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Abstract 
 

In concrete applications of probability, statistical investigation gives us knowledge of some 
probabilities, but we generally want to know many others that are not directly revealed by 
our data. For instance, we may know prob(P/Q) (the probability of P given Q) and 
prob(P/R), but what we really want is prob(P/Q&R), and we may not have the data 
required to assess that directly. The probability calculus is of no help here. Given prob(P/Q) 
and prob(P/R), it is consistent with the probability calculus for prob(P/Q&R) to have any 
value between 0 and 1. Is there any way to make a reasonable estimate of the value of 
prob(P/Q&R)? 
 A related problem occurs when probability practitioners adopt undefended assumptions 
of statistical independence simply on the basis of not seeing any connection between two 
propositions. This is common practice, but its justification has eluded probability theorists, 
and researchers are typically apologetic about making such assumptions. Is there any way to 
defend the practice? 
 This paper shows that on a certain conception of probability — nomic probability — 
there are principles of “probable probabilities” that license inferences of the above sort. 
These are principles telling us that although certain inferences from probabilities to 
probabilities are not deductively valid, nevertheless the second-order probability of their 
yielding correct results is 1. This makes it defeasibly reasonable to make the inferences. Thus 
I argue that it is defeasibly reasonable to assume statistical independence when we have no 
information to the contrary. And I show that there is a function Y(r,s:a) such that if 
prob(P/Q) = r, prob(P/R) = s, and prob(P/U) = a (where U is our background knowledge) 
then it is defeasibly reasonable to expect that prob(P/Q&R) = Y(r,s:a). Numerous other 
defeasible inferences are licensed by similar principles of probable probabilities. This has the 
potential to greatly enhance the usefulness of probabilities in practical application. 

1. The Problem of Sparse Probability Knowledge 

 The uninitiated often suppose that if we know a few basic probabilities, we can compute the 
values of many others just by applying the probability calculus. Thus it might be supposed that 
familiar sorts of statistical inference provide us with our basic knowledge of probabilities, and then 
appeal to the probability calculus enables us to compute other previously unknown probabilities. 
The picture is of a kind of foundations theory of the epistemology of probability, with the 
probability calculus providing the inference engine that enables us to get beyond whatever 
probabilities are discovered by direct statistical investigation. 
 Regrettably, this simple image of the epistemology of probability cannot be correct. The 
difficulty is that the probability calculus is not nearly so powerful as the uninitiated suppose. If we 
know the probabilities of some basic propositions P, Q, R, S, … , it is rare that we will be able to 
compute, just by appeal to the probability calculus, a unique value for the probability of some 
logical compound like ((P & Q) ! (R & S)). To illustrate, suppose we know that PROB(P) = .7 and 
PROB(Q) = .6. What can we conclude about PROB(P & Q)? All the probability calculus enables us to 
infer is that .3 ! PROB(P & Q) ! .6. That does not tell us much. Similarly, all we can conclude about 
PROB(P ! Q) is that .7 ! PROB(P ! Q) ! 1.0. In general, the probability calculus imposes constraints on 
the probabilities of logical compounds, but it falls far short of enabling us to compute unique 
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values. I will call this the problem of sparse probability knowledge. 
 I will argue that what we need are principles for reasoning about probabilities defeasibly. These 
will enable us to form reasonable expectations about the values of probabilities we cannot compute 
deductively, but as with any defeasible reasoning, there is always the logical possibility that new 
information will force us to change our minds and give up the initially reasonable expectations. For 
example, in applying probabilities to concrete problems, probability practitioners commonly adopt 
undefended assumptions of statistical independence. The independence assumption is a defeasible 
assumption, because obviously we can discover that conditions we thought were independent are 
unexpectedly correlated. The probability calculus can give us only necessary truths about 
probabilities, so the justification of such a defeasible assumption must have some other source. 
 I will argue that a defeasible assumption of statistical independence is just the tip of the iceberg. 
There are multitudes of defeasible inferences that we can make about probabilities, and a very rich 
mathematical theory grounding them. It is these defeasible inferences that enable us to make 
practical use of probabilities without being able to deduce everything we need via the probability 
calculus. I will argue that, on a certain conception of probability, there are mathematically derivable 
second-order probabilities to the effect that various inferences about first-order probabilities, 
although not deductively valid, will nonetheless produce correct conclusions with probability 1, and 
this makes it reasonable to accept these inferences defeasibly. The second-order principles are 
principles of probable probabilities. 

2. Two Kinds of Probability 

 My solution to the problem of sparse probability knowledge requires that we start with 
objective probabilities. What I will call generic probabilities are general probabilities, relating 
properties or relations. The generic probability of an A being a B is not about any particular A, but 
rather about the property of being an A. In this respect, its logical form is the same as that of relative 
frequencies. I write generic probabilities using lower case “prob” and free variables: prob(Bx/Ax). 
For example, we can talk about the probability of an adult male of Slavic descent being lactose 
intolerant. This is not about any particular person — it expresses a relationship between the 
property of being an adult male of Slavic descent and the property of being lactose intolerant. Most 
forms of statistical inference or statistical induction are most naturally viewed as giving us 
information about generic probabilities. On the other hand, for many purposes we are more 
interested in probabilities that are about particular persons, or more generally, about specific 
matters of fact. For example, in deciding how to treat Herman, an adult male of Slavic descent, his 
doctor may want to know the probability that Herman is lactose intolerant. This illustrates the need 
for a kind of probability that attaches to propositions rather than relating properties and relations. I 
will refer to these probabilities as singular probabilities. 
 Most objective approaches to probability tie probabilities to relative frequencies in some 
essential way, and the resulting probabilities have the same logical form as the relative frequencies. 
That is, they are generic probabilities. The simplest theories identify generic probabilities with 
relative frequencies (Russell 1948; Braithwaite 1953; Kyburg 1961, 1974; Sklar 1970, 1973).2 The 
simplest objection to such “finite frequency theories” is that we often make probability judgments 
that diverge from relative frequencies. For example, we can talk about a coin being fair (and so the 
generic probability of a flip landing heads is 0.5) even when it is flipped only once and then 
destroyed (in which case the relative frequency is either 1 or 0). For understanding such generic 
probabilities, we need a notion of probability that talks about possible instances of properties as well 
as actual instances. Theories of this sort are sometimes called “hypothetical frequency theories”. C. 
S. Peirce was perhaps the first to make a suggestion of this sort. Similarly, the statistician R. A. 
Fisher, regarded by many as “the father of modern statistics”, identified probabilities with ratios in 
a “hypothetical infinite population, of which the actual data is regarded as constituting a random 
sample” (1922, p. 311). Karl Popper (1956, 1957, and 1959) endorsed a theory along these lines and 
called the resulting probabilities propensities. Henry Kyburg (1974a) was the first to construct a 
precise version of this theory (although he did not endorse the theory), and it is to him that we owe 
the name “hypothetical frequency theories”. Kyburg (1974a) also insisted that von Mises should be 
considered a hypothetical frequentist. There are obvious difficulties for spelling out the details of a 
hypothetical frequency theory. More recent attempts to formulate precise versions of what might 

