
Sun Microsystems, Inc.
www.sun.com

Submit comments about this document at: http://www.sun.com/hwdocs/feedback

Sun™ SNMP Management Agent
Administration Guide for Sun

Supported Servers

Version1.6ataMinimum

Part No. 820-5965-10
December 2008, Revision A

Please
Recycle

Copyright 2008 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, U.S.A. All rights reserved.

Sun Microsystems, Inc. has intellectual property rights relating to technology that is described in this document. In particular, and without
limitation, these intellectual property rights may include one or more of the U.S. patents listed at http://www.sun.com/patents and one or
more additional patents or pending patent applications in the U.S. and in other countries.

This document and the product to which it pertains are distributed under licenses restricting their use, copying, distribution, and
decompilation. No part of the product or of this document may be reproduced in any form by any means without prior written authorization of
Sun and its licensors, if any.

Third-party software, including font technology, is copyrighted and licensed from Sun suppliers.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in
the U.S. and in other countries, exclusively licensed through X/Open Company, Ltd.

Sun, Sun Microsystems, the Sun logo, Sun Fire, Sun Blade, Sun SPARC Enterprise, Netra, and Solaris are trademarks or registered trademarks of
Sun Microsystems, Inc., or its subsidiaries, in the U.S. and in other countries.

All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. in the U.S. and in other
countries. Products bearing SPARC trademarks are based upon an architecture developed by Sun Microsystems, Inc.

The OPEN LOOK and Sun™ Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun acknowledges
the pioneering efforts of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer industry. Sun
holds a non-exclusive license from Xerox to the Xerox Graphical User Interface, which license also covers Sun’s licensees who implement OPEN
LOOK GUIs and otherwise comply with Sun’s written license agreements.

U.S. Government Rights—Commercial use. Government users are subject to the Sun Microsystems, Inc. standard license agreement and
applicable provisions of the FAR and its supplements.

DOCUMENTATION IS PROVIDED "AS IS" AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT,
ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright 2008 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, Californie 95054, Etats-Unis. Tous droits réservés.

Sun Microsystems, Inc. a les droits de propriété intellectuels relatants à la technologie qui est décrit dans ce document. En particulier, et sans la
limitation, ces droits de propriété intellectuels peuvent inclure un ou plus des brevets américains énumérés à http://www.sun.com/patents et
un ou les brevets plus supplémentaires ou les applications de brevet en attente dans les Etats-Unis et dans les autres pays.

Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent l’utilisation, la copie, la distribution, et la
décompilation. Aucune partie de ce produit ou document ne peut être reproduite sous aucune forme, par quelque moyen que ce soit, sans
l’autorisation préalable et écrite de Sun et de ses bailleurs de licence, s’il y en a.

Le logiciel détenu par des tiers, et qui comprend la technologie relative aux polices de caractères, est protégé par un copyright et licencié par des
fournisseurs de Sun.

Des parties de ce produit pourront être dérivées des systèmes Berkeley BSD licenciés par l’Université de Californie. UNIX est une marque
déposée aux Etats-Unis et dans d’autres pays et licenciée exclusivement par X/Open Company, Ltd.

Sun, Sun Microsystems, le logo Sun, Sun Fire, Sun Blade, Sun SPARC Enterprise, Netra, et Solaris sont des marques de fabrique ou des marques
déposées de Sun Microsystems, Inc., ou ses filiales, aux Etats-Unis et dans d’autres pays.

Toutes les marques SPARC sont utilisées sous licence et sont des marques de fabrique ou des marques déposées de SPARC International, Inc.
aux Etats-Unis et dans d’autres pays. Les produits portant les marques SPARC sont basés sur une architecture développée par Sun
Microsystems, Inc.

L’interface d’utilisation graphique OPEN LOOK et Sun™ a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés. Sun
reconnaît les efforts de pionniers de Xerox pour la recherche et le développement du concept des interfaces d’utilisation visuelle ou graphique
pour l’industrie de l’informatique. Sun détient une license non exclusive de Xerox sur l’interface d’utilisation graphique Xerox, cette licence
couvrant également les licenciées de Sun qui mettent en place l’interface d ’utilisation graphique OPEN LOOK et qui en outre se conforment
aux licences écrites de Sun.

LA DOCUMENTATION EST FOURNIE "EN L’ÉTAT" ET TOUTES AUTRES CONDITIONS, DECLARATIONS ET GARANTIES EXPRESSES
OU TACITES SONT FORMELLEMENT EXCLUES, DANS LA MESURE AUTORISEE PAR LA LOI APPLICABLE, Y COMPRIS NOTAMMENT
TOUTE GARANTIE IMPLICITE RELATIVE A LA QUALITE MARCHANDE, A L’APTITUDE A UNE UTILISATION PARTICULIERE OU A
L’ABSENCE DE CONTREFAÇON.

iii

Contents

Preface vii

1. Overview 1

2. Installation 3

System Requirements 3

Solaris OS Requirements 3

Disk Space Requirements 3

Installation and Additional Required Packages 4

Installation Packages 4

Additional Required Packages 5

Effects on System Files 5

Installing the SNMP Software 6

3. Configuration Files 11

Overview 11

Setting Up the Port Number 12

Setting Up Trap Destinations 13

Syntax 13

Configuring Access Control 14

Syntax 14

iv Sun SNMP Management Agent Administration Guide for Supported Servers • December 2008

VACM Examples 18

Default VACM Model 18

SNMPv3 Configuration 19

Syntax 19

Setting System Information 20

Syntax 20

General Configuration 21

Syntax 21

Updating the SNMP Agent When It Is Running 22

Co-Existence With Other Agents 22

4. Troubleshooting 25

Problems Starting or Accessing the Agent 25

Failure to Receive Traps 27

5. Uninstalling the Software 29

6. Platform-Specific Information 31

The sunPlat Class Definitions 31

Equipment 31

Binary Sensors 32

Numeric Sensors 33

Fan Tachometer Thresholds 33

Logical and Log Table Population 34

7. Introduction to SNMP 35

SNMP Versions 35

SNMP Managers and Agents 36

SNMP Management Information Base 36

MIB Tables 37

Contents v

Access Control 38

8. Platform Management Model 41

Modeling the Platform 41

Managed Objects 42

Derivation of sunPlat Classes 43

9. Sun SNMP Management Agent MIBs 45

SNMP Representation of the Model 45

The entityPhysical Group 45

The entityGeneral Group 46

The entityMIBTraps Group 46

Physical Model 46

Classes 48

Logical Model 49

Event and Alarm Model 49

SUN-PLATFORM-MIB 49

Physical Model Table Extensions 50

10. Physical Model 55

The sunPlat Physical Objects 55

The sunPlat Object Definitions 55

Physical Entity 56

The sunPlat Equipment Table 58

The sunPlat Circuit Pack Table 59

The sunPlat Equipment Holder 61

The sunPlat Power Supply 62

The sunPlat Battery 63

The sunPlat Alarm 64

The sunPlat Fan 65

vi Sun SNMP Management Agent Administration Guide for Supported Servers • December 2008

The sunPlat Sensor 65

The sunPlat Binary Sensor 66

The sunPlat Numeric Sensor 67

The sunPlat Discrete Sensor 70

11. Traps 71

Overview 71

Feature Enhancement 71

Standard Trap Properties 72

Trap Types 74

Sensor Traps 74

Object Creation and Deletion Traps 75

Property Change Traps 76

Environmental and Status Alarm Traps 77

Glossary 79

Index 83

 vii

Preface

This administration guide describes the Sun™ Simple Network Management
Protocol (SNMP) Management Agent for Sun Fire (MASF), which supports
management of hardware using the SNMP. The SNMP Management Agent provides
monitoring of inventory, configuration, service indicators, and environmental and
fault reporting.

The guide is intended for experienced enterprise administrators and professional
developers, and it describes the following:

■ Explains how to install and configure the software.

■ Introduces the SNMP Management Agent and describes its functionality.

Refer to the version of Sun SNMP Management Agent Release Notes that corresponds
to the version of the software you are using for specific information about your
software release.

How This Document Is Organized
Chapter 1 provides an overview of the software.

Chapter 2 describes how to install the management software.

Chapter 3 provides information about the user-configurable files.

Chapter 4 provides help in troubleshooting your software.

Chapter 5 explains how to uninstall the software.

Chapter 6 describes static platform-specific information, including sunPlat class
definitions and logical and log table population.

viii Sun SNMP Management Agent Administration Guide for Supported Servers • December 2008

Chapter 7 provides a brief introduction to the essential features of the Simple
Network Management Protocol.

Chapter 8 provides an overview of how SNMP models the hardware platform.

Chapter 9 describes how the managed objects and their relationships are presented
by the SNMP interface.

Chapter 10 describes the sunPlat physical class hierarchy and how the managed
physical object classes defined in the sunPlat model are represented by the
SUN-PLATFORM-MIB.

Chapter 11 describes the notifications classes and attributes, as defined in the
SUN-PLATFORM-MIB.

Using UNIX Commands
This document might not contain information about basic UNIX® commands and
procedures such as shutting down the system, booting the system, and configuring
devices. Refer to the following for this information:

■ Software documentation that you received with your system

■ Solaris™ Operating System documentation, which is at:

http://docs.sun.com

Preface ix

Shell Prompts

Typographic Conventions

Shell Prompt

C shell machine-name%

C shell superuser machine-name#

Bourne shell and Korn shell $

Bourne shell and Korn shell superuser #

Typeface*

* The settings on your browser might differ from these settings.

Meaning Examples

AaBbCc123 The names of commands, files,
and directories; on-screen
computer output

Edit your.login file.
Use ls -a to list all files.
% You have mail.

AaBbCc123 What you type, when contrasted
with on-screen computer output

% su

Password:

AaBbCc123 Book titles, new words or terms,
words to be emphasized.
Replace command-line variables
with real names or values.

Read Chapter 6 in the User’s Guide.
These are called class options.
You must be superuser to do this.
To delete a file, type rm filename.

x Sun SNMP Management Agent Administration Guide for Supported Servers • December 2008

Related Documentation
Documents specifically related to your Solaris operating system or your platform
can be found online at:

http://docs.sun.com/

Documentation, Support, and Training

Third-Party Web Sites
Sun is not responsible for the availability of third-party web sites mentioned in this
document. Sun does not endorse and is not responsible or liable for any content,
advertising, products, or other materials that are available on or through such sites
or resources. Sun will not be responsible or liable for any actual or alleged damage
or loss caused by or in connection with the use of or reliance on any such content,
goods, or services that are available on or through such sites or resources.

Sun Welcomes Your Comments
Sun is interested in improving its documentation and welcomes your comments and
suggestions. You can submit your comments by going to:

http://www.sun.com/hwdocs/feedback

Sun Function URL

Documentation http://www.sun.com/documentation/

Support http://www.sun.com/support/

Training http://www.sun.com/training/

Preface xi

Include the title and part number of your document with your feedback: Sun SNMP
Management Agent Administration Guide for Sun Supported Servers, part number
820-5965-10.

xii Sun SNMP Management Agent Administration Guide for Supported Servers • December 2008

1

CHAPTER 1

Overview

The Sun SNMP Management Agent enables access to system inventory and
monitoring and provides support for alarms, using the industry standard
management protocol SNMP. The agent supports SNMPv1, SNMPv2c, and SNMPv3
to enable interoperability with all common management applications. The provision
of SNMPv3 enables management accesses to be fully authenticated and secured.

The agent provides a management model based on the standard ENTITY-MIB, and
is augmented by extensions that provide further information dependent on the
component being represented. These extensions are based on the generic network
information model (NIM) presented in ITU-T M.3100 with further extensions taken
from attributes defined by the common information model (CIM) v2.5 schema. These
Management Information Bases (MIBs) are supported on other platforms, enabling
common management solutions to be developed.

The agent provided is intended to augment the management information, such as
MIB-II, already presented by the standard Solaris SNMP agent, snmpdx. Both agents
run independently of each other.

For a list of supported platforms in a specific software release, refer to the version of
the Sun SNMP Management Agent Release Notes that corresponds to the version of the
software you are using.

2 Sun SNMP Management Agent Administration Guide for Supported Servers • December 2008

3

CHAPTER 2

Installation

This chapter describes how to install the management software.

System Requirements
Before installing SNMP Management Agent, ensure that your system complies with
the prerequisites and dependencies discussed in this section.

Solaris OS Requirements
Refer to the system manuals for your platform for Solaris operating system (OS)
requirements.

Disk Space Requirements
At least 10 megabytes must be available on the server.

