
Sudoku Madness

Team 3: Matt Crain, John Cheng, and Rabih Sallman

I. Problem Description

Standard Sudoku is a logic-based puzzle in which the user must fill a 9 x 9 board

with the appropriate digits so that each row, column, and individual sub-grids (must

be perfect squares) contains the digits 1-9.

Sudoku is essentially a form of a constraint satisfaction problem, therefore we will

use methods discussed in literature and lecture to help us find a solution that is both

fast and efficient. Some techniques that we may build from are constraint

propagation (forward checking, backtracking search, etc.) and local consistency

verification(arc, path, etc.).

The standard Sudoku by itself is a very well known problem. It has been solved

using just about every possible method, multiple times. Brute force algorithms can

solve Sudoku, but aren't efficient in any sense of the term. Constraint satisfaction is

exceptionally common and Sudoku almost seems like a mascot for attracting new

people to look into constraint programming, since it provides an interesting

foundation for constraint solving while being difficult enough to remain interesting.

Less conventional means of solving that involve various searching techniques and

even genetic algorithms have also been used. In the paper "Stochastic Optimization

Approaches for Solving Sudoku", Meir Perez and Tshilidzi Marwala used Cultural

Genetic Algorithm, Repulsive Particle Swarm Optimization, Quantum Simulated

Annealing and a Genetic Algorithm with Simulated Annealing. These gave varying

results, with the Swarm algorithm being incapable of solving the problem and the

Genetic Algorithm with Simulated Annealing being the fastest.

II. Detailed Background

Currently, most literature focuses on a very focused limited set of Sudoku, which

typically is the standard 9 x 9. Rarely do the problems ever reach even a 16 x 16

grid. What we would like to do is push the upper bound of our program to a much

larger grid size, allowing things like 25 x 25, 36 x 36, or even larger grids to be

generated and solved. "A search based Sudoku solver" is one paper about using

search techniques for solving sudoku that does reference these larger grids and

states that there is a phase change when you get to 25 x 25 that causes the

problems to become more difficult.

Solving techniques that can be done by hand have been thoroughly flushed out.

There's over a dozen different inference techniques that people may use to solve

very difficult puzzles. Most, if not all of these have been detailed on SadMan

Software.



There's also one thing we haven't noticed much in any of the literature and that's the

benefits that multi-threading can provide. In something like a backtracking search it

would be very easy to see a thread being spawned for each branch of a backtrack so

each branch would be evaluated in parallel. This could be very helpful with larger

versions of the problem.

Solving

Solving a Sudoku is quite easy in principle, but very difficult to do with efficiency. The

solving algorithm heavily utilizes the constraint network to find solution values for

cells and search for solutions if need be. The basis of the algorithm is constraint

propagation, so once one value is assigned to a cell that value is removed from the

domain of any cells that are constrained by the cell that was assigned. Finding cells

to assign values to is done by a simple search through all the cells. The search looks

for cells that are most heavily constrained, therefor having a small number of

minimum remaining possible values to be assigned to them. The best case is when a

search returns cells that only have one possible value, because that is the solution

value for that cell. If the search returns cells that have more than one possible value,

then a completely different search is performed; a recursive backtracking search.

The backtracking search is effective, being able to solve any Sudoku given infinite

time, but slow, so a lot of effort is spent minimizing the amount of backtracking that is

performed. Using cells with the minimum remaining values is very important.

Typically the minimum is two if a backtracking search is required. It is very important

to perform the search on these values that only have two possible values instead of

searching on other random cells. The odds on being correct on the first guess are

50%, instead of around 20% if you were to pick randomly. The cells with the

minimum remaining value are ordered in a way to try and maximize correctness on

the first guess. Each value in the domain is weight based on how many times it has

been used already in the Sudoku, the more it has been used the higher the weight.