                                                
2 William Kneale (1949) traces the frequency theory to R. L. Ellis, writing in the 1840’s, and John Venn (1888) and C. S. 
Peirce in the 1880’s and 1890’s. 
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be regarded as hypothetical frequency theories are van Fraassen (1981), Bacchus (1990), Halpern 
(1990), Pollock (1990), Bacchus et al (1996). I will take my jumping-off point to be the theory of 
Pollock (1990), which I will sketch briefly in section three. 
 It has always been acknowledged that for practical decision-making we need singular 
probabilities rather than generic probabilities. So theories that take generic probabilities as basic 
need a way of deriving singular probabilities from them. Theories of how to do this are theories of 
direct inference. Theories of objective generic probability propose that statistical inference gives us 
knowledge of generic probabilities, and then direct inference gives us knowledge of singular 
probabilities. Reichenbach (1949) pioneered the theory of direct inference. The basic idea is that if 
we want to know the singular probability PROB(Fa), we look for the narrowest reference class (or 
reference property) G such that we know the generic probability prob(Fx/Gx) and we know Ga, 
and then we identify PROB(Fa) with prob(Fx/Gx). For example, actuarial reasoning aimed at setting 
insurance rates proceeds in roughly this fashion. Kyburg (1974) was the first to attempt to provide 
firm logical foundations for direct inference. Pollock (1990) took that as its starting point and 
constructed a modified theory with a more epistemological orientation. The present paper builds 
upon some of the basic ideas of the latter. 
 What I will argue in this paper is that new mathematical results, coupled with ideas from the 
theory of nomic probability (Pollock 1990), provide the justification for a wide range of new 
principles supporting defeasible inferences about the expectable values of unknown probabilities. 
These principles include familiar-looking principles of statistical independence and direct inference, 
but they include many new principles as well. I believe that this broad collection of new defeasible 
inference schemes provides the solution to the problem of sparse probability knowledge and 
explains how probabilities can be truly useful even when we are ignorant about most of them. 

3. Nomic Probability 

 Pollock (1990) developed a possible worlds semantics for objective generic probabilities,3 and I 
will take that as my starting point for the present theory of probable probabilities. I will just sketch 
the theory here. The proposal was that we can identify the nomic probability prob(Fx/Gx) with the 
proportion of physically possible G’s that are F’s. For this purpose, physically possible G’s cannot be 
identified with possible objects that are G, because the same object can be a G at one possible world 
and fail to be a G at another possible world. Instead, a physically possible G is defined to be an 
ordered pair "w,x# such that w is a physically possible world (one compatible with all of the physical 
laws) and x has the property G at w.  
 For properties F and G, where F and G are the sets of physically possible F’s and G’s 
respectively, let us define the subproperty relation as follows: 

 
F 7 G iff F $ G, i.e., iff it is physically necessary (follows from true physical laws) that (%x)(Fx 

& Gx). 

We can think of the subproperty relation as a kind of nomic entailment relation (holding between 
properties rather than propositions). More generally, F and G can have any number of free 
variables, in which case F 7 G iff the universal closure of (F & G) is physically necessary. 
 Proportion functions are a generalization of measure functions studied in mathematics in 
measure theory. Proportion functions are “relative measure functions”. Given a suitable proportion 
function !, we could stipulate that: 

  probx(Fx/Gx) = !(F,G).4 

However, it is unlikely that we can pick out the right proportion function without appealing to 
prob itself, so the postulate is simply that there is some proportion function related to prob as 
above. This is merely taken to tell us something about the formal properties of prob. Rather than 
axiomatizing prob directly, it turns out to be more convenient to adopt axioms for proportion 

                                                
3 Somewhat similar semantics were proposed by Halpern (1990) and Bacchus et al (1996). 
4  Probabilities relating n-place relations are treated similarly. I will generally just write the one-variable versions of 
various principles, but they generalize to n-variable versions in the obvious way. 
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functions. Pollock (1990) showed that, given the assumptions adopted there, ! and prob are 
interdefinable, so the same empirical considerations that enable us to evaluate prob inductively also 
determine !. 
 It is convenient to be able to write proportions in the same logical form as probabilities, so 
where " and #  are open formulas with free variable x, let !x (" /#) = !({x |" &#},{x |#}) . Note that 

probx and !x  are variable-binding operators, binding the variable x. When there is no danger of 
confusion, I will typically omit the subscript “x”. To simplify expressions, I will often omit the 
variables, writing “prob(F/G)” for “prob(Fx/Gx)” when no confusion will result. 
 I will make three classes of assumptions about the proportion function. Let #X be the cardinality 
of a set X. If Y is finite, I assume: 

Finite Proportions: 

 For finite X, !(A,X) = 
#(A! X)

# X
. 

 
However, for present purposes the proportion function is most useful in talking about proportions 
among infinite sets. The sets F and G will invariably be infinite, if for no other reason than that 
there are infinitely many physically possible worlds in which there are F’s and G’s.  
 My second set of assumptions is that the standard axioms for conditional probabilities hold for 
proportions. 
 Finally, I need four assumptions about proportions that go beyond merely imposing the 
standard axioms for the probability calculus. The four assumptions I will make are: 

Universality: 

 If A $ B, then !(B,A) = 1. 

Finite Set Principle: 

 For any set B, N > 0, and open formula ', 
 !

X
"(X)!/!X # B!&!# X = N( ) =    

   
  
!

x1 ,...,x
N

"({x1 ,..., x
N

})!/!x1 ,..., x
N

 are pairwise distinct!&!x1 ,...,x
N
#B( ) . 

Projection Principle: 

 If 0 ! p,q ! 1 and (%y)(Gy & !x(Fx/ Rxy)([p,q]), then !x,y(Fx/ Rxy & Gy)([p,q]. 

Crossproduct Principle: 

 If C and D are nonempty, ! A " B,C " D( ) = !(A,C) # !(B,D).  

These four principles are all theorems of elementary set theory when the sets in question are finite. 
My assumption is simply that ! continues to have these algebraic properties even when applied to 
infinite sets. I take it that this is a fairly conservative set of assumptions. 
 Pollock (1990) derived the entire epistemological theory of nomic probability from a single 
epistemological principle coupled with a mathematical theory that amounts to a calculus of nomic 
probabilities. The single epistemological principle is the statistical syllogism, which can be formulated 
as follows:  

Statistical Syllogism: 

If F is projectible with respect to G and r > 0.5, then  !Gc & prob(F/G) " r !  is a defeasible 

reason for  !Fc ! , the strength of the reason being a monotonic increasing function of r. 

