → BankerName

3NF: An	alternative to BCNF
Motivation: sometimes, BCNF is no	ot what you want
E.g.: street city → zip BCNF: R1 = { zip, city}	and zip → city R2 ={ zip, street}
No redundancy, but to p	reserve 1st FD requires assertion with join
Alternative: 3rd Normal Designed to say that de	Form composition can stop at {street, city, zip}

3NF: An alternative to BCNF			
Example: R=(J, K, L) F = {JK \rightarrow L, L \rightarrow K}			
then R is 3NF!			
Key for R: JK			
JK \rightarrow L covered by R, JK \rightarrow R L \rightarrow K, K is a part of a candidate key			

3NF	
Example: R=(bname, cname, Ino, amt) F=Fc = { Ino→ amt bname, cname bname → Ino}	
Q: is R in BCNF, 3NF or neither?	
Ans: R not in BCNF: Ino → amt , covere	d by R and Ino -/->R
R not in 3NF: candidate keys of R:	Ino cname or cname bname
Ino → amt bname covered by R {amt bname} not a subset of a car	ndidate key

3NF		
Example:	R = R1 U R2 R1 = (Ino, amt, bname) R2 = (Ino, cname, bname),	F=Fc = { Ino→ amt bname, cname bname → Ino}
Q: Are R1, R2 in BCNF, 3NF or neither?		
Ans: R1 in BCNF : Ino \rightarrow amt bname covered by R1 and Ino \rightarrow R1		
R2 not in BCNF: Ino →bname and Ino-/-> R2		
R1 in 3NF (since it is in BCNF)		
R2 in 3NF: R2's candidate keys: cname bname and Ino cname		
lno → cnam	> bname, bname subset of a c. ne bname → Ino , Ino subset of a bname → Ino , Ino subset of a	key a c. key

Algorithm 3NF (R: relation, F: FD set) 1. Compute Fc 2. $i \in 0$ 3. For each X \rightarrow Y in Fc do if no Rj (1 <= j <=i) contains X,Y $i \in i+1$ Ri \in X U Y 4. If no Rj (1<= j <= i) contains a candidate key for R $i \in i+1$ Ri \in any candidate key for R 5. return (R1, R2, ..., Ri)

