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Abstract

Data sets with a large numbers of nominal variables, including
some with large number of distinct values, are becoming increas-
ingly common and need to be explored. Unfortunately, most ex-
isting visual exploration tools are designed to handle numeric vari-
ables only. When importing data sets with nominal values into such
visualization tools, most solutions to date are rather simplistic. Of-
ten, techniques that map nominal values to numbers do not assign
order or spacing among the values in a manner that conveys seman-
tic relationships. Moreover, displays designed for nominal vari-
ables usually cannot handle high cardinality variables well. This
paper addresses the problem of how to display nominal variables in
general-purpose visual exploration tools designed for numeric vari-
ables. Specifically, we investigate (1) how to assign order and spac-
ing among the nominal values, and (2) how to reduce the number
of distinct values to display. We propose a new technique, called
the Distance-Quantification-Classing (DQC) approach, to prepro-
cess nominal variables before being imported into a visual explo-
ration tool. In the Distance Step, we identify a set of independent
dimensions that can be used to calculate the distance between nom-
inal values. In the Quantification Step, we use the independent di-
mensions and the distance information to assign order and spacing
among the nominal values. In the Classing Step, we use results
from the previous steps to determine which values within the do-
main of a variable are similar to each other and thus can be grouped
together. Each step in the DQC approach can be accomplished by
a variety of techniques. We extended the XmdvTool package to in-
corporate this approach. We evaluated our approach on several data
sets using a variety of measures.
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1 Introduction

Nominal (or categorical) variables are variables whose values do
not have a natural ordering or distance. High cardinality nomi-
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nal variables (i.e., those with a large number of distinct values) are
common in real-world data sets. Examples of high cardinality nom-
inal variables include product codes and species names.

Visualization provides an efficient and interactive way of explor-
ing high dimensional data [LeBlanc et al. 1990]. Unfortunately,
nominal variables, especially high cardinality nominal variables,
pose a serious challenge for data visualization tool developers. Dif-
ficulties arise due to several reasons.

First, visualization methods specifically designed for nominal
data are not as commonly used as those designed for numeric data
[Friendly 1999]. Possible reasons include:

• They tend to be more special-purpose. For example, Mosaic
Displays [Friendly 1999] are designed for discovering associ-
ations, whereas Parallel Coordinates [Inselberg and Dimsdale
1990], which are for numeric variables, can be used for ex-
ploring outliers, clusters, and associations.

• Methods such as the Fourfold Display [Friendly 1999] cannot
handle multiple nominal variables.

• Methods such as the Mosaic Display cannot handle high car-
dinality variables well.

• Most methods are not readily available in common visualiza-
tion software [Friendly 1999].

Second, most visualization software packages only provide dis-
plays that are designed for numeric variables. Reasons for this in-
clude:

• Data sets have traditionally contained only numeric data.

• Numeric displays are more general-purpose.

• The inherent order and spacing among numeric values makes
it natural to convey notions such as magnitude and similarity.

One way to display nominal variables using numeric displays is
to map the nominal values to numbers, i.e., assigning order and
spacing to the nominal values. Display methods such as Paral-
lel Coordinates (Figure 1) require both order and spacing among
values. However, care must be taken, as arbitrarily casting nom-
inal values into numeric displays may introduce artificial patterns
and cause errors in the interpretation of the visualization. Existing
nominal-to-numeric mapping techniques do not always assign both
order and spacing to the values. For example, the method reported
in [Ma and Hellerstein 1999] only assigns order to the nominal val-
ues, but not spacing.

As a motivating example of the need for order and spacing, re-
fer to Figures 1 and 2 which both display the quality, color and
size information of 6550 objects (from a synthetic data set). Figure
1 gives an example of a display where nominal values were as-
signed order and spacing using our DQC approach, whereas Figure
2 shows alphabetical ordering and uniform spacing of the nominal
values. Figure 1 reveals that blue and purple objects have similar
underlying distributions for quality and size. Such information is
difficult to extract from Figure 2.