Using these weights the possible cells are sorted in a fashion that places the highest

weighted values to be picked first. The highest weighted possible value is assigned

to the cell and the search continues. This heuristic is used because the more a

specific value is used the lower the total number of remaining cells it can occupy.

Typically if a cell contains one of the last possible locations for that value there's a

higher probability of being correct if we chose it. If a branch is encountered where

there are one or more cells that can't be legally given a value from their domain then

the branch is deemed a fairly and the algorithm backtracks to the last branching

point.

The main issue with the backtracking search is how many different branching

possibilities there are. A fair amount of effort is spent trying to minimize these

branches with inference techniques that go beyond what the general constraints of

Sudoku allow. Really they can be found within the constraints, however then can't be

easily propagated throughout the grid when an assignment is made. One example

would be if a subgrid (one of the nine 3x3 squares within a standard Sudoku)

requires that a specific value, we'll use '7', must be located within a column of that

subgrid. Since the 7 for that sub grid must be within the cells that make up the



column, then all the cells in the rest of that column for the entire puzzle cannot

contain the number 7 in their domain. This can eliminate up to 6 possible branching

positions that the constraints typically do not show.

Arc consistency is a way that allows a fair amount of the information that's deduced

through the inference techniques to be flushed out in a more simplified manner and

in one centralized process. Most efficient arc consistency techniques are

complicated and difficult to implement properly. van Dongen's AC-3d algorithm is

efficient, but quite complex. Our chosen algorithm is the AC-3 algorithm which is

easy to understand and almost efficient enough to justify using it. This algorithm

works great on 9x9, but slows down when the size of the puzzle is increased.

Multithreading was attempted, but had to be cut. It was taking too much time to

ensure that everything was properly working. Debugging is very difficult and it was

also hard to find out accurately how much effort went into solving a puzzle (e.g. the

number of branches explored). Given more time this could accelerate solving in a

manner proportional to the number of CPUs available. If you had 16 CPUs you

could explore 16 branches simultaneously and asynchronously, because branches

aren't dependent on the results of other branches.

Generating

Generating Sudoku puzzles is a task that is completed with three steps. First step is

to generate a complete puzzle. Second step is to generate a random permutation

from this completed puzzle. Lastly, we remove hints from the puzzle in order to

generate a puzzle that is playable.

Generating a complete puzzle is trivial. It can be done manually by inserting ordered

rows which are shifted one after another. For example, in a 9x9 Sudoku grid, first

row is defined as 1,2,3,4,5,6,7,8,9. The second row is shifted over:

2,3,4,5,6,7,8,9,1,etc... Another way is to allow a Sudoku solver, “solve” a blank

puzzle. At the end it will come up with some sort of valid configuration of cell values,

depending on the algorithm used.

Once the solved puzzle is generated, permutations are applied to “shuffle” the puzzle

to create different possible combinations while still maintaining the integrity of the

game. Permutations such as reflecting horizontally, vertically, diagonally keep the

puzzle valid. Other techniques such as value swapping and row swapping are also

valid moves. You can view these in "Enumerating possible Sudoku grids"

Lastly, removing hints from the grid can be done either randomly or methodically.

Most Sudoku games written in Javascript for a web browser, or cell phones use

random cell removal and the difficulty levels are determined by how many cells are

removed. For example, “easy” can be considered removing 47 cells, “medium” 54,

and “hard” 59. However, a different method can be used by examining the fact that

each row, column, or subgrid has to add up to 1 + 2 + 3 + .. + N where N is the size

of the puzzle. Using this property, we can find out how difficult a puzzle is by seeing

how many different sums are possible to complete each row, column, or subgrid.



Additionally, hints should be removed symmetrically. For example, if a hint is

removed in (0, 0) on a 9x9 grid, position (8,8) should also be removed. This creates

a puzzle that looks more balanced to a player and also reduces the chances of

generating invalid puzzles by evenly distributing the hints. An easy way to visualize

this is to imagine 40 hints being removed from a puzzle, and 3 adjacent subgrids are

completely removed. The puzzle is not balanced and multiple solutions can be easily

discovered.