 I take it that the statistical syllogism is a very intuitive principle, and it is clear that we employ it 
constantly in our everyday reasoning. For example, suppose you read in the newspaper that the 
President is visiting Guatemala, and you believe what you read. What justifies your belief? No one 
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believes that everything printed in the newspaper is true. What you believe is that certain kinds of 
reports published in certain kinds of newspapers tend to be true, and this report is of that kind. It is 
the statistical syllogism that justifies your belief. 
 The projectibility constraint in the statistical syllogism is the familiar projectibility constraint on 
inductive reasoning, first noted by Goodman (1955). One might wonder what it is doing in the 
statistical syllogism. But it was argued in (Pollock 1990), on the strength of what were taken to be 
intuitively compelling examples, that the statistical syllogism must be so constrained. Without a 
projectibility constraint, the statistical syllogism is self-defeating, because for any intuitively correct 
application of the statistical syllogism it is possible to construct a conflicting (but unintuitive) 
application to a contrary conclusion. This is the same problem that Goodman first noted in 
connection with induction. Pollock (1990) then went on to argue that the projectibility constraint on 
induction derives from that on the statistical syllogism. 
 The projectibility constraint is important, but also problematic because no one has a good 
analysis of projectibility. I will not discuss it further here. I will just assume, without argument, that 
the second-order probabilities employed below in the theory of probable probabilities satisfy the 
projectibility constraint, and hence the statistical syllogism can be applied to them. 
 The statistical syllogism is a defeasible inference scheme, so it is subject to defeat. I believe that 
the only principle of defeat required for the statistical syllogism is that of subproperty defeat: 

Subproperty Defeat for the Statistical Syllogism: 

If H is projectible with respect to G, then  !Hc & prob(F/G&H) < prob(F/G) !  is an undercutting 

defeater for the inference by the statistical syllogism from  !Gc & prob(F/G) " r !  to  !Fc ! .5 

In other words, more specific information about c that lowers the probability of its being F 
constitutes a defeater. 

4. Limit Theorems and Probable Probabilities 

 I propose to solve the problem of sparse probability knowledge by justifying a large collection 
of defeasible inference schemes for reasoning about probabilities. The key to doing this lies in 
proving some limit theorems about the algebraic properties of proportions among finite sets, and 
proving a bridge theorem that relates those limit theorems to the algebraic properties of nomic 
probabilities. 

4.1 Probable Proportions Theorem 

 Let us begin with a simple example. Suppose we have a set of 10,000,000 objects. I announce that 
I am going to select a subset, and ask you approximately how many members it will have. Most 
people will protest that there is no way to answer this question. It could have any number of 
members from 0 to 10,000,000. However, if you answer, “Approximately 5,000,000,” you will 
almost certainly be right. This is because, although there are subsets of all sizes from 0 to 10,000,000, 
there are many more subsets whose sizes are approximately 5,000,000 than there are of any other 
size. In fact, 99% of the subsets have cardinalities differing from 5,000,000 by less than .08%. If we let 
“ x!!

"
!y ” mean “the difference between x and y is less than or equal to $”, the general theorem is: 

Finite Indifference Principle:  

 For every %,$ > 0 there is an N such that if U is finite and #U > N then 

  
  
!

X
!(X,U)!"

#
!0.5!/!X $U( ) % 1&'.  

In other words, to any given degree of approximation, the proportion of subsets of U which are 
such that !(X,U) is approximately equal to .5, goes to 1 as the size of U goes to infinity. To see why 

                                                
5 There are two kinds of defeaters. Rebutting defeaters attack the conclusion of an inference, and undercutting defeaters 
attack the inference itself without attacking the conclusion. Here I assume some form of the OSCAR theory of defeasible 
reasoning (Pollock 1995). For a sketch of that theory see Pollock (2006a). 
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this is true, suppose #U = n. If r ! n, the number of r-membered subsets of U is 
  
C(n,r) =

n!

r !(n ! r)!
. It 

is illuminating to plot C(n,r) for variable r and various fixed values of n. See figure 1. This illustrates 

that the sizes of subsets of U will cluster around 
  

n

2
, and they cluster more tightly as n increases. 

C(n,r) becomes “needle-like” in the limit. As we proceed, I will state a number of similar 
combinatorial theorems, and in each case they have similar intuitive explanations. The cardinalities 
of relevant sets are products of terms of the form C(n,r), and their distribution becomes needle-like 
in the limit.  

 

   
 

Figure 1. C(n,r) for n = 100, n = 1000, and n = 10000.  

 
 The Finite Indifference Principle  is our first example of an instance of a general combinatorial 
limit theorem. To state the general theorem, we need the notion of a linear constraint. Linear 
constraints either state the values of certain proportions, e.g., stipulating that !(X,Y) = r, or they 

relate proportions using linear equations. For example, if we know that X = Y)Z, that generates 
the linear constraint 

 !(X,U) = !(Y,U) + !(Z,U) – !(X*Z,U). 

 Our strategy will be to approximate the behavior of constraints applied to infinite domains by 
looking at their behavior in sufficiently large finite domains. Some linear constraints may be 
inconsistent with the probability calculus. We will want to rule those out of consideration, but we 
will need to rule out others as well. The difficulty is that there are sets of constraints that are 
satisfiable in infinite domains but not satisfiable in finite domains. For example, if r is an irrational 
number between 0 and 1, the constraint “!(X,Y) = r” is satisfiable in infinite domains but not in 
finite domains. Let us define: 

 
LC is finitely unbounded iff for every positive integer K there is a positive integer N such that if 

#U = N then #
  

X
1
,...,X

n
|LC!&!X

1
,...,X

n
! U{ }  " K. 

For the purpose of approximating the behaviors of constraints in infinite domains by exploring 
their behavior in finite domains, I will confine my attention to finitely unbounded sets of linear 
constraints. If LC is finitely unbounded, it must be consistent with the probability calculus, but the 
converse is not true. I think that by appealing to limits, it should be possible to generalize the 
following results to all sets of linear constraints that are consistent with the probability calculus, but 
I will not pursue that here. 
 The key theorem we need about finite sets is then: 
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Probable Proportions Theorem:  

Let U,X1,…,Xn be a set of variables ranging over sets, and consider a finitely unbounded finite 
set LC of linear constraints on proportions between Boolean compounds  of those variables. 
Then for any pair of relations P,Q whose variables are a subset of U,X1,…,Xn there is a unique 
real number r in [0,1] such that for every %,$ > 0, there is an N such that if U is finite and 

#
  

X
1
,...,X

n
|LC!&!X

1
,...,X

n
! U{ }  " N then 

 
  
!