This paper addresses the problem of how to display data sets
with a large number of nominal variables, some with high cardinal-
ity, using visual exploration tools designed for numeric variables.
Specifically, we address two sub-problems:



Figure 1: Parallel Coordinates
using DQC to assign order and
spacing to nominal variables.

Figure 2: Parallel Coordi-
nates with arbitrary ordering
and uniform spacing.

• How do we map nominal values to numbers such that we ef-
fectively assign order and distance among the values? Order is
used to position values along an axis, where the adjacency of
values suggests similarity. Distance is used to space the values
along that axis. The amount of spacing suggests the degree of
similarity among values, making it easier to spot clusters as
well as outliers. The assignment of order and distance must
be done in such a way that the distance between two values in
nominal space is preserved in the numeric space.

• When a variable has many values, how do we group similar
values together to reduce the number of distinct values to dis-
play? Reducing the cardinality is needed for displays such as
Dimensional Stacking [LeBlanc et al. 1990] and Trellis Dis-
plays [Becker et al. 1996] which are limited by the number of
values they can display.

We also want our solution to have the following features:

• data-driven: able to work without explicit domain knowledge.

• multivariate: using the relationship of a nominal variable with
several other variables to decide the ordering, spacing and
classing of the values.

• scalable: can work with a large number of variables with high
cardinality using limited memory.

• distance-preserving: the distance between two nominal values
in nominal space is preserved in numeric space.

• association-preserving: nominal variables that are highly as-
sociated in nominal space are also highly correlated in nu-
meric space.

To our knowledge, no solution exists that has all these features (this
is further discussed in Section 2).

To solve this problem, we propose that nominal variables be
pre-processed using a Distance-Quantification-Classing (DQC) ap-
proach before being imported into visual exploration tools designed
for numeric variables. In the Distance Step, we transform the data
and search for a set of independent dimensions that can be used
to calculate the distance between nominal values. This distance is
based on each value’s distribution across several other nominal vari-
ables. The independence among the resulting dimensions is needed
to ensure that the distance calculation is not biased by groups of
highly associated (i.e., correlated) variables. Analyzing one vari-
able using its relationship with several other variables (instead of
just one other variable) promotes stability in the resulting order and
spacing of values. These all will help ensure that the distance be-
tween two nominal values in nominal space is preserved in numeric

space. In the Quantification Step, we assign order and spacing
among the nominal values based on the distance information. In
the Classing Step, we determine which values within a variable are
similar to each other and thus can be grouped together. Each of
these three steps can be accomplished by more than one technique,
as we will show in Sections 4 to 6.

We incorporated an implementation of the DQC approach into
XmdvTool, a public-domain visualization package developed at
WPI [XmdvTool Home Page 2003]. For the Distance Step, we
implemented and evaluated two alternatives: the well-established
technique of Multiple Correspondence Analysis (MCA) [Greenacre
1993] from Statistics and our own Focused Correspondence Anal-
ysis (FCA) which we describe in this paper. FCA is our proposed
alternative to MCA when memory is limited. For the Quantifica-
tion Step, we used a modification of the Optimal Scaling technique
[Greenacre 1993] to also make it work for data sets with perfectly
associated variables. For the Classing Step, we used a Hierarchi-
cal Clustering algorithm [Johnson and Wichern 1988] so we can
perform multivariate classing (using information from several vari-
ables to guide the classing).

To test our ideas, we pre-processed several data sets using the
DQC approach and used numeric displays such as Parallel Coor-
dinates to evaluate the usefulness of the quantified versions of the
nominal variables. We compared MCA, FCA and arbitrary quan-
tification using a wide range of evaluation measures such as time,
memory, quality of quantification, quality of classing, and quality
of visual display.