4 Sun SNMP Management Agent Administration Guide for Supported Servers • December 2008

Installation and Additional Required
Packages
The installation packages in table 2-1 and the additional required packages listed in
table 2-2 must be installed to enable support of the SNMP Management Agent. For
the location of these packages, refer to “Location of Installation and Additional
Required Packages” in the Sun SNMP Management Agent Release Notes, Version 1.6.

Installation Packages
TABLE 2-1 lists all packages contained in the tar archive bundle.

TABLE 2-1 SNMP Management Agent Software Installation Package Descriptions

Package Package Name Function

SUNWespdl Common Config Reader PCPDAQ Library Framework for providing configuration
information for Sun Blade™ T6300, Sun
Fire T1000/T2000, and Netra™ T2000

SUNWescdl Common Config Reader DAQ Library Framework for providing configuration
information

SUNWescpl Common Config Reader Sun Fire
V125/V210/V215/V240/V245 and Netra
240/210 platform support

Configuration reader platform support for
the Sun Fire V125,V210,V215,V240,V245
and Netra 240/210

SUNWescfl Common Config Reader Sun Fire V250
platform support

Configuration reader platform support for
the Sun Fire V250

SUNWeschl Common Config Reader Sun Fire V440/445
platform support

Configuration reader platform support for
the Sun Fire V440/V445

SUNWescnl Common Config Reader Netra 440/445
platform support

Configuration reader platform support for
the Netra 440

SUNWeserl Common Config Reader Sun Fire T1000
platform support

Configuration reader platform support for
Sun Fire T1000

Chapter 2 Installation 5

Additional Required Packages
The packages listed in TABLE 2-2 must be installed to enable support of the SNMP
Management Agent.

To upgrade the software, you must remove the existing software before reinstalling
the new version (see Chapter 5).

Effects on System Files
A new startup file is created in /etc/init.d, as shown in TABLE 2-3, with links to
/etc/rc<n>.d..

SUNWesonl Common Config Reader T2000/Netra T2000
/Sun Blade T6300, T6320, T6340 and Sun
SPARC Enterprise® T5120/T5120 T5140,
T5240, T5440 platform support

Configuration reader platform support for
Sun Fire T2000/Netra T2000/Sun Blade
T6300, T6320, T6340 and SPARC Enterprise
T5120/T5220, T5140, T5240, T5440

SUNWmasf Sun SNMP Management Agent for Sun Fire,
Netra, Sun Blade and Sun SPARC Enterprise
systems

SNMP Agent common components

SUNWmasfr Sun SNMP Management agent for Sun Fire,
Netra, Sun Blade and Sun SPARC Enterprise
systems

Startup and configuration scripts for the
SNMP agent

TABLE 2-2 SNMP Management Agent Additional Required Software Packages

Package Package Name

SUNWpiclh PICL Header Files (Usr)

SUNWpiclr PICL Framework (Root)

SUNWpiclu PICL Libraries, and Plugin Modules (Usr)

TABLE 2-3 Startup Script

Component Startup Script Package Name Package Description

Agent masfd SUNWmasfr Configuration and startup script for
SNMP agent

TABLE 2-1 SNMP Management Agent Software Installation Package Descriptions (Continued)

Package Package Name Function

6 Sun SNMP Management Agent Administration Guide for Supported Servers • December 2008

After installation, the following MIBs, supported by the agent, are located in the
directory /opt/SUNWmasf/lib/mibs. All other MIBs in that directory are included
for reference purposes.

Installing the SNMP Software
This section describes the procedure for installing the monitoring software.

Before installing the software, ensure that:

■ You have the requisite level of the Solaris OS installed on both the domain or
target and the platform agent server. Refer to the system manuals for your
platform for Solaris operating system requirements.

■ You have installed all the necessary patches (refer to “Patches” in the Sun SNMP
Management Agent Release Notes, Version 1.6) and any additional essential packages
(TABLE 2-2) not supplied as part of the SNMP software,.

When you are certain that your system meets all these requirements, you can
proceed to install the SNMP software.

▼ Install the SNMP Agent
1. Unzip the SNMP-zip file by typing:

2. Ensure you are the superuser before proceeding with installation.

TABLE 2-4 MIB Files

MIB Function

ENTITY-MIB.txt Describes physical and logical entities

RFC1155-SMI.txt Defines additional object types used by other MIBS

RFC1213-MIB.txt Models network interfaces (note, this agent only supports
system part)

SUN-PLATFORM-MIB.txt Extends the Entity MIB to provide additional information
about hardware components

$ zcat unzip SNMP-zip

Chapter 2 Installation 7

3. Change to the directory where the zip file was extracted (at the root of the
packages provided by the zip file).

If you want to start installation from a different directory, when using pkgadd you
must specify the path of the root of the directory hierarchy where the files were
extracted using the -d option (rather than -d. as shown in step 4).

Caution – If you have installed Sun™ Management Center, you cannot run both
Sun Management Center and this agent at the same time on any chip multi-threaded
(CMT) platform. Otherwise, you can skip to Step 5.

4. Install the support for platform instrumentation:

■ To install the Sun Fire V125/V210/V215/V240/V245 and Netra 210/240
instrumentation, type:

■ To install the Sun Fire V250 instrumentation, type:

■ To install the Sun Fire V440 and V445 instrumentation, type:

■ To install the Netra 440 instrumentation, type:

■ To install the Sun Fire T1000 instrumentation, type:

■ To install the Sun Fire T2000, Netra T2000, Sun Blade T6300, T6320, T6340 and
Sun SPARC Enterprise T5120/T5220, T5140, T5240, T5440 instrumentation, type:

pkgadd -d . SUNWescdl SUNWescpl

pkgadd -d . SUNWescdl SUNWescfl

pkgadd -d . SUNWescdl SUNWeschl

pkgadd -d . SUNWescdl SUNWescnl

pkgadd -d . SUNWespdl SUNWeserl

pkgadd -d . SUNWespdl SUNWesonl

8 Sun SNMP Management Agent Administration Guide for Supported Servers • December 2008

5. Install the SNMP agent by typing:

▼ Configure the SNMP Agent
After installation, you must configure the agent before you attempt to start it. A full
description of the configuration options for the SNMP agent is provided in
Chapter 3.

Before using the agent, you must assign it a network port to use. In deciding which
network port to use, consider:

■ Whether other SNMP agents might be installed on the system
■ Where management applications might attempt to discover SNMP agents

Note – Use a port other than 161 for SNMP access to the agent provided by this
product to ensure that this port is available for use by other agents, such as snmpdx
and Sun Management Center. The conventional port for SNMP access is port 161 for
data. By default, the Solaris snmpdx daemon uses this port.

1. Configure the SNMP agent using the /etc/opt/SUNWmasf/conf/snmpd.conf
file.

2. To set the port number, add a line to the file in the form:

This enables the agent to communicate on the port 9161. Make sure that the port you
select is not currently in use by another application. If you are using SNMPv1 or
SNMPv2c, no further configuration is required unless you want to use traps, in
which case you must specify the trap destinations. See Chapter 3 for more
information.

▼ Start the SNMP Agent
1. Type:

pkgadd -d . SUNWmasf SUNWmasfr

agentaddress 9161

/etc/init.d/masfd start

Chapter 2 Installation 9

2. Confirm that the agent is correctly running by typing:

You should see a line of the form:

If you do not see this output, review the /var/adm/messages log file to locate any
error messages from the agent. For more information on troubleshooting, see
Chapter 4.

On subsequent reboots, the agent starts automatically without any user intervention.

ps -ef | fgrep snmpd

root 29394 1 0 Feb 18 ? 4:11 /opt/SUNWmasf/sbin/snmpd

10 Sun SNMP Management Agent Administration Guide for Supported Servers • December 2008

11

CHAPTER 3

Configuration Files

This chapter describes how to configure the SNMP agent.

Overview
You configure the SNMP agent with the following file:

/etc/opt/SUNWmasf/conf/snmpd.conf

This file defines the ports where the agent can be accessed, the access controls that
the agent is to apply to management information, and destinations for traps. By
default, only the port number requires configuring after installation if:

■ The agent is only to be used for SNMPv1 or SNMPv2c accesses.
■ The default community is acceptable.
■ No trap destinations are required.

The default configuration used by the agent enables read-only access for the
community public. If the default configuration is not required, or it is inappropriate
for a particular environment, configure access control as follows:

■ If there are systems that are to receive traps, provide a list of such hosts to the
agent as described in “Setting Up Trap Destinations” on page 13.

■ If SNMPv3 access is required, further configure SNMPv3 and SNMPv3 users and
views as described in “SNMPv3 Configuration” on page 19.

■ If the management applications using the agent are likely to require information
in the MIB-II system branch, refer to “Setting System Information” on page 20.

■ You can add comments to the configuration file by making the pound sign (#) the
first character on the comment line.

12 Sun SNMP Management Agent Administration Guide for Supported Servers • December 2008

Setting Up the Port Number
Configure the port number using the agentaddress keyword. By default, a port
number is specified as follows:

This instructs the agent to listen to UDP port 9000 on all interfaces configured in the
system. Change the port number if you want to listen on a different port.

Note – This port number must not be used by any other application.

The agent can be made to listen to a specific address by specifying an agent address
of the form:

or

This forces the agent to listen on only that address. Also the agent can listen on
multiple ports by using an agent address in the following form:

This makes the agent listen on UDP port 8161 on all IPv4 interfaces and UDP port
9161 only on the interface associated with the local host address.

The agent must have a port number configured before it starts.

Note – By using ports other than 161 and 162 for SNMP agent access, you can
ensure that these ports are available for use by other agents, such as snmpdx or Sun
Management Center, which use them by default.

 agentaddress 9000

hostname[:port]

IPv4-address[:port]

agentaddress 8161,localaddress:9161

Chapter 3 Configuration Files 13

Setting Up Trap Destinations

Syntax

This defines a trap destination, a community string used for the MIB view, and the
destination port. All trap destinations must have an entry like this and with SNMP
1.6 software, all of these fields must be specified. These commands define the hosts
to receive traps:

■ Use trapsink to specify a host to be sent SNMPv1 traps.
■ Use trap2sink to send SNMPv2 traps.

You can use multiple trapsink, trap2sink lines to specify multiple destinations.
You can also specify a host multiple times, in which case a trap is sent for each of the
commands listed.

The SNMP daemon (snmpd) sends a cold start trap when it starts. If enabled, it also
sends traps on authentication failures.

This results in SNMPv1 traps being sent to the system merlin on port 32768, and
SNMPv2 traps being sent to arthur using the default port for traps of 162.

trapsink host community port

trap2sink host community port

CODE EXAMPLE 3-1 Using the trapsink and trap2sink Commands

....
agentaddress 8161,localhost:9161
###
SECTION: Trap Destinations
#
Here we defined who the agent will send traps to.

trapsink: A SNMPv1 trap receiver
arguments host community portnum
trapsink merlin public 32768

trap2sink: A SNMPv2 trap receiver
arguments host community portnum
trap2sink arthur public 162

14 Sun SNMP Management Agent Administration Guide for Supported Servers • December 2008

Configuring Access Control
The agent supports the view-based access control model (VACM) as defined in RFC
2575. It, therefore, recognizes the following keywords in the configuration file:

■ com2sec
■ group
■ access
■ view

It also recognizes some easier-to-use wrapper directives:

■ rocommunity
■ rwcommunity
■ rouser
■ rwuser

Syntax

rocommunity and rwcommmunity

These wrapper directives create read-only and read-write communities that can be
used to access the agent. They are a simple wrapper around the more complex and
powerful com2sec, group, access, and view directive lines. Also, they are not as
efficient, because groups are not created, and the tables can be larger as a
consequence. It is, therefore, better not to use these wrappers if you have complex
situations to set up, and to reserve their use where your setup is simple.

■ community token specifies the community string for which access is to be granted.

■ format of the source is token and is described in the com2sec directive section.

■ OID>token restricts access for that community to everything below the given
OID.

You can apply only one rwcommunity or rocommunity directive for each source
and community combination.

rocommunity community[source] [OID]

rwcommunity community[source] [OID]

Chapter 3 Configuration Files 15

rouser and rwuser

These wrapper directives configure access permissions for the specified user in the
VACM configuration tables. It is more efficient and powerful to use the combined
group, access, and view directives instead, but these wrapper directives are much
simpler.

■ username specifies the SNMPv3 security name to which these permissions apply.

■ minimum level of authentication and privacy for the username is specified by the
first token, which defaults to auth.

■ OID token restricts access for that user to everything below the given OID.

These directives have no effect unless the corresponding user has been created. See
“SNMPv3 Configuration” on page 19.

You can apply only one rwuser or rouser directive for each user.

com2sec

This wrapper directive specifies the mapping from a source/community pair to a
security name.

■ username specifies the security name to which this source and community string
are to be mapped.