The problem with removing hints from a completed puzzle is the introduction of

possible invalid puzzles, where the puzzles have multiple solutions. This problem is

solved by finding out whether or not a puzzle is unique, if it is not, generate a new

puzzle. To check if a given puzzle is unique, for every blank cell, every possible

value is assigned systematically and then checked to see how many solutions can

be found this way.

The following table displays the amount of time needed to find a solution vs. the

amount of blanks in the current puzzle. Each point on the line is the average from

100 trials at each number of blanks. A total of 7,000 samples were taken. The front

part of the graph is left out because the time is very predictable. Any larger number

of blanks than is shown produces Sudoku that have thousands of possible solutions

making them trivial to solve.



III. Tools

We used the Java programming language as well as the Eclipse IDE for Java

Development to complete the coding aspect of our project. We are using Google

Code to host our project and enable more efficient code coordination through its

version control client. All the code was created by our team and there is no

previously made code in our project. The GUI was created by our team as well using

the Swing toolkit for Java. We are only using third party tools to test and evaluate our

program. For example, we are using Google Documents to host a spreadsheet that

features our test results such as test case success and speed. Finally, we are

currently using two third-party Sudoku programs to compare our own program with.

One such program, SuDoku Solver, allows us to input a text case and in return will

output the time it takes for the quickest solution to be found. The second program,

The Ultimately Fast Sudoku Solver, is a browser based solver that also returns the

time it takes for the solution to be found, however, the input must be done by hand.

IV. Data

We can generate our own set of numbers/solutions for every game that is going to

be played. The difficulty of each test can be decided by the user and is handled by

our generating algorithms discussed in the previous sections. We are also using

previously generated puzzles (varying in difficulty) from WebSudoku.com and

converting them into text files so they can be used by our program for solving/testing

and any third-party programs that we may use for evaluation.

V. Input/Output

Sudoku Madness can input a previously generated puzzle (text file) and can also

handle input directly through the GUI to create a Sudoku or solve an existing

Sudoku. The text file contains the numbers 1through N with a “0” or “_” indicating a

blank space on the Sudoku grid. The program is set to output the solution of the

current Sudoku puzzle, the time for the solution to be found, and the depth of the

solution.

VI. Summary and Evaluation

Sudoku Madness is complete with a GUI, puzzle generator, solving generator, and a

test suite. The program can generate a Sudoku puzzle from user input through the

GUI or by importing an already existing Sudoku puzzle. The program can also

generate a Sudoku puzzle based on the the generating algorithms discussed in the

previous sections, and can solve the current Sudoku based on the solving algorithms

discussed in previous sections. Most importantly, the program is capable of solving

any difficulty of Sudoku puzzles instantaneously.

The following table displays the solving speed of Sudoku Madness compared with

SuDoku Solver and The Ultimately Fast Sudoku Solver aka Ultimate Solver. The x-

axis is based on the 4 difficulty levels of Sudoku puzzles - Easy, Medium, Hard, and



Evil. The data points represent the average solving time needed for each difficulty

level (Easy: 15 tests, Medium: 15 tests, Hard: 20 tests, and Evil: 30 tests)

Our program performs extremely well for each level of difficulty, even solving easy

Sudoku puzzles faster than SuDoku Solver. Although our program is slightly slower

when solving hard or evil Sudoku puzzles, the average solution time is still

instantaneous.

The following table displays the amount of branches searched before a solution was

found for each difficulty level.



The amount of branches needed to find a solution for the easy or medium test cases

remains right in line with the Ultimate Solver until we reach the the two more difficult

test groups. Our program searches an average of 50 more branches before finding a

solution for hard test cases, however, our program completely outperforms the

Ultimate Solver in the evil Sudoku tests. Our program searches 60% less branches

than the competition when solving the most difficult Sudoku puzzles available.

