
Statistics 771

R Object Systems

Managing R Projects
Creating R Packages

Douglas Bates

Object systems available in R

• R has two object systems available, known informally as the S3 and

the S4 systems.

• S3 objects, classes and methods have been available in R since its

inception. They correspond to the system described in Statistical

Models in S (1990).

• S4 objects, classes and methods have been added recently. They

correspond to the system described in Programming with Data

(1998).

• Both systems are based on generic functions and method dispatch

according to the class of one or more arguments.

• Many common functions in R are defined as (S3) generic functions.

(Existing functions automatically become S4 generic functions as

soon as an S4 method is defined.)

Why use classes?

Classes allow you to

• Encapsulate the representation of an object (information hiding)

• Specialize the behavior of your functions to your objects

• Specialize the behavior of system functions to your objects

• Dependably access slots in your objects from within C code

Information hiding

The major reason for using classes is to hide implementation details from

the user. The user sees only the output from methods for print, summary,

plot and other generic functions and doesn’t need to know the internal

structure.

Standard statistical packages manage this by not having any accessible

internal structure: a linear model, for example, cannot be stored in a

variable and acted on by the language. There is no user access to how

SPSS, for example, stores a linear model. In S everything can be stored

and manipulated, so some form of information hiding must be added.



An example - variance components

• Suppose that we are simulating results from maximum likelihood

(ML) or restricted maximum likelihood (REML) estimation of vari-

ance components in mixed-effects models.

• These estimates can be zero. In practice what happens is that the

’zero’ estimates are very small compared to the ’non-zero’ estimates.

• For a summary you may want just a count the number of zero values

(defined perhaps as any value whose magnitude is less than 1.0E-7

* the maximum) and the summary of those that are non-zero.

• Similarly for a plot you want a qqnorm plot of the non-zero values.

• We will use a class called varest (S3) or varEst (S4) with a single

numeric component or “slot” to represent these estimates.

S3 implementation

• A object may have a "class" attribute with a list of one or more

classes: eg c("glm","lm"). This is set and read by the class()

function.

• A generic function, such as plot contains a call to UseMethod

• R replaces the call to plot with a call to the method plot.glm.

The generic and the first class name are just pasted together.

• A method can call NextMethod, which looks for the next classe

name ("lm") and calls the appropriate method.

• If a generic has no method for a class the next class is tried and so

on. Finally the default method is called (eg plot.default) or an

error is reported.

varest as an S3 class

Suppose that we have the result of such a simulation as the object tt.

Without a class its summary is difficult to read

> summary(tt)

Min. 1st Qu. Median Mean 3rd Qu. Max.

2.539e-12 1.214e-01 6.715e-01 2.647e+00 1.935e+00 4.445e+01

varest as an S3 class (cont’d)

If we set the class and use a method, the result is more informative

> summary.varest = function(object, ...) {

+ object = as.numeric(object)

+ small = object < (1e-07) * max(object)

+ val = summary(object[!small])

+ if (any(small))

+ val = c(val, Zero = sum(small))

+ val

+ }

> class(tt) = "varest"

> summary(tt)

Min. 1st Qu. Median Mean 3rd Qu. Max. Zero

0.07821 0.50350 1.30800 3.45200 2.36300 44.45000 7.00000



S4 implementation

To use S4 classes you must attach the methods package. All classes

and methods must be formally declared.

> library("methods")

> setClass("varEst", "numeric")

> setMethod("summary", "varEst", function(object, ...) {

+ object = as.numeric(object)

+ small = object < (1e-07) * max(object)

+ val = summary(object[!small])

+ if (any(small))

+ val = c(val, Zero = sum(small))

+ val

+ })

> class(tt) = "varEst"

> summary(tt)

Min. 1st Qu. Median Mean 3rd Qu. Max. Zero

0.07821 0.50350 1.30800 3.45200 2.36300 44.45000 7.00000

How to manage your R use

• Ways to store things in R

• Multiple projects

• Printing results

• Using R output

Storage in R

Options for storage

Workspace When R starts it will read in the file .RData, and when it

exits you are given the chance to save the workspace to that file (you

can save it at any time with save.image()). This saves everything

except loaded packages and is the equivalent of the .Data directory

in S-PLUS.