■ source can be:

■ host name

■ subnet, which is specified as IP/mask; for example,
129.156.203.56/255.255.255.0; or IP/bits; for example,
129.156.203.56/24.

■ The word default, which specifies that access is to be provided to all hosts
with the specified community.

The first source/community combination that matches the incoming packet is selected.

rouser username [noauth|auth|priv] [OID]

rwuser username [noauth|auth|priv] [OID]

com2sec username source community

16 Sun SNMP Management Agent Administration Guide for Supported Servers • December 2008

group

This directive defines the mapping from a given security model and security name
to a particular group.

■ groupname defines the name of the group to which this combination of model and
security name belongs.

■ model is the security model and can be any one of v1, v2c, or usm.

■ username specifies the security name, which is defined elsewhere either in a
com2sec or createUser directive.

access

The access directive specifies the access permissions to be given to a particular
group/security model combination.

■ groupname specifies the name of the group to which the directive applies.

■ model is the SNMP security model to which the access directive applies. It can
take the values of any, v1, v2c, or usm.

■ level specifies the minimum level of authentication and encryption of the
incoming requests for which this directive applies. It can take the values noauth,
auth, or priv.

■ match specifies how context should be matched against the context of the incoming
protocol data unit (PDU), or packet, and takes the values exact or prefix.

■ exact specifies that context must be matched exactly.

■ prefix specifies that the context must begin with context.

■ read, write, and notify specify the view to be used for the corresponding access.

Note – The notify field is ignored for the purposes of access control. All access
control for traps and informs is configured by means of the trapsink, trap2sink,
and informsink directives. See “Setting Up Trap Destinations” on page 13.

■ When model is v1 or v2c, set level to noauth, and context to the empty string ““.

■ When access for a particular group with a given security model is requested, the
agent determines access in the following order:

group groupname model username

access groupname context model level match read write notify

Chapter 3 Configuration Files 17

1. Entries with a specific matching security model, as opposed to those matching
against the value of any.

2. If there is still more than one match, the most exact context match.

3. If there is still more than one match, the entry with the highest security level.

view

This defines the named view.

■ viewname defines the name of the view, which you can then use to reference the
view in an access directive.

■ type takes the values included or excluded. It specifies whether the OID
subtree specified in subtree should be included or excluded from the
corresponding view.

■ mask is a list of hex octets, separated by a period (.) or a colon (:). The mask
defaults to all 1s (matching is performed against all digits in the subtree) if it is
not specified.

A bit value of 0 in the mask acts as a wildcard for the corresponding value in the
OID. A bit value of 1 in the mask indicates that the corresponding value in the
subtree OID is fixed.

The mask enables you to control access to one row in a table in a relatively simple
way.

In the example above, the hex value ff.a0 has a binary equivalent of
11111111.10100000. The bit position of the first 0 is position 10, which means that
the view cust1 provides access to all the objects with OIDs that match
1.3.6.1.2.1.2.2.1.x.1, where x is an integer value.

Similarly, the view cust2 provides access to all the objects with OIDs that match
1.3.6.1.2.1.2.2.1.x.2.

view viewname type subtree [mask]

view cust1 included 1.3.6.1.2.1.2.2.1.1.1 ff.a0
view cust2 included 1.3.6.1.2.1.2.2.1.1.2 ff.a0

18 Sun SNMP Management Agent Administration Guide for Supported Servers • December 2008

VACM Examples

Default VACM Model
The default configuration of the agent, as shipped, is functionally equivalent to the
following entries:

CODE EXAMPLE 3-2 VACM Example

sec.name source community
com2sec local localhost private
com2sec mynet 10.10.10.0/24 public
com2sec public default public

group.name sec.model sec.name
group mygroup v1 mynet
group mygroup v2c mynet
group mygroup usm mynet
group local v1 local
group local v2c local
group local usm local
group public v1 public
group public v2c public
group public usm public

view.name incl/excl subtree mask
view all included .1 80
view system included system fe

group.name context sec.model sec.level prefix read write notify
access mygroup "" any noauth exact mib2 none none
access public "" any noauth exact system none none
access local "" any noauth exact all all all

CODE EXAMPLE 3-3 Default VACM Model

com2sec public default public
group public v1 public
group public v2c public
group public usm public
view all included .1
access public "" any noauth exact all none none

Chapter 3 Configuration Files 19

SNMPv3 Configuration
This section describes the command that enables the agent to respond to SNM_v3
messages

Syntax

You must configure the snmpd agent with an engineID, so that it can respond to
SNMPv3 messages. If you do not configure an engineID, the agent uses a default
value of the engineID based on the first IP address found for the host name of the
machine. If this is inappropriate (for example, if another agent is also using the same
engineID), you must configure an engineID explicitly. This line configures the
engineID to the value of string.

MD5 enables the authentication of SNMP users. When you create an SNMPv3 user,
you must also update the VACM access control tables to provide an explicit
declaration of what the user can access.

Note – This entry is made in the /var/opt/SUNWmasf/snmpd.dat file rather than
in the /etc/opt/SUNWmasf/conf/snmpd.conf file.

The minimum pass phrase length is 8 characters.

Note – When the specified user has been created, the createUser statement
provided in the file is removed.

engineID string

createUser username MD5 authpassphrase

20 Sun SNMP Management Agent Administration Guide for Supported Servers • December 2008

Setting System Information
This section describes the commands that you use to configure the system
information in MIB-II.

Syntax

These parameters set the system location, system contact, or system name for the
agent. This information is reported in the system group in the MIB-II tree.
Normally, these objects (sysLocation.0, sysContact.0, and sysName.0) are
read-write. However, if you specify the value for one of these objects by giving the
appropriate token, the corresponding object becomes read-only, and subsequent
attempts to set the value of the object result in a notWritable error response.

This parameter sets the value of the system.sysServices.0 object. For a host, an
acceptable value is 72.

The value of sysservices is a sum based on the network layers for which the node
performs transactions. For each layer, L, in the range 1 through 7, for which this
node performs transactions, 2 raised to (L - 1) is added to the sum. For example, a
node that performs primarily routing functions would have a value of 4 (2^(3-1)). In
contrast, a node which is a host offering application services would have a value of
72 (2^(4-1) + 2^(7-1)).

Note – In the context of the Internet suite of protocols, values should be calculated
accordingly.

syslocation string

syscontact string

sysname string

sysservices number

Chapter 3 Configuration Files 21

TABLE 3-1 provides these layer values.

For systems including OSI protocols, layers 5 and 6 can also be counted.

General Configuration
This section describes the commands that enable general configuration of the agent.

Syntax

Change to this groupid after opening the port. The groupid can refer to a group by
name, or a number if the group number starts with #. For example, specifying
agentgroup snmp causes the agent to run as the snmp group, and specifying
agentgroup #10 causes the agent to run as the group with groupid 10.

Change to this uid after opening the port. The uid can refer to a user by name, or a
number if the user number starts with #. For example, specifying agentuser snmp
causes the agent to run as the snmp user, and specifying agentuser #10 causes the
agent to run as the user with uid 10.

TABLE 3-1 Internet Protocol Layer Functionality

layer functionality

1 Physical (for example, repeaters)

2 Datalink/subnetwork (for example, bridges)

3 Internet (for example, IP gateways)

4 End-to-end (for example, IP hosts)

7 Applications (for example, mail relays)

agentgroup groupid

agentuser uid

22 Sun SNMP Management Agent Administration Guide for Supported Servers • December 2008

Setting authtrapenable to 1 enables generation of authentication failure traps.
The default value is disabled(2). Normally, the corresponding object
(snmpEnableAuthenTraps.0) is read-write, but setting its value with this token
makes the object read-only, and subsequent attempts to set the value of the object
result in a notWritable error response.

Updating the SNMP Agent When It Is
Running
You can update the configuration file at any time, either before starting the agent or
once the agent has started. If the agent is running, it does not update its running
configuration unless explicitly requested to do so.

▼ To Force the SNMP Agent to Update
● Type:

Co-Existence With Other Agents
The SNMP agent must be configured to use a specific network port, and this port
cannot be shared with any other component on the system. However, master agent
technologies can enable multiple SNMP agents on a system to appear as a single
entity to management applications. To use such solutions, configure this agent to use
a port that is known to the master agent, which then presents an aggregated OID
space.

authtrapenable number

kill -HUP pid

Chapter 3 Configuration Files 23

▼ Configure SNMP to Work With SMA
You can configure the MASF and SMA configuration files to work together. The
following procedure has been tested with Sun’s System Management Agent (SMA).

Note – Any trapsink or trap2sink lines present in the
/etc/opt/SUNWmasf/conf/snmpd.conf file must be added to the SMA
snmpd.conf file.

▼ Change the Subagent (MASF) Configuration File

1. Modify the /etc/opt/SUNWmasf/conf/snmpd.conf file as follows.

a. Change agentuser to agentuser root.

b. Change agentgroup to agentgroup root.

2. Modify the /etc/init.d/masfd script by including -X in the line that starts the
agent, so that the line now reads:

▼ Change the SMA Configuration File

3. Modify the SMA /etc/sma/snmpd.conf file as follows:

a. Add the following lines if not present:

b. Comment out the following lines by inserting a pound sign (#) as the first
character on these lines:

snmpd -X -Lsd

master agentx

agentXTimeout 600

dlmod seaProxy /usr/sfw/lib/sparcv9/libseaProxy.so

dlmod seaExtensions /usr/sfw/lib/sparcv9/libseaExtensions.so

24 Sun SNMP Management Agent Administration Guide for Supported Servers • December 2008

▼ Restart SMA and MASF

4. Restart the System Management Agent.

For more information, refer to “Starting and Stopping the System Management
Agent” in the Solaris System Management Agent Administration Guide.

5. Stop and restart MASF:

After both agents come up, MASF should now respond to requests directed to the
agentaddress as specified in the SMA.

svcadm restart svc:/application/management/sma:default

/etc/init.d/masfd stop

/etc/init.d/masfd start

25

CHAPTER 4

Troubleshooting

The Sun SNMP Management Agent provides full SNMP capabilities without further
need for complex configuration. This chapter provides additional information if you
experience problems using the agent.

Problems Starting or Accessing the
Agent
If the agent does not start, ensure that you are the root user before proceeding.

▼ Check Whether the Agent is Running
1. Type:

2. Look for a line of the form:

If no such line appears, the agent is not running.

3. Attempt to start the agent with the command:

ps -ef | grep snmpd

root 29394 1 0Feb 18 ?4:11 /opt/SUNWsmasf/sbin/snmpd

/etc/init.d/masfd start

26 Sun SNMP Management Agent Administration Guide for Supported Servers • December 2008

4. Again, confirm whether the agent is now running. If the agent continues not to
run, refer to the file /var/adm/messages.

Use your preferred editor to review the messages at the end of the file. Messages
from the SNMP agent have the form:

Where:

■ date is the date when the message was created.
■ time is the time of the message.
■ hostname shows the host where the message was created.
■ pid is the process id of the process that resulted in the message.
■ id is an identifier.
■ type indicates the type of message, which is error, info, or warning, depending

on the nature of the problem being reported.

When reviewing the entries in the log file, ensure you confirm that the messages did
result from the attempt to start the agent. If you are in any doubt, review the file
before starting the agent and identify the date and time of the last message. After
attempting to start the agent, locate this same message and review the messages
following it.

The most common reason for the agent not starting is that it cannot access the
network ports that it requires. The ports used by the agent are specified in the
configuration file. This problem can be recognized by a message of the form:

Where portno is the port specified in the configuration file.

If this message appears, identify why the port is not available. Use the netstat -a
command to show all ports being accessed. If the port is not available, modify the
configuration file to select a different port using an entry of the form:

If the port is available or the error continues to appear for a port that is available,
confirm you are running the agent as root and that you have permission to access
the specified port. Also look in /etc/opt/SUNWmasf/conf directory. Only one
configuration file, either snmpd.0.conf or snmpd.conf, should exist in that
directory. If there is more than one file, remove one.

If the management applications and clients cannot access the agent, confirm the
agent has started.

date time hostname snmpd[pid]: [ID id daemon.type] Text

date time hostname snmpd[pid]: [ID id daemon.type] Error opening
specified endpoint "udp:portno"

agentaddress newport

Chapter 4 Troubleshooting 27

▼ Confirm the Agent Has Started
1. From a client that is unable to access the agent using SNMP, use the ping

command to ensure that the host running the SNMP agent is accessible over the
network.

If the ping command fails, address the underlying network connectivity issues.

2. Ensure that the client has the correct access permissions for the SNMP agent. If
you are using SNMPv1 or SNMPv2c, ensure that the community string specified
by the client is the string expected by the agent.