For larger Sudoku puzzles such as 16x16, 25x25, and 36x36 the program requires

much more time and patience for a solution to be found. Our program takes

anywhere between 7 seconds to 1 minute to solve a 16x16 Sudoku with an easy or

medium difficulty. The larger and more difficult the grid became increased the solving

time greatly (beyond 5 minutes) and therefore was not comparable to any third party

program we could find. Although most of our larger Sudoku puzzles were not solved

within our predetermined time limit, the success we experienced when solving 9x9

Sudoku puzzles assures us that a correction solution will be found.

VII. Separation of tasks

Matt Crain - Completed the GUI, Solving Algorithm, and helped test generation and

solving capabilities. Also researched and wrote about the solving algorithms included

in our submitted reports. Collected the rest of the groups information to create a slide

show for our midterm and final presentations.

John Cheng - Completed the Generating Algorithm and helped test generation

capabilities. Also researched and wrote about the generating algorithms included in

our submitted reports and in our slide show presentations.

Rabih Sallman - Completed the evaluation portion of our program. Created test

Sudoku files and an excel worksheet to compare our program with third party

programs. Also wrote and assembled the submitted reports and contributed to the

slide shower presentations.

VIII. User Manual for Sudoku Madness

i) How to compile and execute the program (Windows OS)

Step 1: Download Sudoku.zip from EEE and save to a directory of your choice.

Unzip the contents when the download has finished.

Step 2: Open command prompt by typing cmd in Run (located in the Start Menu for

Windows XP) or the Start Menu search bar (Windows Vista/Windows 7). Once the

command prompt has displayed, switch the current directory to the location of the

program. To switch directory, entering the command cd location; location is the path

to the directory containing the source files.

Step 3: Once in the appropriate directory, compile the .java files by entering the

command javac *.java and run the compiled program by entering the command java

-Xmx512m TestMain TestMain.java – the program’s GUI will appear momentarily.



*Xmx512m increases the Java heap space for the very large Sudoku. 512m is a

lower bound for large Sudoku. If you want to try anything with the larger puzzles

(25x25 or 36x36) I suggest you allocate more memory for it (e.g. 1024m or 2048m if

you have it available).

ii) How to use the GUI

Menu Bar

The following is a short description of each menu located on the menu bar.

File

The user may clear the current grid,

import a Sudoku puzzle, or export

the current puzzle to a text file

Solver Where the user can select to solve

the current Sudoku puzzle.

Generation

The user can generate a new game

based on difficulty – Solved, Easy,

Medium, or Hard. Then can also

test to see if the current Sudoku is

unique.

Generalize

Where the user can select the size

of the Sudoku grid – 9x9, 16x16,

24x24 or 36x36.

Testing
Used to evaluate the program with

existing Sudoku files.

Sudoku Grid

The GUI will always display the current Sudoku puzzle for a simpler and more

efficient user experience.

Types of Grids

Generalized: The GUI will display the grid with the coordinates of each individual

box.

Blank: Displayed after the user selects to clear the grid.

Partially Solved: A grid in which some, but not all the values have been placed.



Solved Grid: A fully complete grid filled with legal values in each individual box and

sub-grids.

How to change values

The user is allowed to change the value of each individual box by selecting that box

and choosing the value from the drop down menu. Any illegal value will appear red

and will have to be changed.

Importing Sudoku puzzles

The user may also import a Sudoku puzzle from the file menu. The .txt file must be in

accordance with the formatting rules discussed in the Input/output section.

Exporting the current Sudoku puzzle

The user may also export (save) the currently displayed Sudoku puzzle from the file

menu. The resulting .txt file will be formatted in accordance with the formatting rules

discussed in the Input/output section.