The main contributions of this paper include:

• Distance-Quantification-Classing (DQC) approach: This is a
general pre-processing approach for displaying nominal vari-
ables in visual exploration tools designed for numeric vari-
ables. Since most visualization tools are designed for numeric
variables only, this approach makes the exploration of nomi-
nal variables more accessible to data analysts. DQC is also
useful for pre-processing nominal variables for a variety of
data analysis techniques, including association rules and neu-
ral networks.

• Focused Correspondence Analysis (FCA): FCA is a viable al-
ternative to Multiple Correspondence Analysis when memory
is limited. It processes each nominal variable independently
rather than simultaneously

• Enhanced quantification: We improved upon the common
practice of using only the coordinates from the first princi-
pal axis from Correspondence Analysis for quantification, and
made it work with variables with perfect association. This al-
lows the analysis to be automated.

• Multivariate quantification and classing: Our use of Corre-
spondence Analysis in the Distance Step and Hierarchical
Clustering in the Classing Step allowed us to group similar
nominal values together based on information from several
other variables, not just one other variable. This makes the
classing more stable.

• Multifaceted evaluation: we evaluated the quality of the re-
sults of our approach via user studies, statistical analysis, and
computational performance measures on a wide range of data
sets.

This paper extends the work presented in [Rosario et al. 2003]
by providing a more comprehensive analysis of related literature,
more detailed algorithm descriptions, more extensive case studies,
and an example using an additional visualization technique (scat-
terplots) to show the generality of the technique. The remainder of
the paper is organized as follows. Section 2 describes related work.



Section 3 gives an overview of the entire approach, while Sections
4 to 6 give details for each step of the DQC approach. Section 7
presents empirical results. Section 8 summarizes our results and
lists possible future directions.

2 Related Work

2.1 Visualizing Nominal Variables

Several approaches to visualizing nominal variables exist. Sieve
diagrams were designed to show relationships in a two-way contin-
gency table [Riedwyl and Schpbach 1994; Friendly 1999]. The ex-
pected frequencies for any two-way contingency table can be repre-
sented by rectangles whose widths are proportional to the total fre-
quency in each column, and whose heights are proportional to the
total frequency in each row. The observed frequency is shown by
the number of squares in each rectangle. For a dataset with a small
number of nominal variables and values, sieve diagrams seem to
be good for presenting the information hidden in the data. A large
dataset with many nominal variables and values would be difficult
to handle in this manner.

Similar to sieve diagrams, mosaic displays represent the counts
in the contingency table by tiles whose areas are proportional to the
observed cell frequency [Friendly 1999; Valero-Mora et al. 2003].
It is improved by the use of text and/or color to show statistical
measures such as standardized residuals.

A collection of related mosaics can be used to show the associ-
ations and relations between nominal values of a multi-way con-
tingency table. It can be extended to display additional relation-
ships among the data including marginal or conditional relation-
ships. In theory, the mosaic matrix is capable of accommodating
large datasets with large numbers of nominal variables and values.
However, in reality it shares the shortcomings of sieve diagrams - it
is difficult to scale to visualize large datasets with multiple nominal
variables and values in a limited screen space. Also it is only used
to visualize the contingency tables where a count is used to show
how many cases surveyed contain certain values of two nominal
variables.

Correspondence Analysis Maps is a technique to visualize the
associations and relationships among nominal values [Greenacre
1993]. In correspondence analysis maps, all nominal variable val-
ues are mapped to numerical values in a multiple dimension space
(typically two or three dimensions). The mapped numeric values
in the lower dimensions are used to position the nominal values in
a two or three dimensional scatterplot. The distances in the scat-
terplots among the nominal values can be computed and used to
interpret the associations and independencies among them. Corre-
spondence analysis maps are a good way to visualize the associa-
tions among nominal values.