If you are using SNMPv3, ensure that passwords for authentication have been
correctly specified.

Failure to Receive Traps
The most common reason for not receiving traps is failure to specify the trap
destination for the SNMP agent. Confirm which version of trap the management
application is expecting, and then look at the file
/etc/opt/SUNWmasf/conf/snmpd.conf. For an SNMPv1 trap, there must be a
line of the form:

Where:

■ hostname is either the name of the host or the IP address of the destination.

■ community is the community string for the MIB-view being used.

■ dest-port is the destination port for the trap, usually 162.

For an SNMPv2 trap, the entry should read:

From the system running the SNMP agent, use the ping command to confirm that
the chosen destination can be accessed over the network:

trapsink hostname community dest-port

trap2sink hostname community dest-port

ping hostname

28 Sun SNMP Management Agent Administration Guide for Supported Servers • December 2008

If the ping command fails, confirm network connectivity before taking any further
steps.

If traps are still not received, confirm whether the management application can
receive traps. If the management application has received traps from other hosts, no
further action is necessary. However, if this is the first time the management
application has received traps, confirm that it is correctly listening for SNMP traps
on port 162 or another specified port. As port 162 is a low port number, the
application receiving traps must run with root privileges. If the application is
running, use the netstat command to confirm that it is listening:

Remember, traps are not sent continuously and are sent only in the following
circumstances:

■ SNMP agent is starting or stopping.
■ Potential problem is detected by the SNMP agent, or the problem is cleared.
■ SNMP agent detects a change to the hardware, such as objects being added or

removed from the management model.
■ Property value changes.

The agent sends traps for all value changes except those that change rapidly, such as
voltage readings, fan tachometers, and temperature. For these kinds of
environmental sensors, traps are sent only when thresholds are crossed.

If you are not sure if a trap has been sent, stop and restart the agent to generate cold
start traps using the following commands:

UDP: IPv3
 Local Address Remote Address State
------------------------ ------------------ --------
 *.162 Idle

/etc/init.d/masfd stop
/etc/init.d/masfd start

29

CHAPTER 5

Uninstalling the Software

Generally, all that is required to uninstall SNMP is to use the pkgrm(1M) command
to remove the packages you installed. This procedure specifies all the relevant files
and links to remove for various platforms.

▼ Uninstall the Software

Caution – If you have also installed Sun Management Center, remove only the
SNMP-specific packages SUNWmasfr and SUNWmasf.

● To remove the Sun Fire V125/V210, V215, V240, V245, and Netra 210/240 platform
agent packages from the platform agent server, type:

● To remove the Sun Fire V250 platform agent packages from the platform agent
server, type:

● To remove the Sun Fire V440/V445 platform agent packages from the platform
agent server, type:

pkgrm SUNWmasfr SUNWmasf SUNWescpl SUNWescdl

pkgrm SUNWmasfr SUNWmasf SUNWescfl SUNWescdl

pkgrm SUNWmasfr SUNWmasf SUNWeschl SUNWescdl

30 Sun SNMP Management Agent Administration Guide for Supported Servers • December 2008

● To remove the Netra 440 platform agent packages from the platform agent server,
type:

● To remove the Sun Fire T1000 platform agent packages from the platform agent
server, type:

● To remove the Sun Fire T2000, Netra T2000, Sun Blade T6300, T6320, T6340 and
Sun SPARC Enterprise T5120/T5220, T5140, T5240, T5440 platform agent packages
from the platform agent server, type:

pkgrm SUNWmasfr SUNWmasf SUNWescnl SUNWescdl

pkgrm SUNWmasfr SUNWmasf SUNWeserl SUNWescdl

pkgrm SUNWmasfr SUNWmasf SUNWesonl SUNWespdl

31

CHAPTER 6

Platform-Specific Information

For related platform documentation, refer to “Supported Platforms” in the Sun
SNMP Management Agent Release Notes, Version 1.6.

The sunPlat Class Definitions
This section contains platform-specific information relating to class definitions and
attributes.

Equipment

sunPlatEquipmentAdministrativeState

The sunPlatEquipmentAdministrativeState is read-only and reports
unlocked(2).

sunPlatEquipmentUnknownStatus

For all slots, bays, and PCI cards, the precise operation state cannot be determined
from available sensors or be derived from other components. Therefore, these all
report sunPlatEquipmentUnknownStatus as true(1).

32 Sun SNMP Management Agent Administration Guide for Supported Servers • December 2008

sunPlatEquipmentLocationName

For all objects this provides a string of the form:

Where:

■ serial number is the serial number of the chassis, or blade serial number for the
T6300, T6320 and T6340 platforms.

■ NAC Name provides a unique Network Access Control (NAC) name for each
hardware component.

sunPlatEquipmentHolderPowered

Only read accesses are supported for this object.

Replaceable and Hot-Swappable Components

The following attributes are used to indicate a replaceable or hot-swappable
component:

■ sunPlatCircuitPackReplaceable
■ sunPlatCircuitPackHotSwappable
■ isFRU

A component is replaceable if it can be removed and replaced with a physically
different component.

A component is hot-swappable if the power can be on when the component is
removed or inserted. All hot-swappable components are replaceable.

A component is a field-replaceable unit (FRU) if it is an identifiable part that can be
obtained and replaced in the field.

Binary Sensors
Changes in binary sensors that result in sunPlatBinarySensorCurrent not
taking the same value as that specified by sunPlatBinarySensorExpected
generate an alarm with a sunPlatAlarmPerceivedSeverity of major(3). For
example, when disconnecting a cable from a power supply on the Sun Fire V240, an
alarm is sent with a sunPlatAlarmPerceivedSeverity of major(3) and the
value of sunPlatEquipmentAlarmStatus is set to major(2).

serial number/hostname/NAC Name

Chapter 6 Platform-Specific Information 33

Numeric Sensors
The following table shows the mappings that exist between the configured
threshold, the severity reported in the alarm (sunPlatAlarmPerceivedSeverity)
and the severity (sunPlatEquipmentAlarmStatus) recorded against the related
object for all numeric sensors.

For numeric sensors, the following objects are not instrumented:

■ sunPlatNumericSensorNormalMin
■ sunPlatNumericSensorNormalMax
■ sunPlatNumericSensorAccuracy
■ sunPlatNumericSensorHysteresis
■ sunPlatNumericSensorThresholdResetAction

Note – sunPlatNumericSensorEnabledThresholds is read only.

Fan Tachometer Thresholds
The only threshold for fan tachometers configured is the
lowerThresholdNonCritical(0). When the detected speed of the fan falls below
the configured non-critical threshold, an alarm is raised and the
sunPlatEquipmentAlarmStatus is assigned a severity of warning(5). As no
further thresholds are set, no additional alarms are raised even if the speed of the
fan drops further or stops.

TABLE 6-1 Numeric Sensor Mapping

Threshold sunPlatAlarmPerceivedSeverity sunPlatEquipmentAlarmStatus

lowerThresholdNonCritical(0) warning(5) warning(5)

upperThresholdNonCritical(1) warning(5) warning(5)

lowerThresholdCritical(2) major(3) major(2)

upperThresholdCritical(3) major(3) major(2)

lowerThresholdFatal(4) critical(2) critical(1)

upperThresholdFatal(5) critical(2) critical(1)

34 Sun SNMP Management Agent Administration Guide for Supported Servers • December 2008

Logical and Log Table Population
In the current version of the agent, the following tables are not used and are not
populated:

■ sunPlatWatchdogTable
■ sunPlatLogTable

35

CHAPTER 7

Introduction to SNMP

This chapter provides a brief introduction to the essential features of the Simple
Network Management Protocol (SNMP). This chapter addresses the issues that are
of particular relevance to the supported platforms. Refer to “Supported Platforms”
in the Sun SNMP Management Agent Release Notes, Version 1.6 for a listing of
supported platforms for Sun SNMP Management Agent 1.6 software.

SNMP Versions
SNMP is an open internet standard for managing network systems. It is defined, in
common with other internet standards, by a number of Requests for Comments
(RFCs) published by the Internet Engineering Task Force (IETF).

There are three versions of SNMP that define approved standards:

■ SNMPv1
■ SNMPv2 (also known, and referred to in this document, as SNMPv2c)
■ SNMPv3

SNMPv1 was first defined in 1988. SNMPv2 was introduced in 1993 and attempted
to address some of the shortcomings of SNMPv1 by adding further protocol
operations and data types and providing security. Limitations in the security model
led to what is now accepted as the SNMPv2c standard, which dropped the new
security-based features. Experimental versions, known as SNMPv2usec and
SNMPv2*, also appeared at this time, but these have not been widely adopted and
remain experimental.

SNMPv3, introduced in 1999, defines the SNMP management framework supporting
pluggable components, including security.

36 Sun SNMP Management Agent Administration Guide for Supported Servers • December 2008

For further information about these standards, refer to the following RFCs at the
IETF web site (http://www.ietf.org/rfc.html):

■ SNMPv1: RFC1155, RFC1157, RFC1212, RFC1215
■ SNMPv2: RFC2578, RFC2579, RFC2580, RFC3416
■ SNMPv3: RFC3410, RFC3411, RFC3412, RFC3413, RFC3414, RFC3415
■ Coexistence between standards: RFC2576

SNMP Managers and Agents
SNMP is a network protocol that allows devices to be managed remotely by a
network management station (NMS), also commonly called a manager.

To be managed, a device must have an SNMP agent associated with it. The purpose
of the agent is to:

■ Receive requests for data representing the state of the device from the manager,
and provide an appropriate response

■ Accept data from the manager to enable control of the device state

■ Generate SNMP traps, which are unsolicited messages sent to one or more
selected mangers to signal significant events relating to the device

SNMP Management Information Base
To manage and monitor a device, its characteristics must be represented using a
format known to both the agent and the manager. These characteristics can represent
physical properties such as fan speeds, or services such as routing tables. The data
structure defining these characteristics is known as a management information base
(MIB). This data model is typically organized into tables, but can also include simple
values. An example of the former is a routing table, and an example of the latter is a
timestamp indicating the time at which the agent was started.

The MIB is a definition for a virtual data store accessible via SNMP. The content is
accessible from the manager using get and set operations as follows:

■ In response to a get operation, the agent provides data, either maintained locally
or directly from the managed device.

■ In response to a set operation, the agent typically performs some action affecting
the state of either itself or the managed device.

Chapter 7 Introduction to SNMP 37

To enable an NMS to manage a device through its agent, the MIB corresponding to
the data presented by the agent must be loaded into the manager. The mechanism
for doing this varies depending on the implementation of the network management
software. This gives the manager the information required to address and interpret
correctly the data model presented by the agent.

Note – MIBs can reference definitions in other MIBs, so to use a given MIB, it might
be necessary to load others.

To address the content of this virtual data store, the MIB is defined in terms of object
identifiers (OIDs). An OID consists of an hierarchically arranged sequence of integers
that defines a unique name space. Each assigned integer has an associated text name.
For example, the OID 1.3.6.1 corresponds to the OID name
iso.org.dod.internet and 1.3.6.1.4 corresponds to the OID name
iso.org.dod.internet.private.

The numeric form is used within SNMP protocol transactions, whereas the text form
is used in user interfaces to aid readability. Objects represented by such OIDs are
commonly referred to by the last component of their name as a shorthand form. To
avoid confusion arising from this convention, it is normal to apply a MIB-specific
prefix, such as sunPlat, to all object names defined therein, thereby making all such
identifiers globally unique.

Note – The MIB is defined using a language known as ASN.1, the discussion of
which is beyond the scope of this document. For reference, the structure of the MIBs
for SNMPv2c is defined by its Structure of Management Information (SMI), defined
in RFC2578. This defines the syntax and basic data types available to MIBs. The
textual conventions (type definitions) defined in RFC2579 define additional data
types and enumerations.

MIB Tables
Much of the data content defined by MIBs is in tabular form, and organized as
entries consisting of a sequence of objects, each with its own OIDs. For example, a
table of fan characteristics could consist of a number of rows, one per fan, with each
row containing columns corresponding to the current speed, the expected speed,
and the minimum acceptable speed.

38 Sun SNMP Management Agent Administration Guide for Supported Servers • December 2008

The addressing of the rows within the table can be as follows:

■ Simple, single-dimensional index (a row number within the table, for
example 6)

■ More complex, multidimensional, instance specifier such as an IP address and
port number (for instance, 127.0.0.1, 1234)

Each table definition within the MIB has an INDEX clause that defines which
instance specifiers to use to select a given entry. In either case, the objects used to
define the index to the required row must themselves be defined within the MIB.
Thus, a table with a simple, single-dimensional index typically has an index column
that is referenced by the table’s INDEX clause. A specific data item within a table is
then addressed by specifying the OID giving its columnar prefix.