X1 ,...,Xn
!(P,Q) !"

#
!r !/!LC!&!X

1
,...,X

n
$ U( ) % 1 & ' .  

Let us refer to this unique r as the limit solution for !(P/Q) given LC. For all of the choices of 
constraints we will consider, finite unboundedness will be obvious, so the limit solution will exist. 
This theorem, which establishes the existence of the limit solution under very general 
circumstances, underlies all of the principles developed in this paper. It is important to realize that it 
is just a combinatorial theorem about finite sets, and as such is a theorem of set theory. It does not 
depend on any of the assumptions we have made about proportions in infinite sets. The 
mathematics is not philosophically questionable. 
 What we will actually want are particular instances of this theorem for particular choices of LC 
and specific values of r. An example is the Finite Indifference Principle. In general, LC generates a 
set of simultaneous equations, and the limit solution r can be determined by solving those 
equations. It turns out that this can be done automatically by a computer algebra program. To my 
surprise, neither Mathematica nor Maple has proven effective in solving these sets of equations, but 
I was able to write a special purpose LISP program that is fairly efficient. It computes the term-
characterizations and solves them for the variable when that is possible. It can also be directed to 
produce a human-readable proof. If the equations constituting the term-characterizations do not 
have analytic solutions, they can still be solved numerically to compute the most probable values of 
the variables in specific cases. This software can be downloaded from http://oscarhome.soc-
sci.arizona.edu/ftp/OSCAR-web-page/CODE/Code for probable probabilities.zip. I will refer to 
this as the probable probabilities software. The proofs of many of the theorems presented in this paper 
were generated using this software. 

4.2 Limit Principle for Proportions 

 The Probable Proportions Theorem and its instances are mathematical theorems about finite 
sets. For example, the Finite Indifference Principles tells us that as N & +, if U is finite but contains 
at least N members, then the proportion of subsets X of a set U which are such that 

  
!(X,U)!"

#
!0.5  

goes to 1. This suggests that the proportion is 1 when U is infinite: 

 If U is infinite then for every $ > 0, 
  
!

X
!(X,U)!"

#
!0.5!/!X $ U( ) = 1.  

Given the rather simple assumptions I made about ! in section three, we can derive such infinitary 
principles from the corresponding finite principles. We can prove: 

Limit Principle for Proportions:  

Consider a finitely unbounded finite set LC of linear constraints on proportions between 
Boolean compounds of a list of variables U,X1,…,Xn. Let r be limit solution for !(P/Q) given LC. 

Then for any infinite set U, for every $ > 0: 

  
  
!

X1 ,...,Xn
!(P,Q) !"

#
!r !/!LC!&!X

1
,...,X

n
$ U( ) = 1 . 

 This is our crucial “bridge theorem” that enables us to move from combinatorial theorems 
about finite sets to principles about proportions in infinite sets. Thus, for example, from the Finite 
Indifference Principle we can derive: 
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Infinitary Indifference Principle:  

 If U is infinite then for every $ > 0, 
  
!

X
!(X,U)!"

#
!0.5!/!X $ U( ) = 1.  

4.4 Probable Probabilities 

 Nomic probabilities are proportions among physically possible objects. I assume that for any 
nomically possible property F (i.e., property consistent with the laws of nature), the set F of 
physically possible F’s will be infinite. Recalling that physically possible F’s are ordered pairs "w,x#, 
this follows from there being infinitely many possible worlds in which there are F’s. Thus the Limit 
Principle for Proportions implies an analogous principle for nomic probabilities: 

Probable Probabilities Theorem:  

Consider a finitely unbounded finite set LC of linear constraints on proportions between 
Boolean compounds of a list of variables U,X1,…,Xn. Let r be limit solution for !(P/Q) given LC. 
Then for any nomically possible property U, for every $ > 0, 

  
   
prob

X1 ,...,Xn
prob(P/Q) !!

"
!r !/!LC!&!X1 ,...,X

n
7!U( ) = 1 . 

 Instances of the Probable Proportions Theorem tell us the values of the limit solutions for sets of 
linear constraints, and hence allow us to derive instances of the consequent of the Probable 
Probabilities Theorem. I will call the latter “probable probabilities principles”. For example, from 
the Finite Indifference Principle we get: 

Probabilistic Indifference Principle:  

For any nomically possible property G and for every $ > 0, 

   
prob

X
prob(X/G)!!

"
!0.5!/!X!7!G( ) = 1.  

4.5 Justifying Defeasible Inferences about Probabilities 

 Next note that we can apply the statistical syllogism to the second-order probability formulated 
in the probabilistic indifference principle. For every $ > 0, this gives us a defeasible reason for 

expecting that if F 7 G, then 
  
prob(F /G)!!

"
!0.5 , and these conclusions jointly entail that prob(F/G) = 

0.5. For any property F, (F&G) 7 G, and prob(F/G) = prob(F&G/G). Thus we are led to a defeasible 
inference scheme: 

Indifference Principle:  

For any properties F and G, if G is nomically possible then it is defeasibly reasonable to assume 
that prob(F/G) = 0.5. 

 The Indifference Principle is my first example of a principle of probable probabilities. We have a 
quadruple of principles that go together: (1) the Finite Indifference Principle , which is a theorem of 
combinatorial mathematics; (2) the Infinitary Indifference Principle, which follows from the finite 
principle given the Limit Principle for Proportions; (3) the Probabilistic Indifference Principle, which 
is a theorem derived from (2); and (4) the Indifference Principle, which is a principle of defeasible 
reasoning that follows from (3) with the help of the statistical syllogism. All of the principles of 
probable probabilities that I will discuss have analogous quadruples of principles associated with 
them. Rather than tediously listing all four principles in each case, I will encapsulate the four 
principles in the simple form: 

Expectable Indifference Principle:  

For any properties F and G, if G is nomically possible then the expectable value of prob(F/G) = 
0.5. 
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So in talking about expectable values, I am talking about this entire quadruple of principles. Our 
general theorem is: 

Principle of Expectable Values 

Consider a finitely unbounded finite set LC of linear constraints on proportions between 
Boolean compounds of a list of variables U,X1,…,Xn. Let r be the limit solution for !(P/Q) given 
LC. Then given LC, the expectable value of prob(P/Q) = r. 

 The Indifference Principle illustrates an important point about nomic probability and principles 
of probable probabilities. The fact that a nomic probability is 1 does not mean that there are no 
counter-instances. In fact, there may be infinitely many counter-instances. Consider the probability 
of a real number being irrational. Plausibly, this probability is 1, because the cardinality of the set of 
irrationals is infinitely greater than the cardinality of the set of rationals. But there are still infinitely 
many rationals. The set of rationals is infinite, but it has measure 0 relative to the set of real 
numbers. 
 A second point is that in classical probability theory (which is about singular probabilities), 
conditional probabilities are defined as ratios of unconditional probabilities: 

  PROB(P/Q) = 
  

PROB(P & Q)

PROB(Q)
. 

