

Optimize an Existing

Program by

Introducing Parallelism
with Intel® Parallel Studio XE for Windows*

 2

INTEL® PARALLEL STUDIO XE EVALUATION GUIDE

Optimize an Existing Program by

Introducing Parallelism

Introduction
This guide will help you add parallelism to your application

using a powerful threading library included with Intel® Parallel

Studio XE. You will get hands-on experience with sample code

in a 15-minute exercise that will show you the power of Intel®

Threading Building Blocks (Intel® TBB). You can then explore

the Intel Parallel Studio XE components on your own by using

the six-step process to add parallelism to your own application.

The final section is packed with resources to help you in the

process of threading.

With the parallel_for building block, in just a few lines of code

you can increase performance by up to 1.59x (from one thread

to two threads in the provided Adding_Parallelism sample

code). Your results may be different so after completing this

guide, try it on your code. Here is an example of a function

before and after converting it from serial to parallel: Figure 1

 void change_array(){
 //Instructional example - serial version
 for (int i=0; i < list_count; i++){
 data[i] = busyfunc(data[i]);
 }
 }

 void parallel_change_array(){
 //Instructional example - parallel version
 parallel_for (blocked_range<int>(0,

list_count),
 [=](const blocked_range<int>& r) {
 for (int i=r.begin(); i < r.end();

i++){
 data[i] = busyfunc(data[i]);
 }
 });
 }

Intel Parallel Studio XE is a comprehensive tool suite that

provides C++ and Fortran developers a simplified approach to

building future proof, high-performance parallel applications

for multicore processors.

Intel® Composer XE 2011 combines optimizing compilers,

Intel® Parallel Building Blocks (Intel® PBB) and high-

performance libraries

Intel® Inspector XE 2011 is a powerful thread and memory

error checker

Static Security Analysis helps close security vulnerabilities and

weed out a range of bugs

Intel® VTune™ Amplifier XE is an advanced performance

profiler

Figure 1

Intel® Parallel Building Blocks (Intel® PBB) helps you take

advantage of multicore processing power. It consists of

three parallel programming approaches that simplify adding

parallelism into your applications.

 Intel® Cilk™ Plus is an Intel® C/C++ Compiler-specific

implementation of parallelism: Intel Cilk Plus is for C++

software developers who write simple loop and task

parallel applications. It offers superior functionality by

combining vectorization features with high-level loop-

type data parallelism and tasking.

 Intel® Threading Building Blocks (Intel® TBB) is a C++

template library for general-purpose loop and task

parallelism applications. It includes scalable memory

allocation, load-balancing, work-stealing task scheduling,

a thread-safe pipeline and concurrent containers, high-

level parallel algorithms, and numerous synchronization

primitives.

 Intel® Array Building Blocks provides a generalized vector

parallel programming solution that frees application

developers from dependencies on particular low-level

parallelism mechanisms or hardware architectures. It is

for software developers who write compute-intensive,

vector parallel algorithms.

This evaluation guide will focus on Intel TBB.

Interactive Demonstration:

The Power of Parallelism
Intel TBB is a set of ―building blocks‖ for going parallel. It uses
C++ templates to provide powerful parallel functionality that

works with common programming patterns. For example, Intel

TBB’s parallel_for construct can be used to convert the work
of a standard serial ―for‖ loop into a parallel one. Parallel_for is
the easiest and most commonly used building block in Intel

TBB, so developers new to parallelism should start with it.

 3

INTEL® PARALLEL STUDIO XE EVALUATION GUIDE

Optimize an Existing Program by

Introducing Parallelism

Why Intel® Threading Building Blocks—

Portable, Reliable, Scalable, Simple

> Portability—Thread API works across 32-bit and 64-bit

Windows*, Linux*, and Mac OS* X platforms and open-

source versions of FreeBSD*, IA Solaris*, QNX, and

Xbox* 360

> Open Design—Compiler, operating system, and processor

independent

> Forward Scaling—Automatically scales to more cores as

they become available without changing code or

recompiling

> Comprehensive Solution—Includes primitives and

threads, scalable memory allocation and tasking, parallel

algorithms, and concurrent containers

> Licensing Options—Commercial and open-source

versions are available. See below for links.