For example, myFanTable.myFanEntry.myCurrentFanSpeed) with a suffix
instance specifier (for instance 127.0.0.1.1234 from the previous example) gives
myFanTable.myFanEntry.myCurrentFanSpeed.127.0.0.1.1234.

The SMI defining the MIB syntax provides an important capability for extending
tables to add additional entries, effectively by adding extra columns to the table.
This is achieved by defining a table with an INDEX clause that is a duplicate of the
INDEX clause of the table being extended.

It is also possible to define MIB tables that are indexed not by objects contained
within them, but by objects imported from other tables, potentially defined in other
MIBs. This construct, effectively, enables columns to be added to an existing table.

Note – The SUN-PLATFORM-MIB makes extensive use of this mechanism to extend
tables defined in the ENTITY-MIB (see Chapter 9).

Access Control
All addressable objects defined in the MIB have associated maximum access rights,
for instance, read-only or read-write. These determine the maximum access the agent
can support, and can be used by the manager to restrict the operations it permits the
operator to attempt. The agent is able to apply lower access rights as required, that
is, it is able to refuse writes to objects that are considered read-write. This refusal can
be on the basis of:

■ How applicable the operation is to the object being addressed (for example,
where an object defined by the MIB represents a state machine for which only
certain transactions are legal)

■ Security restrictions that limit certain operations to restricted sets of managers

■ All objects in ENTITY-MIB and SUN-PLATFORM-MIB are implemented by this
agent as read-only.

Chapter 7 Introduction to SNMP 39

The mechanism used to communicate security access rights in SMMPv1 is that of
community strings. These are simply text strings such as private and public that are
passed with each SNMP data request. As SNMPv1 and SNMPv2 requests are not
encrypted, this should not be considered secure. The mechanism used to define
which community strings the agent should respond to, and from which manager,
depends on the implementation of the agent, but is typically based on access control
lists (ACLs), which are files describing applicable access permissions.

For a description of how to configure ACLs, refer to Chapter 3.

40 Sun SNMP Management Agent Administration Guide for Supported Servers • December 2008

41

CHAPTER 8

Platform Management Model

This chapter provides an overview of how SNMP models the hardware platform
using the Sun platform SNMP model (SunPSM).

Modeling the Platform
The server is represented as a collection of nested hardware resources within a chassis.
Some resources can be nested directly within the chassis, such as a motherboard.
Others are nested within other resources—for example, a motherboard can include a
processor. These relationships, extending from within the chassis, form a hierarchy of
hardware resources, each physically contained within its enclosing parent. This
hierarchy is modeled using relationships between managed objects that represent the
hardware resources (FIGURE 8-1).

42 Sun SNMP Management Agent Administration Guide for Supported Servers • December 2008

FIGURE 8-1 Hardware Resource Hierarchy Example

Managed Objects
The SunPSM model provides a useful set of common platform building blocks
representing fundamental hardware resources. Instances of these platform building
blocks are called managed objects. A hardware resource is represented by a managed
object if it can be monitored or if it provides useful configuration information.

Additional managed objects are used to represent other features of the management
interface. For example, hardware resources can issue asynchronous status reports,
(notifications), in response to problems (alarms) or changes in configuration (events).

Chassis

Alarm

Device
Watchdog

Power

Supply

Sensor

Discrete

Module
Sensor

Numeric
Battery

Sensor

Binary

Container OtherFan

Chapter 8 Platform Management Model 43

Derivation of sunPlat Classes
The SunPSM classes are based on industry-standard management concepts. The Sun
SNMP Management Agent system uses a subset of the Internet Telecommunication
Union Standardization Sector (ITU-T) generic network information model, chosen
for its representation of hardware infrastructure. This provides a powerful and
extensible framework that supports uniform fault and configuration management in
a Telecommunications Management Network (TMN).

The Distributed Management Task Force (DMTF) common information model (CIM)
schema models the physical environment, and event definition and handling, and
provides system-specific extensions to the common model.

44 Sun SNMP Management Agent Administration Guide for Supported Servers • December 2008

45

CHAPTER 9

Sun SNMP Management Agent
MIBs

This chapter describes how the managed objects and their relationships are
presented by the SNMP interface.

SNMP Representation of the Model
The SNMP agent supports a logical representation physical system as defined by
ENTITY-MIB (RFC 2737), and extended by the SUN-PLATFORM-MIB. The agent
also supports multiple administrative views of this information that might be
limited in some way.

Note – Many of the objects defined in the MIBs have a MAX-ACCESS of read-
write, but these objects are only writable where such an operation is appropriate to
the component being modeled. Currently, all instances are implemented as read-
only.

The implementation of the agent defines the following MIB groups, which describe
the physical and logical elements of the managed system.

The entityPhysical Group
The entityPhysical group describes the physical entities—identifiable physical
resources managed by the agent (for example, chassis, power supplies, and sensors).
These entities are represented by rows in the entPhysicalTable.

46 Sun SNMP Management Agent Administration Guide for Supported Servers • December 2008

The entityGeneral Group
The entityGeneral group provides the last change time stamp for the time when
any entity in the Physical Entity Table or Physical Mapping Table is changed.

The entityMIBTraps Group
The entityMIBTraps group defines the entConfigChange notifications used to
signal a change to the last change time stamp.

Chapter 7 provides an overview of how the generic elements of SNMP represent the
Sun platform SNMP model.

Physical Model
The SunPSM physical model uses the ENTITY-MIB and SUN-PLATFORM-MIB to
provide a containment hierarchy of hardware entities. Each entity is modeled as a
separate row of the entPhysicalTable.

FIGURE 9-1 shows an example of a physical containment hierarchy. The number in the
bottom right corner gives the index to the corresponding row in the
entPhysicalTable (TABLE 9-1).

Chapter 9 Sun SNMP Management Agent MIBs 47

FIGURE 9-1 Physical Containment Hierarchy Example

This information is presented using SNMP tables:

■ Physical Entity Table (entPhysicalTable)

This table provides a row per hardware entity. These rows are called entries and a
particular row is referred to as an instance. Each entry contains:

■ Physical class (entPhysicalClass)

■ Common characteristics of the hardware entity

■ Unique index (entPhysicalIndex)

■ An unique name (entPhysicalName)

■ A description (entPhysicalDescr)

■ Reference (entPhysicalContainedIn) that points to the row of the
hardware entity that acts as the container for this resource. This is zero for
components, such as a chassis, that are not physically contained within another
container.

Chassis

Alarm

Device
Watchdog

Power

Supply

Sensor

Discrete

Module
Sensor

Numeric
Battery

Sensor

Binary

Container OtherFan

1

2 3 4

5 6 7 12

8 9 10

11

48 Sun SNMP Management Agent Administration Guide for Supported Servers • December 2008

■ Physical Mapping Table (entPhysicalContainsTable)

This table provides a virtual copy of the hierarchy of the hardware resources
represented in the Physical Entity Table. This table is two-dimensional, indexed
first by the entPhysicalIndex of the containing entry, and then by the
entPhysicalIndex of each contained entry.

Classes
The entPhysicalClass is an enumerated value that provides an indication of the
general hardware type of a particular physical entity, each of which is represented
by a row in the entPhysicalTable.

The following list describes the set of entPhysicalClass elements:

■ other(1)

The enumeration other(1) applies if the physical entity cannot be classified by
one of the following.

■ chassis(3)

The chassis class represents an overall container for equipment. Any class of
physical entity can be contained within a chassis.

■ container(5)

The container class applies to a physical entity that can contain one or more
removable physical entities, of the same or different type. For example, each
empty or full slot in a chassis is modeled as a container. Field-replaceable units
(FRUs), such as a power supply or fan, are modeled as modules within a
container entity.

Chapter 9 Sun SNMP Management Agent MIBs 49

■ powerSupply(6)

The power supply class applies to a component that can supply power, such as
a battery.

■ fan(7)

The fan class applies if the physical entity is a fan or other cooling device.

■ sensor(8)

The sensor class applies to a physical entity that is capable of measuring some
physical property.

■ module(9)

The module class applies to a self-contained subsystem, and which is modeled
within another physical entity such as a chassis or another module. The entity
is always modeled within a container

Logical Model
The logical model is not populated by this agent.

Event and Alarm Model
The ENTITY-MIB provides a single SNMP notification, entConfigChange, which
signals a change to any of the tables in the MIB. It is set to provide a maximum of
one trap every five seconds.

The SUN-PLATFORM-MIB defines more specific notifications and these are
described in Chapter 11.

SUN-PLATFORM-MIB
The SUN-PLATFORM-MIB extends the Physical Entity Table to represent new
classes of component.

50 Sun SNMP Management Agent Administration Guide for Supported Servers • December 2008

Physical Model Table Extensions
The SUN-PLATFORM-MIB provides additional attributes from classes that are not
represented in the Physical Entity Table. It extends the Physical Entity Table by
adding the following sparsely populated table extensions:

■ Equipment Table Extension

This augments the Physical Entity Table to provide further information for
managed objects of the Equipment class. This class is applicable for all Sun SNMP
Management Agent hardware resources. Subclasses of the Equipment class are
represented by further Table Extensions.

■ Equipment Holder Table Extension

This extends the Equipment Table Extension. It provides the additional
information relevant for managed objects of the container(5)
entPhysicalClass.

■ Circuit Pack Table Extension

This extends the Equipment Table Extension. It provides the additional
information relevant for managed objects of the module(9)
entPhysicalClass.

■ Physical Table Extension

This extends the Physical Entity Table. It supplements the entPhysicalClass
column in the Physical Entity Table. If a resource has an entPhysicalClass of
other(1), but is of a class modeled by sunPlat, that is, the Watchdog or Alarm
Device class, this table identifies its sunPlatPhysicalClass.

■ Sensor Table Extension

This extends the Equipment Table Extension. It provides the additional
information relevant for managed objects of the entPhysicalClass
sensor(8). Subclasses of the Sensor class are represented by further Table
Extensions and identified by this table using sunPlatSensorClass.

■ Binary Sensor Table Extension

This extends the Sensor Table Extension. It provides additional information
relevant for managed objects of the entPhysicalClass sensor(8) and
sunPlatSensorClass binary(1).

■ Numeric Sensor Table Extension

This extends the Sensor Table Extension. It provides additional information
relevant for managed objects of the entPhysicalClass sensor(8) and
sunPlatSensorClass numeric(2).

Chapter 9 Sun SNMP Management Agent MIBs 51

■ Discrete Sensor Table Extension

This extends the Sensor Table Extension. It provides additional information
relevant for managed objects of the entPhysicalClass sensor(8) and
sunPlatSensorClass discrete(3).

■ Fan Table Extension

This extends the Equipment Table Extension. It provides the additional
information relevant for managed objects of the entPhysicalClass fan(7).

■ Alarm Table Extension

This extends the Equipment Table Extension. It provides the additional
information relevant for managed objects of the entPhysicalClass other(1)
and sunPlatPhysicalClass alarm(8).

■ Power Supply Table Extension

This extends the Equipment Table Extension. It provides the additional
information relevant for managed objects of the entPhysicalClass
powerSupply(6).

TABLE 9-1 shows an example of the Table Extensions to the Physical Entity Table. The
entPhysicalIndex (column 1 in this table) is based on the example hardware
resource hierarchy shown in FIGURE 9-1.

52 Sun SNMP Management Agent Administration Guide for Supported Servers • December 2008

TABLE 9-1 Physical Entity Table Extensions

ENTITY-MIB SUN-PLATFORM-MIB

e
n

tP
h

y
s

ic
a

lI
n

d
e

x

e
n

tP
h

y
s

ic
a

lC
la

s
s

s
u

n
P

la
tP

h
y

s
ic

a
lC

la
s

s

s
u

n
P

la
tF

a
n

C
la

s
s

s
u

n
P

la
tS

e
n

s
o

rC
la

s
s

s
u

n
P

la
tP

o
w

e
rS

u
p

p
ly

C
la

s
s

1 chassis

3 container

8 power supply G

12 power supply H

2 fan A

fan B

fan C

5 sensor D

7 sensor E

11 sensor F

6 module

9 other alarm

4 other other

e
n

tP
h

y
s

ic
a

lT
a

b
le

s
u

n
P

la
tE

q
u

ip
m

e
n

tT
a

b
le

s
u

n
P

la
tE

q
u

ip
m

e
n

tH
o

ld
e

rT
a

b
le

s
u

n
P

la
tC

ir
c

u
it

P
a

c
k

T
a

b
le

s
u

n
P

la
tP

h
y

s
ic

a
lT

a
b

le

s
u

n
P

la
tW

a
tc

h
d

o
g

T
a

b
le

s
u

n
P

la
tF

a
n

T
a

b
le

s
u

n
P

la
tA

la
rm

T
a

b
le

s
u

n
P

la
tS

e
n

s
o

rT
a

b
le

s
u

n
P

la
tB

in
a

ry
S

e
n

s
o

rT
a

b
le

s
u

n
P

la
tN

u
m

e
ri

c
S

e
n

s
o

rT
a

b
le

s
u

n
P

la
tD

is
c

re
te

S
e

n
s

o
rT

a
b

le

s
u

n
P

la
tD

is
c

re
te

S
e

n
s

o
rS

ta
tu

s
T

a
b

le

s
u

n
P

la
tP

o
w

e
rS

u
p

p
ly

T
a

b
le

Chapter 9 Sun SNMP Management Agent MIBs 53

TABLE 9-2 Key to Physical Entity Table Extensions

Reference Description

A Fan

B Refrigeration

C Heat sink

D Binary

E Numeric

F Discrete

G Power supply

H Battery

54 Sun SNMP Management Agent Administration Guide for Supported Servers • December 2008

55

CHAPTER 10

Physical Model

This chapter describes the SUN-PLATFORM-MIB and how the managed physical
objects defined in the model are represented.