Binary files The save() command puts specified functions and data

in a binary file. This file can be attach()ed (like a directory in

S-PLUS) or load()ed.

Source code . Instead of saving results and data they can be recreated

as needed from source code.

Multiple projects

There are two extreme ways to handle multiple projects in R

• Store each project in a separate directory and use the .RData file

to hold everything. If you want to share functions or objects with

another project then explicitly export and import them. The .RData

file is primary; any transcripts or source files are documentation.

• Store everything as source code. For every piece of analysis have a

file that reads in data, processes it, and possibly saves a modified

version to a new file. The source is primary, any saved files are just

a labour-saving device.

The same choices apply to programming as well as data analysis, and

to other dialects of S.



Workspace is primary

The first method is common among new users of S-PLUS. Many of us

subsequently find that we aren’t sufficiently organised to be sure that we

keep records of how every analysis was done.

This approach is riskier in R than in S-PLUS.

• In R the workspace is only saved when you explicitly ask for it; in

S-PLUS it is saved frequently

• In R a corrupted .RData is likely to be completely unreadable, in

S-PLUS many objects will still be recoverable.

It makes sense for short-term projects, especially if data loss is not

critical, or for very careful people.

Source is primary

Managing projects is easy when everything can be reconstructed from

source files. These files and intermediate data files can be stored in a

project directory where they are easy to find and are automatically time-

stamped by the operating system.

Emacs Speaks Statistics (ESS) is particularly useful for this style of R

use. With R running in an Emacs window you can run sections of code

with a few keystrokes.

Printing results

To save and print R output either

• Run R under Emacs: the R session is then sitting in an editing buffer

• Use sink() to temporarily redirect output to a file

• Under Windows, the contents of the console can be saved or printed.

Saving and printing graphics

• The current graphics device can be printed with dev.print() or

saved as postscript with dev.copy2eps

• A file-based graphics device can be opened before creating the plot

and closed afterwards (eg pdf,postscript,WMF,png)

• Under Windows there is a menu option to print or save the graphics

device.

Using R output

Retyping results from R is potentially inaccurate as well as time-wasting,

so it is useful to produce output that can be incorporated in reports. R

doesn’t do this very well

• write.table produces formatted text, and can do most of the

work of producing LATEX tables.

• In principle the DCOM link could be used to automate reports in MS

Word, and the XML package should become useful for transferring

formatted results as XML becomes more popular.



R packaging system

• Why package?

• Structure of R packages

• Documentation

• package.skeleton()

• CMD check and CMD build

• Distributing packages.

Why package?

R packages provide a way to manage collections of functions or data

and their documentation.

• Dynamically loaded and unloaded: the package only occupies

memory when it is being used.

• Easily installed and updated: the functions, data and documentation

are all installed in the correct places by a single command that can

be executed either inside or outside R.

• Customisable by users or administrators: in addition to a site-wide

library, users can have one or more private libraries of packages.

• Validated: R has commands to check that documentation exists, to

spot common errors, and to check that examples actually run

Why package? (2)

• Most users first see the packages of functions distributed with R

or from CRAN. The package system allows many more people to

contribute to R while still enforcing some standards.

• Data packages are useful for teaching: datasets can be made

available together with documentation and examples. For example,

Doug Bates translated data sets and analysis exercises from an

engineering statistics textbook into the Devore5 package

• Private packages are useful to organise and store frequently used

functions or data. I have packaged ICD9 codes, for example.

Structure of R packages

The basic structure of package is a directory, commonly containing

• A DESCRIPTION file with descriptions of the package, author, and

license conditions in a structured text format that is readable by

computers and by people

• An INDEX file listing all the functions and data (and optionally with

other descriptive information). This can be generated automatically.

• A man/ subdirectory of documentation files

• An R/ subdirectory of R code

• A data/ subdirectory of datasets

• A src/ subdirectory of C, Fortran or C++ source



Structure of R packages (cont)

Less commonly it contains

• tests/ for validation tests

• exec/ for other executables (eg Perl or Java)

• inst/ for miscellaneous other stuff.

