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Abstract. In this article we describe an extension of Java Archives that allows

to keep data encrypted for multiple recipients. Encrypted data is accessible only

by selected access groups. Java archives may be used as containers of mobile

agents, which allows agents to keep confidential data unaccessible while resid-

ing on untrusted hosts. However, additional protective measures are required in

order to prevent Cut & Paste attacks on mobile agents by malicious hosts. One

such mechanism is described. The usefulness of the concepts is illustrated by

an example application for user profile management in an electronic commerce

setting.
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1 Motivation

Mobile agents [22] push the flexibility of distributed systems to their limits since

not only computations are distributed dynamically, the code that performs them

is also distributed. A number of mobile agent systems are in existence at present;

basic information on about 60 such systems was collected1 in the run-up to the

ASA/MA’99 Conference that took place at the beginning of October in Palm

Springs, FL, USA.

Adequate security has been identified numerous times by different researches as

a top criterion for the acceptance of mobile agent technology. Despite advances

in conceptual mobile agent security issues [19, 20], few agent systems actually

seem to offer security mechanisms beyond transport layer security. In mobile

agent systems,

1 See URL <http://www.informatik.uni-stuttgart.de/ ipvr/ vs/ projekte/ mole/ mal/ mal.html >



1. agents must be protected against malicious hosts,

2. hosts must be protected against malicious agents,

3. agents must be protected against other agents,

4. both agents and hosts must be protected against the rest of the world.

The problem of malicious hosts is generally agreed to be the most challenging

one of those noted above. A number of protection schemes have been devised

to protect certain aspects of mobile agents against malicious hosts, yet most

of them are very restricted or fail to be applicable in a general setting. In this

article we describe another mechanism falling into the category “restricted but

applicable”.

Our philosophy is that good servers should help good agents to protect them-

selves against bad servers. In particular, mobile agent servers should offer some

transparent security services to agents. This also has the advantage that bad

servers can not make agents “forget” to take care of their security on their sub-

sequent hops.

Once a mobile agent leaves the trusted haven of its owner’s computer and hops

off to another host, it is more or less on its own (unless it co-operates with other

agents in protecting mutual security objectives [12]) and at the mercy of its

hosting server. Even though an agent may compute certain functions in privacy

while being on an untrusted host [16], the general rule holds: If data needs to be

confidential then it must be encrypted and the encryption key must be unavail-

able even to the agent itself. Decryption, and hence disclosure of the encryption

key, may be delayed until the very last moment [10] but ultimately the host may

learn it when the data is being used.

However, if data of an agent need only be accessed on particular hosts then it

may be encrypted in such a way that it is unavailable to other hosts when the

agent passes by them. Contemporary agent systems occasionally advertise en-

cryption of agents as a security feature but in general this means encryption of

agents that are in transit between host systems (for instance using SSL). While

this is the state-of-the-art protection mechanism against network-based eaves-

droppers this does not prevent individual hosts from spying on agents at all. We

are aware of only one mobile agent system which supports partial encryption of

agent data for particular recipient servers. This agent system is called Ajanta [7,

8].

Ajanta provides a number of mechanisms which are comparable to the ones we

describe in this article. Agents can have a read-only state which is protected by

means of digital signatures. A targeted state is used to reveal parts of the agent’s



state to selected recipients. However, Ajanta appears to be vulnerable to cut &

paste attacks on the targeted state. This type of attack is described in Section 3.

In this article, we describe an addition to the Java Archive (JAR) Format that

supports transparent selective encryption of archive contents for multiple recip-

ients (Section 2). In Section 3, we describe the use of such JARs as containers

for mobile agents (initial work on this subject is described in [13]), and show

how cut & paste attacks on encrypted contents can be prevented.

2 Java Archive Extensions

The Java Archive (JAR) Format [17] devised by Sun Microsystems builds on the

popular ZIP archive format. It supports multiple signatures and multiple signers

on subsets of a JAR’s contents. Multiple signatures are computed and verified

efficiently through a two-stage process that avoids re-hashing of JAR contents

for each signature. JARs are frequently used to distribute Java class packages,

Applets and Java Beans. The original JAR Format devised by Sun does not pro-

vide mechanisms for encrypting parts of the archive; only digital signatures are

covered. In this section we describe an extension to the Java Archive Structure

that allows to keep partial archive data encrypted for multiple recipients.