The sunPlat Physical Objects
The Physical Entity, as described in the ENTITY-MIB, provides an attribute for
defining the relationship between managed objects. It also provides standard SNMP
attributes that correspond to attributes in the Equipment class.

The sunPlat Equipment table extends the Physical Entity table to provide the
additional attributes defined in the corresponding tables that are applicable for fault
monitoring.

The sunPlat Equipment Holder and sunPlat Circuit Pack tables are used to
represent receptacles and the components that connect to them, respectively.

The sunPlat Object Definitions
The attributes of the sunPlat tables represent the characteristics of hardware
resources. The availability and operability of the resource to the manager are
represented by the state of the managed object. Different sunPlat tables have a
variety of attributes that express aspects of the managed object’s state.

56 Sun SNMP Management Agent Administration Guide for Supported Servers • December 2008

Physical Entity
The Physical Entity table represents the characteristics that are generic to all
resources.

Note – The entPhysical prefix has been omitted from the following attribute
names for clarity.

■ Descr

This is a text string containing the known name for the resource. This name is
typically the name used to describe the resource in product documentation, on
product legends or, possibly, the name stored in firmware.

■ IsFRU

This is a boolean representing whether the resource is a field-replaceable unit.
Only hardware resources of the class sunPlatCircuitPack are considered to be
FRUs.

■ HardwareRev

This is a text string containing the manufacturer's hardware revision information
for the resource. Not all hardware resources have associated hardware revision
information.

■ Name

This is a text string containing the logical name by which the resource is known to
the operating system and associated utilities. This name can be a device node or a
defined name used by system utilities, where applicable. Not all resources have a
device name.

■ ModelName

This is a text string containing the manufacturer's customer visible part number
or part definition. Not all hardware resources have associated part numbers or
definitions.

■ SerialNum

This is a text string containing the manufacturer's serial number for the resource.
Not all hardware resources have associated serial numbers.

■ MfgName

This is a text string containing the manufacturer's name for the resource. Not all
hardware resources have an associated manufacturer’s name.

Chapter 10 Physical Model 57

The Physical Entity table also contains attributes that are used for describing the
hierarchy of hardware resources:

■ Class

This enumerated type contains an indication of the general hardware type of a
particular physical resource. The supported values of this class are defined by the
ENTITY-MIB. This attribute can be used as an indication of the relevant Table
Extensions for the managed object. The mapping between the ENTITY-MIB
classes and the sunPlat classes are as shown in TABLE 10-1:

■ Index

This integer uniquely identifies the entry in the Physical Entity Table that
identifies the managed object. Values are not preallocated and might vary on each
invocation of the agent.

■ ContainedIn

This integer represents the INDEX attribute of the physical entity containing this
physical entity. The attribute therefore models the relationship between the
physical entities.

Note – The object at the root of the physical containment hierarchy (typically a
chassis) is not physically contained within another entity represented in the table. To
indicate this, its entPhysicalContainedIn value is set to 0.

TABLE 10-1 Physical Entity Superclass ‘Class’ Attribute Mapping

entPhysicalClass sunPlat Class

chassis(3) sunPlatChassis

backplane(4) Not implemented

container(5) sunPlatEquipmentHolder

powerSupply(6) sunPlatPowerSupply

fan(7) sunPlatFan

sensor(8) sunPlatSensor, plus other tables

module(9) sunPlatCircuitPack

port(10) Not implemented

stack(11) Not implemented

other(1) sunPlatEquipment, plus other tables

unknown(2) Not implemented

58 Sun SNMP Management Agent Administration Guide for Supported Servers • December 2008

■ FirmwareRev

This is a text string containing the manufacturer's firmware revision information
for the resource. Not all hardware resources have associated firmware revision
information.

■ SoftwareRev

This is a text string containing the manufacturer's software revision information
for the resource. Not all hardware resources have associated software revision
information.

The sunPlat Equipment Table
The sunPlat Equipment table represents the characteristics that are generic to all
hardware resources. This table contains attributes representing configuration and
generic health status information.

The sunPlat Equipment table has the following attributes:

Note – The sunPlatEquipment prefix has been omitted from the following
attribute names for clarity.

■ AdministrativeState

This read-write attribute takes one of the following enumerated values
representing the current administrative state of the resource:

■ locked(1)
■ unlocked(2)
■ shuttingDown(3)

■ OperationalState

This read-only attribute is an enumerated type indicating whether the resource is
physically installed and capable of providing service. The attribute contributes to
the state of the managed object and can take the values shown in TABLE 10-2.

TABLE 10-2 Operational State Attribute Values

Attribute Values Description

disabled(1) The resource is totally inoperable and unable to provide service to
the user.

enabled(2) The resource is partially or fully operable and available for use.

Chapter 10 Physical Model 59

■ AlarmStatus

This read-only attribute takes an enumerated value representing the current
alarm state of the resource. It indicates the highest severity of any alarm
outstanding on the managed object. The attribute can take the following values:

■ critical(1)
■ major(2)
■ minor(3)
■ indeterminate(4)
■ warning(5)
■ pending(6)
■ cleared(7)

■ UnknownStatus

This read-only attribute indicates if the other state attributes might not reflect the
true state of the resource. The attribute takes a boolean value representing
whether the managed object is able to report accurately faults against the
resource. If the resource is unable, truthfully, to reflect its state, this attribute is set
to true.

■ LocationName

This read-only attribute contains a locator for the resource. For resources
contained directly within the chassis, this attribute correlates with legends on
slots and product documentation, or provides a geographical indication of the
position of the resource within the chassis. Other hardware resources typically
have a location corresponding to the Name of the managed object for the resource
in which it is contained.

The sunPlat Circuit Pack Table
The sunPlat Circuit Pack table represents the characteristics that are generic to a
replaceable resource or FRU. A replaceable resource is defined as a hardware
module whose purpose is to package internal hardware components into a
recognized form-factor. Typically, a FRU has a defined form-factor and physical
appearance. It can be a pluggable removable unit, which is plugged into a connector,
it can be more permanently sited within a bay, or it can fit into a drawer, rack, or
shelf.

This class has the entPhysicalClass module(9).

The sunPlat Circuit Pack class has the following attributes:

Note – The sunPlatCircuitPack prefix has been omitted from the following
attribute names for clarity.

60 Sun SNMP Management Agent Administration Guide for Supported Servers • December 2008

■ Type

This read-only attribute is a text string used for assessing the resource's
compatibility with its container. This attribute can identify functionality and
form-factor characteristics of the resource.

■ AvailabilityStatus

This read-only attribute further qualifies the Operational State of the managed
object. It is an object expressed in BITS Syntax, and can take zero or more of the
set of values shown in TABLE 10-3. See the “Glossary” on page 79 for a description
of BITS Syntax. Not all of these values are applicable to every class of managed
object. This attribute contributes to the state of the managed object.

■ Replaceable

This read-only attribute takes a boolean value indicating whether the resource is a
replaceable unit.

TABLE 10-3 Availability Status Attribute Values

Attribute Values Bit No. Hex. Description

inTest(0) 0 80 The resource is undergoing a test procedure.

failed(1) 1 40 The resource has an internal fault that prevents it
from operating. Operational State is disabled(1).

powerOff(2) 2 20 The resource requires power to be applied and is
not powered on.

offLine(3) 3 10 The resource requires a routine operation to be
performed to place it online and make it available
for use. Operational State is disabled(1).

offDuty(4) 4 08 The resource has been made inactive by an
internal control process.

dependency(5) 5 04 The resource cannot operate because some other
resource on which it depends is unavailable.
Operational State is disabled(1).

degraded(6) 6 02 The service available from the resource is
degraded in some respect, such as in speed or
operating capability. However, the resource
remains available for service. Operational State is
enabled(2).

notInstalled(7) 7 01 The resource represented by the managed object
is not present, or is incomplete. Operational State is
disabled(1).

Chapter 10 Physical Model 61

■ HotSwappable

This read-only attribute takes a boolean value indicating whether the replaceable
resource is hot-swappable.

The sunPlat Equipment Holder
The sunPlat Equipment Holder table represents the characteristics of hardware
resources that are capable of holding removable hardware resources.

This class has the entPhysicalClass container(5).

The sunPlat Equipment Holder table has the following attributes:

Note – The sunPlatEquipmentHolder prefix has been omitted from the following
attribute names for clarity.

■ Type

This read-only attribute is an enumerated type representing the holder type of the
resource, as shown in TABLE 10-4:

■ AcceptableTypes

This read-only attribute is a list of text strings representing the types of removable
resource (circuit pack) that are supported by the holder. These types are tested for
compatibility with the removable resource's Type attribute.

TABLE 10-4 Equipment Holder Type Attribute Values

Attribute Values Description

bay(1) A bay is typically a unit of vertical space within a rack that contains
shelves or drawers for holding telecommunications equipment. The
sunPlat table interprets its use within a chassis as a physical
receptacle requiring cables for signal connections.

shelf(2) A horizontal support or subrack for holding telecommunications
equipment within a rack.

drawer(3) A horizontal enclosure for holding telecommunications equipment
within a rack.

slot(4) A physical receptacle with an integral connector for signal
connections for removable equipment.

rack(5) A rack is the support infrastructure for holding telecommunications
equipment, holders, and cable management systems within a self-
contained enclosure.

62 Sun SNMP Management Agent Administration Guide for Supported Servers • December 2008

■ Status

This read-only attribute is an enumerated type indicating the status of the holder
with regards to any replaceable hardware resources (circuit packs) that it might
contain, as shown in TABLE 10-5.

■ Powered

This read-write attribute is an enumerated type indicating the power state of the
resource. The possible values are:

■ other(1)
■ unknown(2)
■ powerOff(3)
■ powerOn(4)

The sunPlat Power Supply
The sunPlat Power Supply table represents a power supply. It does not extend the
characteristics of the sunPlat Equipment class. A power supply typically contains
sensors representing monitored properties, for example voltages, current, and
temperature. It can also contain other hardware resources, such as fans. This is
modeled using relationships between the managed objects.

If a power supply is a removable resource, it is modeled within a managed object of
sunPlat Circuit Pack table.

This table has the entPhysicalClass powerSupply(6).

TABLE 10-5 Equipment Holder Status Attribute Values

Attribute Values Description

holderEmpty(1) There is no removable resource in the holder.

inTheAcceptableList(2) The holder contains a removable resource that is one of
the types in the AcceptableTypes list.

notInTheAcceptableList(3) The holder contains a removable resource recognizable
by the network element; but not one of the types in the
AcceptableTypes list.

unknownType(4) The holder contains an unrecognizable removable
resource.

Chapter 10 Physical Model 63

The sunPlat Power Supply class has the following attribute:

Note – The sunPlatPowerSupply prefix has been omitted from the following
attribute name for clarity.

■ Class

This read-only attribute is an enumerated type indicating the class of the power
supply, and takes the following values:

■ other(1)
■ powerSupply(2)
■ battery(3)

The sunPlat Battery
The sunPlat Battery table represents a power supply that supplies power from a
battery.

This table has the entPhysicalClass powerSupply(6) and the
sunPlatPowerSupplyClass battery(3).

The sunPlat Battery table has the following attribute:

Note – The sunPlatBattery prefix has been omitted from the following attribute
name for clarity.