• A configure script to check for other required software or handle

differences between systems.

Apart from DESCRIPTION and INDEX these are mostly optional, though

any useful package will have man/ and at least one of R/ and data/.

Everything about packages is described in more detail in the Writing R

Extensions manual distributed with R.

Data formats

The data() command loads datasets from packages. These can be

• Rectangular text files, either whitespace or comma-separated

• S source code, produced by the dump() function in R or S-PLUS.

• R binary files produced by the save() function.

The file type is chosen automatically, based on the file extension.

Documentation

The R documentation format looks rather like LATEX.

\name{birthday} % name of the file

\alias{qbirthday} % the functions it documents

\alias{pbirthday}

% one-line title of the documentation page

\title{Probability of coincidences}

% short description

\description{

Computes approximate answers to a generalised "birthday

paradox" problem. \code{pbirthday} computes the probability of a

coincidence and \code{qbirthday} computes the number of

observations needed to have a specified probability of coincidence.

}

\usage{ % how to invoke the function

pbirthday(prob=0.5,classes=365, coincident=2)

qbirthday(n,classes=365, coincident=2)

}

Documentation (2)

The file continues with sections

• \arguments, listing the arguments and their meaning

• \value, describing the returned value

• \details, a longer description of the function, if necessary.

• \references, giving places to look for detailed information

• \seealso, with links to related documentation

• \examples, with examples of how to use the functions.

• \keyword for indexing

There are other possible sections, and ways of specifying equations, urls,

links to other R documentation, and more.



Documentation (3)

The documentation files can be converted into HTML, plain text, GNU

info format, PostScript, and PDF. They can also be converted into the old

nroff-based S help format.

The packaging system can check that all objects are documented, that

the usage corresponds to the actual definition of the function, and that

the examples will run. This enforces a minimal level of accuracy on the

documentation.

There is an Emacs mode for editing R documentation, and a function

prompt() to help produce it.

Setting up a package

The package.skeleton() function partly automates setting up a

package with the correct structure and documentation.

The usage section from help(package.skeleton) looks like

> package.skeleton(name = "anRpackage", list, environment = .GlobalEnv,

+ path = ".", force = FALSE)

Given a collection of R objects (data or functions) specifed by a list

names or an environment it creates a package called name in the

directory specified by path.

The objects are sorted into data (put in data/) or functions (R/), skele-

ton help files are created for them using prompt() and a DESCRIPTION

file is created. The function then prints out a list of things for you to do

next.

Building a package

R CMD build (Rcmd build on Windows) will create a compressed

package file from your package directory.

It does this in a reasonably intelligent way, omitting object code, emacs

backup files, and other junk. The resulting file is easy to transport across

systems and can be INSTALLed without decompressing.

There are options to store help and data files in permanently compressed

form. This is particularly useful on older Windows systems where

packages with many small files waste a lot of disk space.

Binary and source packages

CMD build makes source packages. If you want to distribute a package

that contains C or Fortran for Windows users, they may well need

a binary package, as compiling under Windows requires downloading

exactly the right versions of quite a number of tools. The R for Windows

FAQ describes this process.

Binary packages are created by INSTALLing the source package and

then making a zip file of the installed version.



Checking a package

R CMD check (Rcmd check in Windows) helps you do QA/QC on

packages.

• The directory structure and the format of DESCRIPTION andINDEX

are checked.

• The documentation is converted into text, HTML, and LATEX, and run

through latex if available.

• The examples are run

• Any tests in the tests/ subdirectory are run

• Undocumented objects, and those whose usage and definition

disagree are reported.

Distributing packages

If you have a package that does something useful and is well-tested and

documented, you might want other people to use it too. Contributed

packages have been very important to the success of R (and before that

of S).

Packages can be submitted to CRAN by ftp.

• The CRAN maintainers will make sure that the package passes CMD

check (and will keep improving CMD check to find more things for

you to fix in future versions).

• Other users will complain if it doesn’t work on more esoteric systems

and no-one will tell you how helpful it has been.

• But it will be appreciated. Really.