The extension consists of an additional meta–folder with the name SEAL-INF.

This folder stores the additional files required for:

– meta-information for the management of encryption and decryption (one

file with the name INSTALL.MF).

– encrypted archives, identified by the extension EAR.

– data structures containing the encrypted data encrypted keys, identified by

the extension P7.

The encryption mechanism used for encrypting EARs is a hybrid one. An en-

cryption key is chosen randomly for a suitable symmetric bulk encryption cipher

such as DESede/CBC/PKCS5Padding [4, 5, 15]. This key is used to encrypt

the compressed plain text. For each recipient, this bulk encryption key (BEK)

is encrypted in the recipient’s public key using an asymmetric cipher such as

RSA [11]. This process is also called sealing, hence the name SEAL-INF for

the meta-information folder. The sealing information and EARs are not located

in the META-INF folder such that this information may itself be signed through

the ordinary signing process defined in the JAR format. This is crucial for the

application of Java Archives as containers of mobile agents as described in Sec-

tion 3.



We chose PKCS#7 [14] as the standard for representing the encrypted BEK and

recipient information. This blends well with the Java Archive Format, which

mandates the use of PKCS#7 for DSA and MD5/RSA signatures. In choosing

PKCS#7, we implicitly adopted X.509 [6] as the certificate format, which is the

de-facto standard for the representation of certificates in the World Wide Web.

On creating a JAR, the user defines access groups, and assigns a name to each

group. Each access group G with name nameG consists of a set of valid re-

cipients r1, . . . , rn and a randomly generated symmetric BEK kG. Recipients

are represented by their valid public key certificates. For each access group G,

a PKCS#7 EnvelopedData structure is created, wrapped into a PKCS#7 Con-

tentInfo, and stored in folder SEAL-INF under the name nameG.P7. This file

contains a RecipientInfo for each intended recipient, holding kG encrypted in

the recipient’s public key.

The user then may assign folders in the JAR to access groups. Each folder may

be assigned to at most one such group. For each folder V that is assigned to

an access group G, a corresponding entry is stored in the INSTALL.MF file,

which is stored in the SEAL-INF folder of the JAR. This file is similar to MAN-

IFEST.MF files in that it contains sections of name/value pairs formatted like

header fields in RFC822 [2] messages. Each section is separated from its suc-

cessor by an empty line. Each section contains the entries described below, quo-

tation marks denote literal strings:

Name Value

“Name” V

“EAR” nameV

“Group” nameG

The unique EAR name nameV is generated by the sealing software. The en-

cryption process takes each folder V that is assigned to an access group G, com-

presses its contents recursively into a ZIP archive, and encrypts it with kG. The

resulting file is stored in the SEAL-INF folder under the name nameV .EAR.

The plain text folder V is then deleted.

The decryption process first tries to recover as many bulk encryption keys as

possible by verifying the RecipientInfos in the P7 files against the public key

certificates corresponding to the available private decryption keys. Each Re-

cipientInfo contains the unique issuer name and serial number of the certifi-

cate [6] that was used to create that entry. This establishes the groups to which

the processing entity belongs. For each folder that is assigned to such groups,

the corresponding EAR is decrypted with the recovered BEK, and its contents

are decompressed to folder V .



META-INF/ MANIFEST.MF

alias.SF

alias.(DSA|RSA|PGP)

SEAL-INF/ INSTALL.MF

nameV .EAR

nameG.P7

static/ agent.properties

mutable/ instance.ser

classes

Table 1. The extended structure of a JAR used as a container for mobile agents

3 Encrypted JARs and Mobile Agents

A number of agent systems represent agents simply as a stream of serialised

objects that encapsulate virtually all the information in the agent, including any

data the agent may have collected on previous hops. Classes are either down-

loaded on demand or the serialised stream is annotated with the byte code. Of-

ten, RMI is used as means of transporting the agent from one hop to the next.