> Packaging—Available with Intel Parallel Studio, Intel®

Parallel Studio XE, single package, and in open source

For more information, please visit: the commercial or the

open source sites.

Try It Yourself
Here is a simple example using Intel TBB parallel_for. You can

read it here or try it yourself using the steps below and the

Adding_Parallelism sample code.

Step 1. Install and Set Up Intel® Parallel Studio XE

Estimated completion time: 15-30 minutes

1 Download an evaluation copy of Intel Parallel Studio XE.

2. Install Intel Parallel Studio XE by clicking on the

parallel_studio_xe_2011_setup.exe (can take 15 to 30

minutes depending on your system).

Step 2. Install and View the Adding_Parallelism

Sample Application

Install the sample application:

1. Download the Adding_Parallelism_Exercise.zip sample file

to your local machine. This is a C++ console application

created with Microsoft* Visual Studio* 2005.

2. Extract the files from the Adding_Parallelism_Exercise.zip

file to a writable directory or share on your system, such

as My Documents\Visual Studio 20xx\Intel\samples

folder.

View the sample:

1. Load the solution into Microsoft Visual Studio by

selecting File > Open > Project/Solution. Navigate to the

Adding_Parallelism_Exercise.sln file in the directory that

contains the .zip file you extracted it from: Figure 2

Figure 2

 4

INTEL® PARALLEL STUDIO XE EVALUATION GUIDE

Optimize an Existing Program by

Introducing Parallelism

2. Notice this solution contains two projects. The first is the

serial sample code and an Intel TBB example. The second,

Adding_Parallelism_Solution, contains the serial sample

code converted to use Intel TBB. Figure 3

3. Both projects have been configured to use Intel® C++

Composer XE. You can confirm this setting by right

clicking on the project name, choosing Properties, and

navigating to General under Configuration Properties.

Figure 4

4. View the code in Adding_Parallelism.cpp or read the

following brief description.

The sample code includes four instructional functions, all

of which use for loops. The first two are change_array and

its parallel version, parallel_change_array. This function

and its parallel version are purely examples of how to use

parallel_for; they are also shown in the introduction of this

guide. The second two functions are both serial and find

primes in an array of random numbers. The first version

places a 1 into a companion array in the position of each

prime it finds. The second version increments a counter

when a prime is found and returns a value.

This guide walks you through converting the first version

of find_primes to be parallel. The second function is only

slightly more complex to convert, and it is left as an

optional exercise. The solution code is included in the

sample for both functions.

Figure 3

Figure 4

 5

INTEL® PARALLEL STUDIO XE EVALUATION GUIDE

Optimize an Existing Program by

Introducing Parallelism

5. These projects have also been configured to use Intel TBB with support for lambda expressions. You can view the settings by right-

clicking each project in the Solution Explorer pane and choosing Properties. The relevant changes are shown in Figure 5 and 6. See the

comments at the top of Adding_Parallelism.cpp for additional information.

Figure 5

Figure 6

 6

INTEL® PARALLEL STUDIO XE EVALUATION GUIDE

Optimize an Existing Program by

Introducing Parallelism

Step 3. Convert the find_primes Function Using Intel TBB

parallel_for

1. Notice that the proper includes have been added to the code

already. To use Intel TBB parallel_for, you must include

―tbb/parallel_for.h‖ and ―tbb/blocked_range.h.‖

2. Begin by making a copy of the find_primes function and renaming it

―parallel_find_primes.‖ No changes need to be made to the function’s
return type or parameter list. Here is the original (serial) find_primes

function: Figure 7

3. Inside parallel_find_primes, call parallel_for. You can model this call

on the one in the parallel_ change_array function, or you can use the

code provided here or in the Adding_Parallelism_ Solution project.