■ Status

This read-only attribute is an enumerated type that indicates the status of the
battery, and takes the following values:

■ other(1)
■ unknown(2)
■ fullyCharged(3)
■ low(4)
■ critical(5)
■ charging(6)
■ chargingAndHigh(7)
■ chargingAndLow(8)
■ chargingAndCritical(9)
■ undefined(10)
■ partiallyCharged(11)

64 Sun SNMP Management Agent Administration Guide for Supported Servers • December 2008

The sunPlat Alarm
The sunPlat Alarm table represents the characteristics of hardware resources that
emit indications relating to problem situations, for instance buzzers, LEDs, relays,
vibrators, and software alarms.

This class has the entPhsicalClass other(1) and the sunPlatPhysicalClass
alarm(2).

The sunPlat Alarm table has the following attributes:

Note – The sunPlatAlarm prefix has been omitted from the following attribute
names for clarity.

■ Type

This read-only attribute is an enumerated type representing the means by which
the alarm condition is communicated. The possible values are shown in
TABLE 10-6.

■ State

This read-write attribute is an enumerated type representing the state of the alarm
The possible values are shown in TABLE 10-7.

TABLE 10-6 Alarm Type Attribute Values

Attribute Values Description

other(1) The alarm device type is not one of the following.

audible(2) The alarm causes an audible change on the device.

visible(3) The alarm causes a visible change on the device.

motion(4) The alarm causes motion of the device.

switch(5) The alarm causes an electrical signal change.

TABLE 10-7 Alarm State Attribute Values

Attribute Values Description

unknown(1) The state of the alarm is undefined or unobservable.

off(2) The alarm is inactive.

steady(3) The alarm is active.

alternating(4) The alarm is cycling between its inactive and active states.

Chapter 10 Physical Model 65

■ Urgency

This read-write attribute is an enumerated type indicating the relative frequency
at which the Alarm flashes, vibrates or emits audible tones. The possible values
are:

■ other(1)
■ unknown(2)
■ notSupported(3)
■ informational(4)
■ nonCritical(5)
■ critical(6)
■ unrecoverable(7)

The sunPlat Fan
The sunPlat Fan table represents the characteristics of active cooling devices. A fan
typically contains a sensor representing the speed of rotation. This is modeled using
a physical containment relationship between the sunPlat Fan managed object and a
tachometer-managed object of class sunPlatSensor.

This table has the entPhysicalClass fan(7).

The sunPlat Fan table has the following attribute:

Note – The sunPlatFan prefix has been omitted from the following attribute name
for clarity.

■ Class

This read-only attribute is an enumerated type indicating the class of cooling
device, and takes the following values:

■ other(1)
■ fan(2)
■ refrigeration(3)
■ heatPipe(4)

The sunPlat Sensor
The sunPlat Sensor table represents the generic characteristics of hardware
resources that measure properties of other hardware resources.

This table has the entPhysicalClass sensor(8).

66 Sun SNMP Management Agent Administration Guide for Supported Servers • December 2008

The sunPlat Sensor table has the following attributes:

Note – The sunPlatSensor prefix has been omitted from the following attribute
names for clarity.

■ Class

This read-only attribute is an enumerated type indicating the class of the sensor,
and takes the following values:

■ binary(1)
■ numeric(2)
■ discrete(3)

■ Type

This read-only attribute is an enumerated type identifying the property that the
sensor measures. Some of the possible values of Type are shown in TABLE 10-8.

■ Latency

This read-only attribute indicates the following:

■ When the sensor is polled, this integer represents the update interval measured
in milliseconds.

■ When the sensor is event-driven, this value represents the maximum expected
latency in processing that event.

The sunPlat Binary Sensor
A sunPlat Binary Sensor table represents the characteristics of sensors that return
binary output. It augments the sunPlatSensor table to provide the attributes that
are specific to binary sensors.

TABLE 10-8 Sensor Type Attribute Values

Type Description

temperature(3) A sensor for measuring the environmental temperature.

voltage(4) A sensor for measuring the electrical voltage.

current(5) A sensor for measuring the electrical current.

tachometer(6) A sensor for measuring the speed and revolutions of a device.

counter(7) A general purpose sensor which counts defined events.

Chapter 10 Physical Model 67

This table has the entPhysicalClass sensor(8) and the sunPlatSensorClass
binary(1).

The sunPlat Binary Sensor table has the following attributes:

Note – The sunPlatBinarySensor prefix has been omitted from the following
attribute names for clarity.

■ Current

This read-only attribute takes a boolean value indicating the most recent value of
the sensor.

■ Expected

This read-only attribute takes a boolean value indicating the anticipated value of
the sensor.

■ InterpretTrue

This read-only attribute is a text string indicating the interpretation of a true
value from the sensor.

■ InterpretFalse

This read-only attribute is a text string indicating the interpretation of a false
value from the sensor.

The sunPlat Numeric Sensor
A sunPlat Numeric Sensor table represent the characteristics of sensors which can
return numeric readings. The numeric sensor values are qualified by a Unit of
Measurement as defined below:

Unit of Measurement = Base Unit * 10Exponent

This qualification allows for units of measurement such as milliamps and
microvolts. If a Rate Unit is defined, the Unit of Measurement is further refined as
below:

Unit of Measurement = Base Unit * 10Exponent per Rate Unit

This qualification allows for units of measurement such as rpm and km/hr.

This table has the entPhysicalClass sensor(8) and the sunPlatSensorClass
numeric(2).

68 Sun SNMP Management Agent Administration Guide for Supported Servers • December 2008

The sunPlat Numeric Sensor class has the following attributes:

Note – The sunPlatNumericSensor prefix has been omitted from the following
attribute names for clarity.

■ BaseUnits

This read-only attribute is an enumerated type indicating the unit of
measurement, prior to qualification as defined above. Examples of values of this
type are:

■ degC(3)
■ volts(6)
■ amps(7)

■ Exponent

This read-only attribute is an integer that used to scale the Base Unit by some
power of 10. For example, if sunPlatNumericSensorBaseUnits is set to
volts and sunPlatNumericSensorExponent is set to -6, the units of the
values returned are microVolts.

■ RateUnits

This read-only attribute is an enumerated type that indicates whether the sensor
is measuring an absolute value (when the value is none) or a rate. In the latter
case, the unit specified in sunPlatNumericSensorBaseUnits is expressed as
per unit of time. For example, if sunPlatNumericSensorBaseUnits is set to
degC and sunPlatNumericSensorRateUnits is set to perSecond, the value
represented has the units degC/second.

Examples of values of this type are:

■ perMicrosecond(2)
■ perMillisecond(3)
■ perSecond(4)
■ perMinute(5)
■ perHour(6)
■ none(1)

■ Current

This read-only attribute is an integer indicating the most recent value of the
sensor.

■ NormalMin

This read-only attribute is an integer indicating the defined threshold below
which the sensor reading is not expected to fall. This value is expressed in terms
of the units of measurement as defined above. The attribute might not be
applicable to some sensors.

Chapter 10 Physical Model 69

■ NormalMax

This read-only attribute is an integer indicating the defined threshold above
which the sensor reading is not expected to rise. This value is expressed in terms
of the units of measurement as defined above. The attribute might not be
applicable to some sensors.

■ Accuracy

This read-only attribute is an integer indicating the degree of error of the sensor
for the measured property as a percentage to two decimal places. The value can
vary depending on whether the sensor reading is linear over its dynamic range.

■ LowerNonCriticalThreshold

This read-only attribute is an integer indicating the lower threshold at which a
nonCritical condition occurs.

■ UpperNonCriticalThreshold

This read-only attribute is an integer indicating the upper threshold at which a
nonCritical condition occurs.

■ LowerCriticalThreshold

This read-only attribute is an integer indicating the lower threshold at which a
critical condition occurs.

■ UpperCriticalThreshold

This read-only attribute is an integer indicating the upper threshold at which a
critical condition occurs.

■ LowerFatalThreshold

This read-only attribute is an integer indicating the lower threshold at which a
fatal condition occurs.

■ UpperFatalThreshold

This read-only attribute is an integer indicating the upper threshold at which a
fatal condition occurs.

■ Hysteresis

This read-only attribute describes the hysteresis, a retardation of an effect when
the forces acting upon a body are changed, around the threshold values.

■ EnabledThresholds

This is read-only attribute that, when written to, resets the sensors to their default
values.

70 Sun SNMP Management Agent Administration Guide for Supported Servers • December 2008

The sunPlat Discrete Sensor
The sunPlat Discrete Sensor class is used for sensors that cannot be represented by
the sunPlat Numeric Sensor or sunPlat Binary Sensor classes

This class has the entPhysicalClass sensor(8) and the sunPlatSensorClass
discrete(3).

The class comprises two tables. The sunPlatDiscreteSensorTable has one
attribute, sunPlatDiscreteSensorCurrent, which indicates the current state of
the sensor expressed as an index in the sunPlatDiscreteSensorStatesTable.

The sunPlat Discrete Sensor class has the following attributes:

Note – The sunPlatDiscreteSensorState prefix has been omitted from the
following attribute names for clarity.

■ Index

This read-only attribute takes a number that represents the index of a row in the
sunPlatDiscreteSensorStatesTable, which identifies this sensor state.

■ Interpretation

This read-only attribute is a string describing the state represented by the
corresponding row of the sunPlatDiscreteSensorStatesTable.

■ Acceptable

This read-only attribute takes a boolean value that indicates whether the state
represented by this row of the table is considered acceptable.

71

CHAPTER 11

Traps

This chapter describes the properties and function of traps.

Overview
The SNMP agent provides traps to send asynchronous updates to management
applications. The agent provides notifications for the following:

■ Change of value within an object

■ Removal of an object from the management model

■ Addition of an object to the management model

■ Raising of an error or warning condition against a component within the model

■ Clearance of an error or warning condition

To configure the agent to send traps to a particular management application, see
Chapter 3.

Feature Enhancement
The SNMP variable sunPlatNotificationAdditionalText is now included in
the following traps:

■ sunPlatStateChange
■ sunPlatAttributeChangeInteger
■ sunPlatAttributeChangeString
■ sunPlatAttributeChangeOID

72 Sun SNMP Management Agent Administration Guide for Supported Servers • December 2008

In previous versions of the SUN-PLATFORM-MIB, these traps did not include the
sunPlatNotificationAdditionalText. The conventional value of this SNMP
variable is the NAC name (a formal, slash-delimited path, in ASCII, which describes
the entity’s position in the entity-tree). Having the NAC name in each of the
AttributeChange or StateChange traps helps remote Network Management
Systems more directly identify the entity that is causing the trap to be sent.

Standard Trap Properties
The information communicated in traps generated by the agent is based on a
common set of attributes. For clarity, the sunPlatNotification prefix has been
omitted from the following attribute names:

■ EventId

This is an integer uniquely identifying the notification and an indication of the
order in which the notifications were generated by the agent.

Note – The agent does not guarantee that its sequencing reflects the order of the
underlying events from which the notifications were generated.

■ Time

This is a time stamp indicating the time at which the notification was generated.

■ Object

This attribute is an OID that provides a direct reference to an entry in the MIB
representing the resource with which the event is associated.

■ CorrelatedNotifications

This attribute is a comma-separated list of ID values that identify the other events
to which this event is associated.

Chapter 11 Traps 73

■ AdditionalInfo

This attribute provides an additional OID that further qualifies the purpose of the
trap. Not all traps populate this value, and a value of 0.0 identifies that no trap
specific value is relevant to the trap.

■ AdditionalText

This attribute provides a further textual description for the trap. The exact content
of the string varies depending on the cause of the trap. However, the format used
for this string is always of the form:

Where entPhysicalName identifies the physical name of the object raising the
trap.

Examples of the trap-specific text include:

■ Voltage threshold crossed
■ Current threshold crossed
■ Tachometer threshold crossed
■ Temperature threshold

■ PerceivedSeverity

This attribute describes the severity of the cause of the trap. The attribute can take
the following values:

■ indeterminate(1)
■ critical(2)
■ major(3)
■ minor(4)
■ warning(5)
■ cleared(6)

■ ProbableCause

This attribute provides a textual description of the probable cause.

Example of the permitted values include:

■ lowTemperature
■ coolingSystemFailure
■ externalEquipmentFailure

■ SpecificProblem

This attribute provides an additional textual description that supplies further
information about the cause of the trap.

serial number/hostname/entPhysicalName:trap-specific text

74 Sun SNMP Management Agent Administration Guide for Supported Servers • December 2008

■ RepairAction

This attribute provides a textual description of the potential repair actions.
Multiple repair actions might be described, in which case carriage return/line
feed (<CR><LF>) sequences are used to delimit individual descriptions of the
actions.

■ ChangedOID

This attribute provides the OID of an object whose value changing caused the
trap to be sent.

Trap Types
This section describes the function and properties of trap types.