While this bears advantages such as simplicity and elegance, it puts strains on

security mechanisms. Since data and object state is cluttered throughout the se-

rialised stream and many alternative orderings exist for a serialised object graph,

it is hard to apply e.g. digital signatures to portions of an agent’s data transpar-

ently for an agent.

Moreover, it is complicated to infer any information from the agent’s representa-

tion before the agent is actually deserialised. This is unfortunate because during

deserialisation the agent’s classes are installed and the agent may seize control

over the deserialisation thread by implementing the readObject and writeOb-

ject methods described in the documentation of class ObjectInputStream.

On the other hand, the JAR Format already offers well-defined processes for

the signing and signature verification of archive contents. An agent’s JAR may

be loaded in its entirety and verified and/or processed in a number of ways

transparent to the agent even before the agent is run. The basic layout that we

use for such JARs is shown in Table 1. Once an agent is admitted to the system,

its JAR is decompressed and installed in a file system folder that is reserved for

that particular agent. The location of this folder is passed to the mobile agent.

The Agent is granted access to this folder and can use it as storage space for data

that it acquires. We encourage agent programmers to use this feature because

this reduces the amount of data that is occupied by agents in the memory of the



server’s VM. Moreover, it is persistent storage that is not lost in case of a server

crash. On migration, the agent’s folder is compressed into a JAR again.

However, the mechanisms described in Section 2 do not yet suffice to assure the

protection of the encrypted data. Malicious hosts and other attackers that get a

copy of the agent JAR may launch a cut & paste attack. The following example

illustrates the attack:

1. Alice prepares a search agent. The agent collects stock quotes from Bob’s

server and the server of Mallet, but Alice does not want Mallet to know

which quotes her agent collected from Bob. So she creates an access group

G with Bob as its sole recipient and assigns the folder secret to this group.

The agent is programmed to store the quotes in that folder if it is at Bob’s

server.

2. Alice sends her agent to Bob. Bob decrypts and installs the folder secret

because he is a legal recipient. The agent collects the stock quotes and sets

its next hop to the server of Mallet. Bob re-encrypts the folder and sends the

agent to Mallet.

3. Mallet copies the INSTALL.MF, nameG.P7 and nameV .EAR files from

the agent to an agent of its own and sends it to Bob.

4. Bob decrypts and installs the folder secret in Mallet’s agent because he is

a valid recipient. The agent then copies the plain text data to another folder

and sets its next hop to Mallet. Bob re-encrypts folder secret and sends the

agent back to Mallet.

5. Mallet reads the plain text returned by his agent.

The attack is successful because the encrypted archives are not linked to the

agent instance and Alice. Signing the encrypted archive is of no help since the

signature may simply be stripped away by Mallet. One way to forge such a link

is to request a non-interactive proof of knowledge of kG from the entity that

claims to be the rightful owner of the agent. In addition to this, the agent must

have a unique static kernel that can be signed by its owner as proof of ownership

and authorisation. The information in the kernel must be sufficient in order to

assure that the agent can be bootstrapped securely, e. g. by starting only a class

that the agent’s owner trusts to keep confidential information in the appropriate

folders. Below, we describe an approach to create a safe link.

Let certA be the certificate of the signing key of Alice. Let MAC be a suit-

able Message Authentication Code (see [9], Section 9.5). Alice adds one addi-

tional section with the reserved name “GROUPS” to the INSTALL.MF file of

the agent. For each defined access group Gi she puts an entry into this section

as shown below; quotation marks denote literal strings:



Name Value

“Name” “GROUPS”

nameG1
MAC(kG1

, certA)
nameG2

MAC(kG2
, certA)

. . .

Alice signs the static parts of her agent including the agent properties, the file

INSTALL.MF, and the agent’s classes with her secret signing key. The proper-

ties contain the agent’s unique name, the name of its main class, and any other

properties Alice wants to define in a way that cannot be tampered with without

breaking the signature and hence Alice’s assertion of ownership of her agent.

Bob verifies the validity of access groups in Alice’s agent as described in Algo-

rithm 1.

Algorithm 1 The algorithm for verifying access group validity.