Parallel_for takes the work of a serial for loop (which you specify)

and distributes it to multiple threads to execute in parallel.

Parallel_for takes two parameters, which are described in steps 4

and 5. Here is the parallel_find_primes function so far: Figure 8

Figure 7

 void find_primes(int* &my_array, int
*&prime_array){

 int prime, factor, limit;
 for (int list=0; list < list_count;

list++){
 prime = 1;
 if ((my_array[list] % 2) ==1) {
 limit = (int)

sqrt((float)my_array[list]) + 1;
 factor = 3;
 while (prime && (factor <=limit)) {
 if (my_array[list] % factor == 0)

prime = 0;
 factor += 2;
 }
 } else prime = 0;
 if (prime) {
 prime_array[list] = 1;
 }
 else
 prime_array[list] = 0;
 }
 }

 void parallel_find_primes(int *&my_array,
int *& prime_array){

 parallel_for (

Figure 8

4. Pass a blocked_range as the first parameter.

Blocked_range is a type included in Intel TBB that is used

to specify the range of a for loop. When calling

parallel_for, the blocked_range will have the same bounds

as the original serial loop (0 to list_count in this example).

The parallel_for implementation will create many tasks,

each operating over a portion of the total range you

specify. The Intel TBB scheduler will assign each of these

tasks its own smaller blocked_range. Here is the

parallel_find_primes function so far: Figure 9

 void parallel_find_primes(int *&my_array,
int *& prime_array){

 parallel_for (blocked_range<int>(0,
 list_count),

Figure 9

How does parallel_for work?

Parallel_for is the easiest and most commonly used

template in Intel TBB. It takes the work of a serial for

loop, breaks it into tasks, and then distributes those

tasks to all available processing cores at run-time.

Using parallel_for allows you to think in terms of the

work needing to get done, not about threading

details. You only need to ensure that the iterations of

your serial for loop are independent—if they are, you

can use parallel_for.

Intel TBB manages the creation, deletion, and load

balancing of threads using a thread pool that is sized

appropriately for the number of processing cores

available. Tasks are then distributed to the threads.

This usage model helps reduce overhead and ensure

future- proof scalability. By default, Intel TBB will

create a thread pool to maximize the computing

resources available.

Although the parallel_for samples in this guide use

default options, there are many tunable parameters

developers can use to get the best performance for

their application. These examples also show the

lambda expression form, but another form exists for

use with compilers that do not support the C++0x

standard.

 7

INTEL® PARALLEL STUDIO XE EVALUATION GUIDE

Optimize an Existing Program by

Introducing Parallelism

5. Write the body of the for loop as a lambda expression and

pass it as the second parameter. With this parameter, you

are specifying the work for each task. Since the for loop

will now be executed in chunks by tasks, you will need to

modify your original for loop bounds to be the range

assigned to each task (<range>.begin() and <range>.end()).

You will also need to define the work of each task by

writing the original for loop body as a lambda expression. A

lambda expression allows the compiler to do the work of

creating a function object that can be used with Intel TBB

template functions. A lambda expression is a function

specified on-the-fly in code, similar in concept to lambda

functions in lisp or to anonymous functions in .NET

languages.