However, for generic probabilities, there are no unconditional probabilities, so conditional 
probabilities must be taken as primitive. These are sometimes called “Popper functions”. The first 
people to investigate them were Karl Popper (1938, 1959) and the mathematician Alfred Renyi 
(1955). If conditional probabilities are defined as above, PROB(P/Q) is undefined when PROB(Q) = 0. 
However, for nomic probabilities, prob(F/G&H) can be perfectly well-defined even when 
prob(G/H) = 0. One consequence of this is that, unlike in the standard probability calculus, if 
prob(F/G) = 1, it does not follow that prob(F/G&H) = 1. Specifically, this can fail when prob(H/G) = 
0. Thus, for example, 

  prob(2x is irrational/x is a real number) = 1 

but 

  prob(2x is irrational/x is a real number & x is rational) = 0. 

In the course of developing the theory of probable probabilities, we will find numerous examples 
of this phenomenon, and they will generate defeaters for the defeasible inferences licensed by our 
principles of probable probabilities.  

5. Statistical Independence 

 It was remarked above that probability practitioners commonly assume statistical independence 
when they have no reason to think otherwise, and so compute that prob(A&B/C) = 
prob(A/C),prob(B/C). This assumption is ubiquitous in almost every application of probability to 
real-world problems. However, the justification for such an assumption has heretofore eluded 
probability theorists, and when they make such assumptions they tend to do so apologetically. We 
are now in a position to provide a justification for a general assumption of statistical independence. 
Recall that our general strategy is to formulate our assumptions as a set of finitely unbounded 
linear constraints, and then find the limit solution by solving the set of simultaneous equations 
generated by them. This can usually be done using the probable probabilities software. In this case 
we get: 

Finite Independence Principle:  

For all rational numbers r,s between 0 and 1, given that X,Y,Z $ U & !(X,Z) = r & !(Y,Z) = s, the 

limit solution for   !(X "Y ,Z)  is r,s. 
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Thus we get: 

Principle of Expectable Statistical Independence: 

For rational numbers r,s between 0 and 1, given that prob(A/C) = r and prob(B/C) = s, the 

expectable value of prob(A&B/C) = r,s. 

So a provable combinatorial principle regarding finite sets ultimately makes it reasonable to expect, 
in the absence of contrary information, that arbitrarily chosen properties will be statistically 
independent of one another. This is the reason why, when we see no connection between 
properties that would force them to be statistically dependent, we can reasonably expect them to be 
statistically independent. This solves one of the major unsolved problems of the application of 
probabilities to real-world problems. 

6. Defeaters for Statistical Independence 

 Of course, the assumption of statistical independence sometimes fails. Clearly, this can happen 
when there are causal connections between properties. But it can also happen for purely logical 
reasons. For example, if A = B, A and B cannot be independent unless r = 1. In general, when A and 
B “overlap”, in the sense that there is a D such that (A&C),(B&C) 7 D and prob(D/C) # 1, then we 
should not expect that prob(A&B/C) = prob(A/C),prob(B/C). This follows from the following 
principle of expectable probabilities: 

Principle of Statistical Independence with Overlap: 

If r,s,g are rational numbers between 0 and 1, given that prob(A/C) = r, prob(B/C) = s, 

prob(D/C) = g, (A&C) 7 D, and (B&C) 7 D, it follows that prob(A/C&D) = r/g, prob(B/C&D) = 

s/g, and the following values are expectable: 

(1)  prob(A&B/C) = 
 

r ! s

g
; 

(2) prob(A&B/C&D) = 
  

r ! s

g2
. 

The former probability takes account of more information than the latter, so it provides a 
subproperty defeater for the use of the statistical syllogism and hence an undercutting defeater for 
the Principle of Statistical Independence. 

Overlap Defeat for Statistical Independence:  

£(A&C) 7 D, (B&C) 7 D, and prob(D/C) # 1· is an undercutting defeater for the inference 
from £prob(A/C) = r and prob(B/C) = s· to £prob(A&B/C) = r&s· by the Principle of Statistical 
Independence. 

 In sections seven and nine we will encounter additional undercutting defeaters for the Principle 
of Statistical Independence. 

7. Nonclassical Direct Inference 

 Pollock (1984) introduced (using somewhat different terminology) the following principle of 
probable probabilities: 
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Nonclassical Direct Inference: 

If r is a rational number between 0 and 1, and prob(A/B) = r, the expectable value of 

prob(A/B&C) = r. 

The defense of this principle in Pollock (1990) was complex, but we can now derive it very simply 
from the Probable Proportions and  Probable Probabilities Theorems. This is a kind of “principle of 
insufficient reason”. It tells us that if we have no reason for thinking otherwise, we should expect 
that strengthening the reference property in a nomic probability leaves the value of the probability 
unchanged. This is called “Nonclassical Direct Inference ” because, although it only licenses 
inferences from generic probabilities to other generic probabilities, it turns out to have strong 
formal similarities to classical direct inference (which licenses inferences from generic probabilities 
to singular probabilities), and as we will see in section eight, principles of classical direct inference 
can be derived from it. 
 Probability theorists have not taken formal note of the Principle of Nonclassical Direct Inference, 
but they often reason in accordance with it.  For example, suppose we know that the probability of 
a twenty year old male driver in Maryland having an auto accident over the course of a year is .07. 
If we add that his girlfriend’s name is “Martha”, we do not expect this to alter the probability. There 
is no way to justify this assumption within a traditional probability framework, but it is justified by 
Nonclassical Direct Inference. In fact, the Principle of Nonclassical Direct Inference is equivalent 
(with one slight qualification) to the defeasible Principle of Statistical Independence. This turns upon 
the following simple theorem of the probability calculus: 

Independence and Direct Inference Theorem: 

 If prob(C/B) > 0 then prob(A/B&C) = prob(A/B) iff prob(A&C/B) = prob(A/B),prob(C/B). 

As a result, anyone who shares the commonly held intuition that we should be able to assume 
statistical independence in the absence of information to the contrary is also committed to 
endorsing Nonclassical Direct Inference. This is important, because I have found that many people 
do have the former intuition but balk at the latter. 
 Nonclassical Direct Inference is a principle of defeasible reasoning, so it is subject to defeat. The 
simplest and most important kind of defeater is a subproperty defeater. Suppose C 7 D 7 B and we 
know that prob(A/B) = r, but prob(A/D) = s, where s # r. This gives us defeasible reasons for 
drawing two incompatible conclusions, viz., that prob(A/C) = r and prob(A/D) = s. The principle of 
subproperty defeat tells us that because D 7 B, the latter inference takes precedence and defeats the 
inference to the conclusion that prob(A/C) = r: 

Subproperty Defeat for Nonclassical Direct Inference: 

If C 7 D 7 B, prob(A/D) = s, and prob(A/B) = r, then the expectable value of prob(A/C) = s 

(rather than r). 