Testing

The testing menu provides a variety of ways to test the program. Almost all of them

focus around the test Sudoku files that are provided with the code. These are

labeled with their respective difficulties: easy, medium, hard, and evil. When you

choose these options you are prompted for two different files. The first file will be the

location and name of the file that the test results are saved into. The second file is

one of the test files that you will be testing; if you are testing evil then you will browse

and find evil1 which should be grouped with all other evil difficulty files. This will tell

the program where all the files are located so they can be iterated through.

The only test that doesn't work like this is the super test. The super test will prompt

where you want the results to be saved. The program then generates a variety of

test Sudoku with different numbers of blanks, starting from 1 up to 70 and it

generates 100 test cases for each number of blanks. This means a total of 7000

Sudoku will be generated and solved. This test assumes a 9x9 Sudoku

configuration.

iii) Program Behavior

Sudoku Madness can display generating or solving results on the command prompt

or can save the information in a text file if running through a test suite. When a

Sudoku grid is generated by the program, the number of permutations through the

algorithms discussed earlier will be displayed to the user.The program's ability to

solve will be judged by its solving time and the number of branches it went through

before finding the solution. While a complete solution will be displayed on the GUI in

the form of a solved grid, the information displayed on the command prompt can be

useful for program evaluation.



If a puzzle was generated the following will be displayed on the command prompt:

Permutating through: ___ cycles

If a solution was found the following will be displayed on the command prompt:

"Branches: _____

Solved in _____ seconds"

*With the actual results in the place of the blanks.

When testing for a puzzles uniqueness the program will print all separate solutions

found to the command prompt. Then when all solutions have been found it will

popup a message saying it's done and how many. A limit is set at 1000 solutions

before it stops itself. Otherwise it could be searching for solutions until the end of

time.

Wait Time and Solving Time Limit

Processes such as generating and solving larger and more difficult puzzles,

generalizing larger grids, and testing may require longer waiting times than usual.

For solving, the program has a default time limit of 5 minutes. This value may be

changed by modifying "Constants.java" with a text editor and changing the

TIME_LIMIT variable.

Default is set at 5 minutes:

public static int TIME_LIMIT = 5 * 60 * 1000;

To change the time limit to 10 minutes change the variable to:

public static int TIME_LIMIT = 10 * 60 * 1000;

Recompile and run the program after the changes have been saved.

IX. References

1. Simon Armstrong: SadMan Software: http://www.sadmansoftware.com/

sudoku/solvingtechniques.htm

2. Meir Perez and Tshilidzi Marwala "Stochastic Optimization Approaches for

Solving Sudoku": http://arxiv.org/ftp/arxiv/papers/0805/0805.0697.pdf

3. Tristan Cazenave "A search based Sudoku solver": http://www.ai.univ-

paris8.fr/~cazenave/sudoku.pdf

4. The AC-3 algorithm: http://en.wikipedia.org/wiki/AC-3_algorithm

5. Bertram Felgenhauer "Enumerating possible Sudoku

grids": http://www.afjarvis.staff.shef.ac.uk/sudoku/sudoku.pdf

6. M.R.C. van Dongen "AC-3d an Efficient Arc-Consistency Algorithm with a

Low Space-Complexity": http://www.springerlink.com/index/

017mrfcnpb1qjx19.pdf

http://www.sadmansoftware.com/sudoku/solvingtechniques.htm
http://www.sadmansoftware.com/sudoku/solvingtechniques.htm
http://arxiv.org/ftp/arxiv/papers/0805/0805.0697.pdf
http://www.ai.univ-paris8.fr/%7Ecazenave/sudoku.pdf
http://www.ai.univ-paris8.fr/%7Ecazenave/sudoku.pdf
http://en.wikipedia.org/wiki/AC-3_algorithm
http://www.afjarvis.staff.shef.ac.uk/sudoku/sudoku.pdf
http://www.springerlink.com/index/017mrfcnpb1qjx19.pdf
http://www.springerlink.com/index/017mrfcnpb1qjx19.pdf