In the code on this page, the [=] introduces the lambda

expression. Using ―[=]‖ instead of ―[&]‖ specifies that the

variables list_count and my_array, which are declared

outside the lambda expression, should be ―captured‖ by

value as fields inside the function object. After the [=] is

the parameter list and definition for the operator() of the

generated function object. Here is the complete

parallel_find_primes function: Figure 10

 void parallel_find_primes(int *&my_array,
int *& prime_array){

 parallel_for (blocked_range<int>(0,
list_count),

 [=](const blocked_range<int>& r) {
 int prime, factor, limit;
 for (int list=r.begin(); list <

r.end(); list++){
 prime = 1;
 if ((my_array[list] % 2) ==1) {
 limit = (int)
 sqrt((float)my_array[list]) +
 1;
 factor = 3;
 while (prime && (factor
 <=limit)) {
 if (my_array[list] % factor

== 0) prime = 0;
 factor += 2;
 }
 }
 else prime = 0;
 if (prime)
 prime_array[list] = 1;
 else
 prime_array[list] = 0;
 }
 });
 }

Figure 10

6. Modify the main function to call the parallel_find_primes

function and time it. The main code provided calls

find_primes and times it using the Intel TBB tick_count

object. Tick_count is a thread-safe and thread-aware

timer. Here is the code to time and call

parallel_find_primes. No other code is needed in main to

use Intel TBB. Figure 11

 tick_count
parallel_prime_start=tick_count::now();

 parallel_find_primes(data, isprime);
 tick_count

parallel_prime_end=tick_count::now();
 cout << “Time to find primes in parallel

for “ << list_count << “ numbers: “ <<
 (parallel_prime_end -

parallel_prime_start).seconds()
<< “ seconds.” << endl;

Figure 11

Step 4. Build the Parallel Version and

Verify Speedup

1. Build the solution using Build >Build Solution. Figure 12

2. Run the application from within Microsoft Visual Studio

with Debug > Start Without Debugging. Figure 13

Figure 12

Figure 13

 8

INTEL® PARALLEL STUDIO XE EVALUATION GUIDE

Optimize an Existing Program by

Introducing Parallelism

3. Assuming you are running on a multicore system, you should see significant speedup. For the most accurate

timings, measure serial and parallel time in separate runs. Figure 14 (serial) and 15 (parallel)

Success
This example demonstrates how easily parallel_for can be applied to a conforming for loop and how it can deliver a significant performance

increase even without further tuning. While the scalability attained in this example is nearly perfect, in general the speedup achieved by

parallel_for will depend on the algorithm and data structure being used. In many cases, tuning using Intel® VTune™ Amplifier XE can

improve scalability even further.

Speedup for this example, using a dual-socket Intel® Core™ i7 laptop (1.6 GHz, 4 cores processor with 4 GB RAM) and Microsoft Windows*

7, Intel Parallel Studio XE update 1, Microsoft Visual Studio 2010 with 90,000,000 numbers: Figure 16

Figure 16

Figure 15 – Parallel Execution Time = 8.83 secs

Figure 14 – Serial Execution Time = 14.07 secs

 9

INTEL® PARALLEL STUDIO XE EVALUATION GUIDE

Optimize an Existing Program by

Introducing Parallelism

What Now? Six Steps to

Achieving Parallelism with Your

Own Code
Parallelism has the potential to significantly increase the performance

and expand the possibilities of many compute-intensive applications.

However, threading commercial software is never as simplistic as an

instructional sample. The components of Intel Parallel Studio XE are

designed to reduce the complexity of threading, debugging, and tuning

real-world applications. To apply parallel_for to your own code, first

determine where to use it. The process below will help you to get

started.

1. Identify hotspots.
Run hotspots analysis in Intel® VTune™

Amplifier XE to see which functions in your

application take the most time.

2. Drill into code

looking for a

compute-intensive

for loop.

Double-click the hottest functions to see

the code and search for key loops.

3. Find and isolate

dependencies in a

chosen loop.

Trace through at least three iterations of

the loop in reverse order. If it works, there

are most likely no loop-carried data

dependencies.

4. Convert to Intel®

TBB parallel_for.

Change the outermost loop (if nested) and

convert to parallel_for (with a lambda

expression, if possible).

5. Verify correctness

using Intel®

Parallel Inspector.

Run threading errors analysis in Intel

Inspector XE to verify your parallel code has

no data races.

6. Measure increased

performance.