1: { Let certB be the certificate of Bob’s decryption key. }
2: { Let certA be the certificate of Alice’s signing key. }
3: for all nameG do

4: Bob loads the EnvelopedData structure SEAL-INF/nameG.P7;

5: if it contains a RecipientInfo matching certB then

6: Bob recovers kG with the private key corresponding to certB ;

7: Bob computes MAC(kG, certA);

8: Bob compares the result with the value of attribute nameG in section GROUPS;

9: if both are equal then

10: accept G;

11: else

12: reject G;

13: end if

14: end if

15: end for

Subsequent to this test, Bob iterates through the sections in file INSTALL.MF;

for each folder V that is assigned to an accepted access group G Bob decrypts

the appropriate nameV .EAR and installs it in folder V of the agent.

4 Security

The technical security of the encrypted data in the agent is based on the secu-

rity of the weakest link in the chain of cryptographic primitives consisting of

a symmetric cipher, the signature scheme, the weakest asymmetric encryption

used within a RecipientInfo, and the MAC algorithm.



The MAC is crucial for the prevention of cut & paste attacks. In order to launch

a successful attack, Mallet has the following choices. He may:

– Convince Bob that he produced the EAR by forging a MAC with his own

certificate as the input and without knowing kG (otherwise Mallet may sim-

ply decrypt the cipher text).

– Impersonate Alice, which requires forging Alice’s signature on the kernel

of an agent of his own.

– Modify the state of Alice’s agent such that it leaks the plain text data. Copy-

ing the P7 and EAR files to a different agent of Alice won’t work because

the INSTALL.MF file is covered by Alice’s signature.

Even if Mallet convinces a certificate authority Bob trusts to issue a certificate

with Alice’s identity and Mallet’s public key, this will be detected by Bob, be-

cause the MAC is computed by Alice on her original certificate, which includes

her public key and which is used to verify her signature on her agent’s kernel.

Mallet cannot substitute a class of his own as the principal agent class because

the class and its name is covered by Alice’s signature. However, he may modify

the serialised instances of Alice’s agent such that a Trojan horse class is called

by it, which leaks the plain text data. Therefore, it is of utmost importance that

access to the agent’s folder is granted only to classes that are authorised by

Alice, using the Java 2 AccessController mechanisms and the digests stored in

the Manifest file of the JAR.

5 Transparent Implementation

We integrated a reference implementation of the mechanisms described in Sec-

tions 2 and 3 into our experimental mobile agent server SeMoA. Transport of

agents in SeMoA is handled by two principal services: the so-called ingate and

outgate. Both make use of other services that may be registered in the server

dynamically and at boot time. Services are grouped according to functionality

and level of confidentiality on a number of configurable service levels. On such

level is the transport level on which services are registered that have to do with

transporting agents. A second level is the security level on which services are

registered that provide security services. The ingate and outgate scan the secu-

rity level for particular classes of services implementing filters for incoming and

outgoing agents. They arrange such filters in a pipeline that must be passed by

each agent before it is admitted to the server and before it is sent to its next hop.

This is illustrated in Figure 1.



InGate OutGate raw smtp

Encrypt.6 Sign.7Veriy.1 Decrypt.2

KeyMaster

transport

security

god

Fig. 1. An excerpt of the service levels in the experimental SeMoA server.

We implemented four security filters, two for incoming agents and two for out-

going agents:

Verify filter: This filter expects and verifies two signatures per agent. The first

signature covers the static part of the agent, the signer is assumed to be its

owner. The second signature covers the entire agent, the signer is assumed

to be the last sender of the agent. The valid certificate chain of the signer’s

certificate must end in a trusted CA certificate.

Decrypt filter: This filter implements the decryption mechanisms described in

Sections 2 and 3, including the verification of the access groups as set forth

in Algorithm 1.

Encrypt filter: This filter re-encrypts the agent’s contents according to the

scheme described in Sections 2 and 3, and deletes the plain text folders.

Sign filter: This filter binds the new execution state of the agent to its kernel

by signing the complete agent with the server’s secret signing key.

Each server has two key pairs, one for signing and another one for encryption

and decryption. The agent passes the incoming filter pipeline before it is started.

On execution of the agent, the accessible data is already installed in the agent’s

folder. Apart from setting up the access groups and assigning the appropriate

folders, the agent creator is not bothered with the encryption and decryption

anymore. This is handled transparently by the server on behalf of the agent.