 Because the principles of Nonclassical Direct Inference and Statistical Independence are 
equivalent, subproperty defeaters for Nonclassical Direct Inference generate analogous defeaters 
for the Principle of Statistical Independence: 

Principle of Statistical Independence with Subproperties: 

If prob(A/C) = r, prob(B/C) = s, (B&C) 7 D 7 C, and prob(A/D) = p # r, then the expectable 

value of prob(A&B/C) = p,s (rather than r,s). 

Consider an example of subproperty defeat for Statistical Independence. Suppose we know that 
prob(x is more than a year old/x is a vertebrate) = 0.15, and prob(x is a fish/x is a vertebrate) = 0.8, 
and we want to know the value of prob(x is more than a year old & x is a fish/x is a vertebrate). In 
the absence of any other information it would be reasonable to assume that being a fish and being 
more than a year old are statistically independent relative to “x is a vertebrate”, and hence prob(x is 
more than a year old & x is a fish/x is a vertebrate) = 0.15,0.8 = 0.12. But suppose we also know 
prob(x is more than a year old/x is an acquatic animal) = 0.2. Should this make a difference? 



12 

Relying upon untutored intuition may leave one unsure. However, being a vertebrate and a fish 
entails being an acquatic animal, so additional information gives us a subproperty defeater for the 
assumption of statistical independence. What we should conclude instead is that prob(x is more 
than a year old & x is a fish/x is a vertebrate) = 0.2,0.8 = 0 .16. 
 By virtue of the equivalence of the principles of Nonclassical Direct Inference and Statistical 
Independence, defeaters for the Principle of Statistical Independence also yield defeaters for 
Nonclassical Direct Inference. In particular, overlap defeaters for the Principle of Statistical 
Independence yield overlap defeaters for Nonclassical Direct Inference. We have the following 
theorem: 

Principle of Nonclassical Direct Inference with Overlap: 

If A&B 7 D and B&C 7 D, prob(A/B) = r, and prob(D/B) = s, then the expectable value of 

prob(B/C&D) = r/s. 

This is an interesting generalization of Nonclassical Direct Inference. Although probabilists common 
reason in accordance with Nonclassical Direct Inference in practical applications (without endorsing 
the formal principle), untutored intuition is not apt to lead them to reason in accordance with 
Nonclassical Direct Inference with Overlap. To the best of my knowledge, Nonclassical Direct 
Inference with Overlap has gone unnoticed in the probability literature. Nonclassical Direct 
Inference with Overlap yields the standard principle of Nonclassical Direct Inference when D is 
tautologous. 

8. Classical Direct Inference 

 Direct inference is normally understood as being a form of inference from generic probabilities 
to singular probabilities rather than from generic probabilities to other generic probabilities. 
However, it was shown in Pollock (1990) that these inferences are derivable from Nonclassical 
Direct Inference if we identify singular probabilities with a special class of generic probabilities. The 
present treatment is a generalization of that given in Pollock (1984 and 1990).6 Let K  be the 
conjunction of all the propositions the agent is warranted in believing,7 and let K  be the set of all 
physically possible worlds at which K  is true (“K-worlds”). I propose that we define the singular 
probability PROB(P) (written in small caps) to be the proportion of K-worlds at which P is true. 
Where P is the set of all physically possible P-worlds:  

  PROB(P) = -(P,K). 

More generally, where Q is the set of all physically possible Q-worlds, we can define: 

  PROB(P/Q) = -(P, Q * K). 

This makes singular probabilities sensitive to the agent’s knowledge of his situation, which is what 
is needed for rational decision making.8 Formally, this is analogous to Carnap’s (1950, 1952) logical 
probability, with the important difference that Carnap took ! to be logically specified, whereas here 

the identity of ! is taken to be a contingent fact. ! is determined by the values of contingently true 
nomic probabilities, and their values are discovered by various kinds of statistical induction. 
 It turns out that singular probabilities, so defined, can be identified with a special class of nomic 
probabilities: 

Representation Theorem for Singular Probabilities: 

(1) PROB(Fa) = prob(Fx/x = a & K); 

                                                
6 Bacchus (1990) gave a somewhat similar account of direct inference, drawing on Pollock (1983 ,1984). 
7 What an agent is justified in believing at a time depends on how much reasoning he has done. A proposition is 
warranted for an agent iff the agent would be justified in believing it if he could do all the relevant reasoning. 
8 For a further complication, see the literature on causal probability, as discussed for example in Pollock (2006). 



13 

(2) If it is physically necessary that [K  & (Q . Sa1…an)] and that [(Q&K) & (P . Ra1…an)], and Q 
is consistent with K , then PROB(P/Q) = prob(Rx1…xn/Sx1…xn & x1 = a1 & … & xn = an & K). 

(3) PROB(P) = prob(P & x=x/x = x & K). 

PROB(P) is a kind of “mixed physical/epistemic probability”, because it combines background 
knowledge in the form of K  with nomic probabilities. 
 The probability prob(Fx/x = a & K) is a peculiar–looking nomic probability. It is a generic 
probability, because “x” is a free variable, but the probability is only about one object. As such it 
cannot be evaluated by statistical induction or other familiar forms of statistical reasoning. 
However, it can be evaluated using Nonclassical Direct Inference. If K entails Ga, Nonclassical Direct 
Inference gives us a defeasible reason for expecting that PROB(Fa) = prob(Fx/x = a & K) = 
prob(Fx/Gx). This is a familiar form of “classical” direct inference — that is, direct inference from 
generic probabilities to singular probabilities. More generally, we can derive: 

Classical Direct Inference: 

£Sa1…an is warranted and prob(Rx1…xn/ Sx1…xn & Tx1…xn) = r· is a defeasible reason for 

£PROB(Ra1…an / Ta1…an) = r·. 

Similarly, we get subproperty defeaters: 

Subproperty Defeat for Classical Direct Inference: 

£V 7 S, Va1…an is warranted, and prob(Rx1…xn/ Vx1…xn & Tx1…xn) # r· is an undercutting 

defeater for the inference by classical direct inference from £Sa1…an is warranted and 

prob(Rx1…xn/ Sx1…xn & Tx1…xn) = r· to £PROB(Ra1…an / Ta1…an) = r·. 