Compare serial to parallel runs to compute

speedup from parallelization.

What if the code I need to

optimize isn’t appropriate for
parallel_for?

If your code doesn’t feature compute- intensive for

loops, Intel® TBB provides many other options for

steps 2, 3, and 4 in the process at left. The Adding_

Parallelism code sample also includes an optional

function that can be converted to parallel_reduce.

Parallel_reduce is

a template similar to parallel_for, but it allows a value

(such as a min, max, total, or found index) to be

returned from the loop. Intel TBB also supports more

complex algorithms like sorting, pipelining, and

recursion.

The Path to Parallelism
Key Concept

Choosing Small, Representative Data Sets - We are

here to help developers write correct, high-performing

code that will take advantage of both today’s and
tomorrow’s processing power. Learn more from Intel
experts about parallelism, Intel® Parallel Studio, and

other related subjects.

Additional Resources
theadingbuildingblocks.org – Intel TBB open source

web site.

Learning Lab – Technical videos, whitepapers,

webinar replays and more

Intel Parallel Studio XE product page – How to videos,

getting started guides, documentation, product

details, support and more

Evaluation Guide Portal – Additional evaluation guides

that show how to use various powerful capabilities.

Download a free 30 day evaluation

 10

INTEL® PARALLEL STUDIO XE EVALUATION GUIDE

Optimize an Existing Program by

Introducing Parallelism

© 2011, Intel Corporation. All rights reserved. Intel and the Intel logo are trademarks of Intel Corporation in the U.S. and other countries.

*Other names and brands may be claimed as the property of others.

Optimization Notice

Intel compilers, associated libraries and associated development tools may include or utilize options that optimize for instruction sets that

are available in both Intel and non-Intel microprocessors (for example SIMD instruction sets), but do not optimize equally for non-Intel

microprocessors. In addition, certain compiler options for Intel compilers, including some that are not specific to Intel micro-architecture,

are reserved for Intel microprocessors. For a detailed description of Intel compiler options, including the instruction sets and specific

microprocessors they implicate, please refer to the ―Intel Compiler User and Reference Guides‖ under ―Compiler Options." Many library

routines that are part of Intel compiler products are more highly optimized for Intel microprocessors than for other microprocessors. While

the compilers and libraries in Intel compiler products offer optimizations for both Intel and Intel-compatible microprocessors, depending on

the options you select, your code and other factors, you likely will get extra performance on Intel microprocessors.

Intel compilers, associated libraries and associated development tools may or may not optimize to the same degree for non-Intel

microprocessors for optimizations that are not unique to Intel microprocessors. These optimizations include Intel® Streaming SIMD

Extensions 2 (Intel® SSE2), Intel® Streaming SIMD Extensions 3 (Intel® SSE3), and Supplemental Streaming SIMD Extensions 3 (Intel

SSSE3) instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any

optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for use

with Intel microprocessors.

While Intel believes our compilers and libraries are excellent choices to assist in obtaining the best performance on Intel and non-Intel

microprocessors, Intel recommends that you evaluate other compilers and libraries to determine which best meet your requirements. We

hope to win your business by striving to offer the best performance of any compiler or library; please let us know if you find we do not.

Notice revision #20110307

	 / / / / / // // /
	Interactive Demonstration: The Power of Parallelism
	Why Intel® Threading Building Blocks— Portable, Reliable, Scalable, Simple
	Try It Yourself
	Step 1. Install and Set Up Intel® Parallel Studio XE
	Step 2. Install and View the Adding_Parallelism Sample Application

	Step 3. Convert the find_primes Function Using Intel TBB parallel_for
	Step 4. Build the Parallel Version and Verify Speedup
	Success
	What if the code I need to optimize isn’t appropriate for parallel_for?
	What Now? Six Steps to Achieving Parallelism with Your Own Code
	The Path to Parallelism
	Key Concept

	Additional Resources