6 Application Example: Profile Protection

Privacy protection is an important feature for agent applications [1]. Mobile

agents which carry personal information are able to carry out personalised tasks

on their owner’s behalf. The richer the profile information, the more person-

alised the agent’s response. Securing the profile data is thus a means to insure

privacy protection.

Privacy protection is guaranteed in the European Union by national laws, and

national data protection organisations. All national regulations implement the

same European privacy protection principles, as expressed in EU directive

95/46 [3], which is a legally binding document since October 1998. The direc-

tive proposes a formal framework for privacy protection, which is not available

for instance in the USA. The directive considers personal data as information on

which the data subject has a number of rights such as right of access to the data,

opt out opportunity and protection on international data flow. A detailed list is

given in the directive.

For instance if a netizen (the data subject) provides his name and address (per-

sonal data) to the web site of a software vendor (the data controller), he au-

tomatically reserves said rights on this data, and the data controller implicitly

agrees to adhere to these rights. In addition, the data controller has a number of

obligations. Only legitimate data may be collected and the collected data must

be adequate to the purpose for which it is collected.

Apart from legal issues involved in processing personal data, technical means

must be provided to facilitate the management and control of such data in par-

ticular for the data subject. The W3C put forward a proposal named Platform

for Privacy Preferences [21] (P3P) that aims at providing a protocol for reach-

ing agreements between a Web user and a Web site on the exchange and use of

personal data. P3P is reaching its final state in early 2000. Prototypes of P3P

compliant servers and client applications are available, and are now ready for a

widespread dissemination of the standard.

P3P consists of a negotiation and data exchange phase. The protocol is designed

for a client server system. At first sight, mobile agents may not profit from a

standard such as P3P since negotiating personal information while being dis-

connected from a trusted computing base is extremely risky in the face of a

potentially malicious host.

However mobile agents can benefit from the on-line P3P negotiation phase. The

agreement reached by the two parties, the data subject (netizen) and the data

controller (retailer), is valid on a number of profile elements over a given period



of time. An agreement id is stored on the netizen’s side with the correspond-

ing time stamp. Agreements with regular retailers may last up to six months or

one year. Mobile agents can then carry the relevant agreement id and the corre-

sponding profile elements using selective encryption as presented above. Only

the authorised retailers will thus be allowed access to the information.

We are implementing this scheme for personalised product brokering mobile

agents. Upon visiting the retailer’s sites, answers to mobile agents are person-

alised, taking into account both the specific request and profile information.

7 Conclusions

In this article, we presented an extension of the JAR format that allows to en-

crypt contents in a JAR for multiple recipients, and its application to mobile

agents. Using extended JARs as containers for mobile agents requires addi-

tional security precautions in order to detect and prevent cut & paste attacks

on the encrypted contents. We presented an approach to solving this problem.

In conjunction with the signing scheme we devised, we are now able to support

a number of access rights to portions of an agent. Folders in the agent’s structure

may have one of the following access rights:

Read–only: This data can be read on each host but cannot be modified without

breaking the agent’s verifiable integrity.

Read/write committed: This data can be read and modified on each host but

hosts have to commit to the new state. The changes can be (in principle) be

checked and linked to that host on the agent’s next hop.

Group read: This data can be read only on a predetermined set of authorised

hosts. Modification of the data breaks the agent’s verifiable integrity.

Group read/write: This data can be read and modified only on a predeter-

mined set of authorised hosts.

Groups may be defined flexibly. The selective encryption scheme that we pre-

sented is highly useful to protect data a mobile agent gathers. Hosts not be-

longing to the access group of a given folder cannot eavesdrop on data in such

folders. We realised a reference implementation of the encryption, decryption,

signing, and verification steps including cut & paste detection and prevention;

these operations are transparent for mobile agents. Hence, agents can remain

completely unaware of the security operations performed on them as these op-

erations are part of the agent server’s security services.



For illustration, we described an application scenario that makes use of the se-

lective encryption scheme for protecting personal information within mobile

agents such that this information is made available only to the intended recipi-

ents.
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