 Classical Direct Inference and Subproperty Defeat are (versions of) the two best known 
principles of direct inference. Pollock (1983) proposed them as precizations of Reichenbach’s 
seminal principles of direct inference, and Kyburg (1974) and Bacchus (1990) built their theories 
around similar principles. However, as Kyburg was the first to observe, these two principles do not 
constitute a complete theory of direct inference. This is illustrated by overlap defeat, and we will 
find other defeaters too as we proceed: 

Overlap Defeat for Classical Direct Inference: 

The conjunction of 

(i)  Rx1…xn & Sx1…xn & Tx1…xn 7 Gx1…xn and 

(ii) (Sx1…xn & Tx1…xn & x1 = a1 & … & xn = an & K) 7 Gx1…xn and 

(iii) prob(Gx1…xn/ Sx1…xn & Tx1…xn) # 1 

is an undercutting defeater for the inference by classical direct inference from £Sa1…an is 

warranted and prob(Rx1…xn/ Sx1…xn & Tx1…xn) = r· to £PROB(Ra1…an / Ta1…an) = r·. 

 Because singular probabilities are generic probabilities in disguise, we can also use Nonclassical 
Direct Inference to infer singular probabilities from singular probabilities. Thus £PROB(P/Q) = r· 
gives us a defeasible reason for expecting that PROB(P/Q&R) = r. We can employ principles of 
statistical independence similarly. For example, £PROB(P/R) = r & PROB(Q/R) = s· gives us a 
defeasible reason for expecting that PROB(P&Q/R) = r,s. And we get principles of subproperty 
defeat and overlap defeat for these applications of Nonclassical Direct Inference and Statistical 
Independence that are exactly analogous to the principles for generic probabilities. 

9. Computational Inheritance 

 The biggest problem faced by most theories of direct inference concerns what to do if we have 
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information supporting conflicting direct inferences. For example, suppose Bernard has symptoms 
suggesting, with probability .6, that he has a certain rare disease. Suppose furthere that we have 
two seemingly unrelated  diagnostic tests for a disease, and Bernard tests positive on both tests. We 
know that the probability of a person with his symptoms having the disease if he tests positive on 
the first test is .7, and the probability if he tests positive on the second test is .75. But what should 
we conclude about the probability of his having the disease if he tests positive on both tests? The 
probability calculus gives us no guidance here. It is consistent with the probability calculus for the 
“joint probability” of his having the disease if he tests positive on both tests to be anything from 0 
to 1. The Principle of Classical Direct inference as formulated in section eight is no help either. Direct 
inference gives us one reason for thinking the probability of Bernard having the disease is .7, and it 
gives us a different reason for drawing the conflicting conclusion that the probability is .75. The 
result, endorsed in Pollock (1990), is that both instances of Classical Direct Inference are defeated (it 
is a case of collective defeat), and we are left with no conclusion to draw about the singular 
probability of Bernard’s having the disease. Because this sort of situation is so common, Classical 
Direct Inference is not generally very useful. Kyburg (1974) tried to do better by proposing that 
Direct Inference locates singular probabilities in intervals. In this case his conclusion would be that 
the probability of Bernard having the disease is (or lies in the interval) [.7,.75]. But intuitively, this 
also seems unsatisfactory. If Bernard tests positive on both tests, the probability of his having the 
disease should be higher than if he tests positive on just one, so it should lie above the interval 
[.7,.75]. But how can we justify this? 
 Knowledge of generic probabilities would be vastly more useful in real application if there were 
a function Y(r,s:a) such that when prob(F/U) = a, G,H 7 U, prob(F/G) = r and prob(F/H) = s we 
could defeasibly expect that prob(F/G&H) = Y(r,s:a), and hence (by Nonclassical Direct Inference) 
that PROB(Fc) = Y(r,s:a). I call this computational inheritance, because it computes a new value for 
PROB(Fc) from previously known generic probabilities. Direct inference, by contrast, is a kind of 
“noncomputational inheritance”. It is direct in that PROB(Fc) simply inherits a value from a known 
generic probability. I call the function used in computational inheritance “the Y-function” because 
its behavior would be as diagrammed in figure 2. 
 

prob(F/U) = a and G,H 7 U 
 

prob(F/G) = r      prob(F/H) = s 
 
 
 
 
 
 

prob(F/G&H) = Y(r,s:a) 
 
 

Figure 2. The Y-function 

 Following Reichenbach (1949), it has generally been assumed that there is no such function as 
the Y-function. Certainly, there is no function Y(r,s:a) such that we can conclude deductively that 
prob(F/G&H) = Y(r,s:a). For any r, s, and a that are neither 0 nor 1, prob(F/G&H) can take any 
value between 0 and 1. However, that is equally true for Nonclassical Direct Inference. That is, if 
prob(F/G) = r we cannot conclude deductively that prob(F/G&H) = r. Nevertheless, that will tend 
to be the case, and we can defeasibly expect it to be the case. Might something similar be true of the 
Y-function? That is, could there be a function Y(r,s:a) such that we can defeasibly expect 
prob(F/G&H) to be Y(r,s:a)? It follows from the Probable Probabilities Theorem that the answer is 
“Yes”. Let us define:  

 Y(r,s:a) =
rs(1! a)

a(1! r ! s) + rs
 

Then we can establish: 
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Y-Principle:  

If B,C 7 U, prob(A/B) = r, prob(A/C) = s, prob(A/U) = a, and 0 < a < 1, then the expectable 

value of prob(A/B & C) = Y(r,s:a). 

 To get a better feel for what the Y-Principle tells us, it is useful to examine plots of the Y-
function. Figure 3 illustrates that Y(r,s:.5) is symmetric around the right-leaning diagonal. 

 
 

Figure 3. Y(z,x:.5), holding z constant 
(for several choices of z as indicated in the key). 
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Figure 4. Y(z,x:a) holding z constant (for several 
choices of z), for a = .7, a = .3, a = .1, and a = .01. 

 

 Varying a has the effect of warping the Y-function up or down relative to the right-leaning 
diagonal. This is illustrated in figure 4 for several choices of a. Note that, in general, when r,s < a 
then Y(r,s:a) < r and Y(r,s:a) < s, and when r,s > a then Y(r,s:a) > r and Y(r,s:a) > s. 
 If we know that prob(A/B) = r and prob(A/C) = s, we can also use Nonclassical Direct Inference 
to infer defeasibly that prob(A/B&C) = r. If s # a, Y(r,s:a) # r, so this conflicts with the conclusion 
that prob(A/B&C) = Y(r,s:a). However, as above, the inference described by the Y-principle is 
based upon a probability with a more inclusive reference property than that underlying 
Nonclassical Direct Inference (that is, it takes account of more information), so it takes precedence 
and yields an undercutting defeater for Nonclassical Direct Inference: 

Y-Defeat for Nonclassical Direct Inference: 

£A,B,C 7 U and prob(A/C) # prob(A/U)· is an undercutting defeater for the inference from 

£prob(A/B) = r· to £prob(A/B&C) = r· by Nonclassical Direct Inference. 