Sensor Traps
The SNMP agent determines whether an error or warning condition exists against an
object based on any sensors related to that object or any subcomponents of that
object. For example, a CPU can have an associated fan, and the fan can have an
associated tachometer. All three components have an ability to report their
operational status. If the tachometer reports that it has a failed operational status,
this relates only to the health of the tachometer. Multiple thresholds can be set for all
numeric sensors:

■ upperFatal
■ upperCritical
■ upperNonCritical
■ lowerFatal
■ lowerCritical
■ lowerNonCritical

The precise semantics of these thresholds depends on the underlying component
and not all components use all the thresholds. When a component uses a threshold,
the agent always creates a trap when the threshold is crossed. This means that if the
current value reported by the sensor changes dramatically and crosses multiple
thresholds at the same time, multiple traps are delivered.

Note – Even if multiple thresholds are crossed in one sample, when the problem is
cleared, the resultant traps can occur over a period of time.

Chapter 11 Traps 75

You can determine the threshold values assigned to a numeric sensor by reading the
following properties:

■ sunPlatNumericSensorLowerThresholdNonCritical
■ sunPlatNumericSensorUpperThresholdNonCritical
■ sunPlatNumericSensorLowerThresholdCritical
■ sunPlatNumericSensorUpperThresholdCritical
■ sunPlatNumericSensorLowerThresholdFatal
■ sunPlatNumericSensorUpperThresholdFatal

These are all 32-bit integer values, the actual numeric threshold being determined by
applying the exponent value provided by sunPlatNumericSensorExponent.

For binary sensors, a trap is sent when the value reported by
sunPlatBinarySensorCurrent is not the same as that specified by
sunPlatBinarySensorExpected. A trap indicating the problem has cleared is
sent when sunPlatBinarySensorCurrent returns to the same value as
sunPlatBinarySensorExpected.

For any binary sensor, you can determine the precise meanings of the reported
values from the descriptions supplied by sunPlatBinarySensorInterpretTrue
and sunPlatBinarySensorInterpretFalse.

Object Creation and Deletion Traps
The sunPlatObjectCreation trap is sent when an object is created within the
agent to represent a new component. For example, a new component has been hot-
plugged into the system. The agent sends object creation traps only for objects added
once it has started, so traps are not generated during the initial phase of discovery
when the agent first starts.

The sunPlatObjectDeletion trap is sent when an object is deleted as a result of a
component being removed or unconfigured from the system. Object creation and
deletion traps have the following properties:

Note – The sunPlatNotification prefix has been omitted from the following
attribute names for clarity.

■ EventId

This is an integer uniquely identifying the notification and an indication of the
order in which the notifications were generated by the agent.

■ Time

This is a time stamp indicating the time at which the notification was generated.

76 Sun SNMP Management Agent Administration Guide for Supported Servers • December 2008

■ Object

The attribute is the OID of the entPhysicalDescr column in the
entPhysicalTable of the object being created or deleted.

■ CorrelatedNotifications

This is currently assigned to an empty string.

■ AdditionalInfo

This attribute is the OID of object being created. The OID is that of the
entPhysicalDescr object for the row in entPhysicalTable being created.

■ AdditionalText

For details, see “Standard Trap Properties” on page 72.

Property Change Traps
The agent can deliver traps whenever a value in an object changes. The type of trap
depends on the type of the object:

■ The sunPlatStateChange trap is sent when a state attribute changes value.

■ The sunPlatAttributeChangeInteger trap is sent when the value of an
integer property changes. This trap is used for all integer property value changes,
with the exception of current values with respect to numeric sensors, because
such values can change rapidly and can result in a large number of traps.

■ The sunPlatAttributeChangeString trap is sent when the value of a string
property changes. This trap is used for all string property value changes.

■ The sunPlatAttributeChangeOID trap is sent when the value of an OID
property changes. This trap is used for all OID property value changes.

Depending on the object type causing the trap, different attributes in the trap body
are used to supply both before and after values of the changed attribute:

Note – The sunPlatNotification prefix has been omitted from the following
attribute names for clarity.

■ OldInteger

This attribute is used for sunPlatStateChange and
sunPlatAttributeChangeInteger traps. The attribute provides the original
value of the object identified by sunPlatNotificationChangedOID.

Chapter 11 Traps 77

■ NewInteger

This attribute is used for sunPlatStateChange and
sunPlatAttributeChangeInteger traps. The attribute provides the new
value of the object identified by sunPlatNotificationChangedOID.

■ OldString

This attribute is used by the sunPlatAttributeChangeString trap. This is the
original value of the object identified by sunPlatNotificationChangedOID.

■ NewString

This attribute is used by the sunPlatAttributeChangeString trap. This is the
new value of the object identified by sunPlatNotificationChangedOID.

■ OldOID

This attribute is used by the sunPlatAttributeChangeOID trap. This is the
original value of the object identified by sunPlatNotificationChangedOID.

■ NewOID

This attribute is used by the sunPlatAttributeChangeOID trap. This is the
new value of the object identified by sunPlatNotificationChangedOID.

Environmental and Status Alarm Traps
The agent sends traps to report potential environmental problems and other
warning or error conditions. The definition of an environmental, or other, condition
depends on the component, but examples include the speed of a fan dropping below
a pre-determined threshold and the temperature of a component rising above a
threshold.

Sensors, such as numeric sensors, have multiple thresholds defined to reflect
warning, critical, and failure conditions. If a sensor value crosses multiple thresholds
when sampled, traps are sent for all thresholds that have been crossed. Similarly,
when the reading provided by the sensor returns to a value within an acceptable
range, traps are sent to indicate that the warning or error condition has cleared.

The traps used by the agent are:

■ sunPlatCommunicationsAlarm
■ sunPlatEnvironmentalAlarm
■ sunPlatEquipmentAlarm
■ sunPlatProcessingErrorAlarm

78 Sun SNMP Management Agent Administration Guide for Supported Servers • December 2008

The trap used depends on the nature of the problem as defined by the generic
network information model (ITU-T Recommendation M.3100). The attributes
supplied by the traps are:

Note – The sunPlatNotification prefix has been omitted from the following
attribute names for clarity.

■ EventId

This attribute is set as described in “Standard Trap Properties” on page 72.

■ Time

This attribute is set as described in “Standard Trap Properties” on page 72.

■ Object

This attribute is set as described in “Standard Trap Properties” on page 72.

■ CorrelatedNotifications

This attribute is assigned an empty string when an alarm is first raised. When the
alarm condition is cleared, the value is the string representation of the
sunPlatNotificationEventId value that was sent in the trap when the alarm
condition was first raised.

■ AdditionalInfo

This attribute is set as described in “Standard Trap Properties” on page 72.

■ AdditionalText

This attribute is set as described in “Standard Trap Properties” on page 72.

■ PerceivedSeverity

This attribute is set as described in “Standard Trap Properties” on page 72.

■ ProbableCause

This attribute is set as described in “Standard Trap Properties” on page 72.

■ SpecificProblem

This attribute is set as described in “Standard Trap Properties” on page 72.

■ RepairAction

This attribute is set as described in “Standard Trap Properties” on page 72.

79

Glossary

This glossary contains definitions of terminology, acronyms, and abbreviations for
the Sun SNMP Management Agent for supported servers.

A
ACL access control list

ASCII American Standard Code for Information Interchange, a code for representing
alphanumeric information

ASN.1 Abstract Syntax Notation One is a language that defines the way data is sent
across dissimilar communication systems and is used to define the MIB.

B
BITS Syntax Uses individual bits to describe various features that can be present and where

more than one feature can be present at any time. If X is bit 1 and Y is bit 3,
X+Y would have a value of 0xA.

C
CIM common information model

<CR> carriage return

80 Sun SNMP Management Agent Administration Guide for Supported Servers • December 2008

D
DAQ Data Acquisition is a process of collecting data from a monitored server

DMTF Distributed Management Task Force

E
ENTITY-MIB Describes physical and logical entities

F
FRU field-replaceable unit

I
IP Internet Protocol

ITU-T Internet Telecommunication Union Standardization Sector

L
<LF> line feed

M
MASF Management Agent for Sun Fire

Glossary 81

MIB Management Information Base

N
NAC name Network Access Control name, a formal, slash-delimited path, in ASCII,

which describes the entity’s position in the entity-tree

NIM network information model

NMS network management station

O
OID object identifier

OS operating system

P
PCI Peripheral Component Interconnect bus

PCI-EM PCI Express Module

PCP Platform Channel Protocol, library framework that allows communication
between the host OS and the system’s service processor

PDU protocol data unit, or packet

PICL Platform Information and Control Library

RFC Request for Comments

S
SMA SNMP Management Agent

82 Sun SNMP Management Agent Administration Guide for Supported Servers • December 2008

SMI Structure of Management Information

SNMP Simple Network Management Protocol

SUN-PLATFORM-
MIB Extends the ENTITY-MIB to provide additional information about hardware

components

T
TMN Telecommunications Management Network

U
UDP User Diagram Protocol

V
VACM view-based access control model

83

Index

A
access, 16
Access Control List. See ACL
access rights, 38
ACL, 39
addressable objects, 38
agentgroup, 21
agentuser, 21
Alarm Table extension, 51
alarms, 42
authtrapenable, 22

B
bay, 59
Binary Sensor Table extension, 50

C
Circuit Pack Table extension, 50
class definitions, 55
com2sec, 15
comment line, 11
Common Information Model, 1
community strings, 39
configuration

access control, 14
general, 20, 21
inform destinations, 13
port number, 12
SNMPv3, 19
system information, 20
trap destinations, 13

connector, 59
createuser, 19

D
Discrete Sensor Table extension, 51
drawer, 59

E
engineID, 19
entConfigChange, 49
ENTITY-MIB, 1, 38
entPhysicalClass, 47, 48
entPhysicalContainedIn, 47
entPhysicalContainsTable, 48
entPhysicalIndex, 47
entPhysicalTable, 47
Equipment Holder Table extension, 50
Equipment Table extension, 50
events, 42

F
fan speeds, 36
Fan Table extension, 51

G
group, 16

H
hardware resource hierarchy, 57
hardware resources, 41

84 Sun SNMP Management Agent Administration Guide for Supported Servers • December 2008

hardware type, 57

I
INDEX clause, 38
installation

prerequisites, 6
installing

agent software, 6
instance specifier, 38
internet standards, 35

L
LEDs, 64

M
managed objects, 41, 42
management interface, 41
MIB, 36

tables, 37

N
network management station. See NMS
network protocol, 36
NMS, 36
notifications, 42
numeric sensor reading, 67
Numeric Sensor Table extension, 50

O
object identifier. See OID
OID, 37

P
physical and logical groups, 45
Physical Entity superclass, 56
Physical Entity Table, 46, 47, 50
Physical Mapping Table, 46
Physical Table extension, 50
pluggable removable unit, 59
ports, 8, 11

setting number, 12
Power Supply Table extension, 51

R
rack, 59

relationships, 41
replaceable hardware resource, 59
resource hierarchy, 41
rocommunity, 14
rouser, 15
routing tables, 36
rwcommunity, 14
rwuser, 15

S
Sensor Table extension, 50
sensors

binary, 32, 66
discrete, 70
numeric, 33, 67

setting
port number, 12
trap destinations, 13

shelf, 59
SNMP

traps, 36
SNMP agent

installing, 6
updating, 22

SNMPv3
access, 11
configuration, 19

software
installing, 6
packages, 4
uninstalling, 29

software alarms, 64
state, 55
sunPlat classes, 55
sunPlatAlarm class, 64
sunPlatBattery class, 63
sunPlatBinarySensor class, 66
sunPlatCircuitPack class, 59
sunPlatDiscreteSensor class, 70
sunPlatEquipment class, 58
sunPlatEquipmentHolder class, 61
sunPlatFan class, 65
SUN-PLATFORM-MIB, 38, 45, 49
sunPlatNumericSensor class, 67
sunPlatPowerSupply class, 62

Index 85

sunPlatSensor superclass, 65
syscontact, 20
syslocation, 20
sysname, 20
sysservices, 20
system information settings, 20

T
table

definition, 38
Physical Entity, 47
Physical Mapping, 48

Table Extensions, 50
tables, 36
trap destinations

setting, 13
trap2sink, 13
trapcommunity, 13
traps, 8, 11

alarm status, 77
environmental, 77
object creation, 75
object deletion, 75
property change, 76
standard properties, 72
types, 74

trapsink, 13
troubleshooting

access permissions, 27
agent access, 26
network ports, 26
traps, 27

V
VACM, 14

default model, 18
view, 17
view-based access control. See VACM

86 Sun SNMP Management Agent Administration Guide for Supported Servers • December 2008