It follows that we also have defeater for the Principle of Statistical Independence: 
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Y-Defeat for Statistical Independence: 

£A,B,C 7 U and prob(A/B) # prob(A/U)· is an undercutting defeater for the inference from 

£prob(A/C) = r & prob(B/C) = s· to £prob(A&B/C) = r,s· by Statistical Independence. 

 The phenomenon of Computational Inheritance makes knowledge of generic probabilities 
useful in ways it was never previously useful. It tells us how to combine different probabilities that 
would lead to conflicting direct inferences and still arrive at a univocal value. Consider Bernard 
again. We are supposing that  the probability of a person with his symptoms having the disease is 
.6. We also suppose the probability of such a person having the disease if they test positive on the 
first test is .7, and the probability of their having the disease if they test positive on the second test is 
.75. What is the probability of their having the disease if they test positive on both tests? We can 
infer defeasibly that it is Y(.7,.75:.6) = .875. We can then apply classical direct inference to conclude 
that the probability of Bernard’s having the disease is .875. This is a result that we could not have 
gotten from either the probability calculus alone or from Classical Direct Inference. Similar 
reasoning will have significant practical applications, for example in engineering where we have 
multiple imperfect sensors sensing some phenomenon and we want to arrive at a joint probability 
regarding the phenomenon that combines the information from all the sensors. 
 Again, because singular probabilities are generic probabilities in disguise, we can apply 
computational inheritance to them as well and infer defeasibly that if PROB(P) = a, PROB(P/Q) = r, and 
PROB(P/R) = s then PROB(P/Q&R) = Y(r,s:a). 
 The application of the Y-function presupposes that we know the base rate prob(A/U). But 
suppose we do not. Then what can we conclude about prob(A/B&C)? It might be supposed that we 
can combine Indifference and the Y-Principle and conclude that prob(A/B&C) = Y(r,s:.5). That 
would be interesting because, as Joseph Halpern has pointed out to me (in correspondence), this is 
equivalent to Dempster’s “rule of composition” for belief functions (Shafer 1976).9 However, by 
ignoring the base rate prob(A/U), that theory will often give intuitively incorrect results. For 
example, in the case of the two tests for the disease, suppose the disease is rare, with a base rate of 
.1, but each positive test individually confers a probability of .4 that the patient has the disease. Two 
positive tests should increase that probability further. Indeed, Y(.4,.4:.1) = .8. However, Y(.4,.4:.5) = 
.3, so if we ignore the base rate, two positive tests would lower the probability of having the 
disease instead of raising it.  
 The reason the Dempster-Shafer rule does not give the right answer when we are ignorant of 
the base rate is that, although when we are completely ignorant of the value of prob(A/U) it is 
reasonable to expect it to be .5, knowing the values of prob(A/B) and prob(A/C) changes the 
expectable value of prob(A/U). Let us define Y0(r,s) to be Y(r,s:a) where a, b, and c are the solutions 
to the following set of three simultaneous equations (for fixed r and s): 

 
2a

3
! (b + c ! 2b " r ! 2c " s ! 3)a

2
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Then we have the following principle: 

                                                
9 See also Bacchus et al (1996). Given very restrictive assumptions, their theory gets the special case of the Y-Principle in 
which a = .5, but not the general case. 
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Y0-Principle:  

If prob(A/B) = r and prob(A/C) = s, then the expectable value of prob(A/B&C) = Y0(r,s). 

If a is the expectable value of prob(A/U) given that prob(A/B) = r and prob(A/C) = s, then Y0(r,s) = 
Y(r,s:a). However, a does not have a simple analytic characterization. Y0(r,s) is plotted in figure 5, 
and the default values of prob(A/U) are plotted in figure 6. Note how the curve for Y0(r,s) is twisted 
with respect to the curve for Y(r,s:.5) (in figure 3). 

 

     
 

 Figure 5. Y0(r,s), holding s constant (for Figure 6. Default values of prob(A/U) (for 
 several choices of s as indicated in the key) several choices of s as indicated in the key) 
 
 

10. Conclusions 

 The problem of sparse probability knowledge results from the fact that in the real world we lack 
direct knowledge of most probabilities. If probabilities are to be useful, we must have ways of 
making defeasible estimates of their values even when those values are not computable from 
known probabilities using the probability calculus. Within the theory of nomic probability, limit 
theorems from finite combinatorial mathematics provide the necessary basis for these inferences. It 
turns out that in very general circumstances, there will be expectable values for otherwise 
unknown probabilities. These are described by principles telling us that although certain inferences 
from probabilities to probabilities are not deductively valid, nevertheless the second-order 
probability of their yielding correct results is 1. This makes it defeasibly reasonable to make the 
inferences. 
 I illustrated this by looking at Indifference, Statistical Independence, Classical and Nonclassical 
Direct Inference, and the Y-Principle. But these are just illustrations. There are a huge number of 
useful principles of probable probabilities, some of which I have investigated, but most waiting to 
be discovered. I proved the first such principles laboriously by hand. It took me six months to find 
and prove the Y-Principle. But it turns out that there is a uniform way of finding and proving these 
principles. This made it possible to write the probable probabilities software that analyzes the 
results of linear constraints and determines what the expectable values of the probabilities are. That 
software produces a proof of the Y-Principle in a matter of seconds. 
 Nomic probability and the principles of probable probability are reminiscent of Carnap’s logical 
probabilities (Carnap 1950, 1952; Hintikka 1966; Bacchus et al 1996). Historical theories of objective 
probability required probabilities to be assessed by empirical methods, and because of the 
weakness of the probability calculus, they tended to leave us in a badly impoverished epistemic 
state regarding most probabilities. Carnap tried to define a kind of probability for which the values 
of probabilities were determined by logic alone, thus vitiating the need for empirical investigation. 
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However, finding the right probability measure to employ in a theory of logical probabilities 
proved to be an insurmountable problem. 
 Nomic probability and the theory of probable probabilities lies between these two extremes. 
This theory still makes the values of probabilities contingent rather than logically necessary, but it 
makes our limited empirical investigations much more fruitful by giving them the power to license 
defeasible, non-deductive, inferences to a wide range of further probabilities that we have not 
investigated empirically. Furthermore, unlike logical probability, these defeasible inferences do not 
depend upon ad hoc postulates. Instead, they derive directly from provable theorems of 
combinatorial mathematics. So even when we do not have sufficient empirical information to 
deductively determine the value of a probability, purely mathematical facts may be sufficient to 
make it reasonable, given what empirical information we do have, to expect the unknown 
probabilities to have specific and computable values. Where this differs from logical probability is 
(1) that the empirical values are an essential ingredient in the computation, and (2) that the 
inferences to these values are defeasible rather than deductive. 
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