Fourfold displays are designed for the display of 2 × 2 (or
2×2× k) tables [Friendly 1999]. It allows easy visual comparison
of the pattern of association between two dichotomous variables
across two or more populations. The frequency in each cell of a
fourfold table is presented by a quarter circle whose area is propor-
tional to the cell count. In the 2× 2× k case, the third dimension
usually is population. In this case, a series of fourfold displays are
plotted to see if the association between the first two variables are
homogeneous across populations. Fourfold displays are specially
designed to visualize datasets with only two nominal variables and
with only two nominal values for each variable.

A Treemap is a space-filling technique for visualizing hierar-
chical data [Johnson and Shneiderman 1991; Shneiderman 1992].
The drawing area is divided along one axis (e.g., vertical) based
on the populations of the subtrees directly connected to the root
node. Each of these rectangles is then divided along the perpen-
dicular axis according to the subtrees beneath the corresponding

child node. This process is recursively applied until each terminal
node is represented by a rectangle. CatTree is an improvement on
Treemaps with a capability of creating a hierarchy from categori-
cal data and allowing direct, interactive manipulation of that hier-
archy [Kolatch and Weinstein 2001]. Once the initial hierarchy is
built, CatTree allows the user to dynamically modify the order of
the nodes in the hierarchy.

All the above mentioned techniques, and others such as MANET
[Hofmann and Bernd 1996], Table Lens [Pirolli and Rao 1996] and
dimensional stacking [LeBlanc et al. 1990], were designed and de-
veloped to explore the relationships and associations among nomi-
nal variable values. They employ different visualization approaches
to uncover relationships that may be hidden in the original dataset.
They come from different research communities and may or may
not map the nominal values onto numeric values. Unfortunately,
these approaches are either special-purpose, not readily available in
common data analysis software [Friendly 1999], or cannot handle
high cardinality nominal variables well.

Another research area relevant to our work is the study of order-
ing techniques [Friendly and Kwan 2003; Valero-Mora et al. 2003],
which order nominal values into an evenly-spaced sequence. Bertin
promoted the idea of a ”reorderable matrix” as a general technique
for data exploration and visualization to highlight interesting pat-
terns in a dataset [Bertin et al. 1982; Bertin 1983; Friendly and
Kwan 2003]. A reorderable matrix brings similar observations and
variables together by permutation. Matrix reordering proves to be
effective in some cases; for example, Table Lens uses matrix re-
ordering algorithms in support of data visualization [Rao and Card
1994].

Ma and Hellerstein proposed an algorithm for ordering categori-
cal data by constructing clusters, sequencing these clusters to min-
imize order conflicts, and ordering the values within the clusters to
eliminate pair-wise order conflicts [Ma and Hellerstein 1999]. The
process is equivalent to a Hamilton path problem, which is NP-hard.

Beygelzimer et al. presented an algorithm that uses a spectral
method to avoid the inherent intractability of the above mentioned
approach [Beygelzimer et al. 2001]. They use a multi-level ap-
proach to reduce the complexity. First, the original graph is ap-
proximated by a sequence of increasingly coarser graphs. Then the
spectral algorithm is applied to the coarsest instance to get an or-
dering. Finally, the ordering is propagated back by interpolating
through the sequence of intermediate graphs. These two algorithms
provide an elegant result for displaying datasets with a small num-
ber of nominal variables. The scalability to a large dataset with
multiple nominal variables was not reported.

Among other ordering approaches, arbitrary ordering (e.g., al-
phabetical order) and ordering based on the value of another vari-
able (e.g., time) have been studied for enhancing visualizations.
Unfortunately, arbitrary ordering often creates artificial patterns
that can lead to wrong conclusions. Furthermore, equal spacing
that is often assumed in ordering algorithms does not convey the
degree of similarity between nominal values.

2.2 Correspondence Analysis

Correspondence analysis is a descriptive technique designed to an-
alyze two-way and multi-way tables containing some measure of
correspondence between the rows and columns [Greenacre 1993].
Correspondence analysis maps the nominal values onto a separate
dimension space which is multidimensional in the sense that several
scale values are obtained for each nominal value.

Correspondence analysis was independently developed by sev-
eral researchers and given different names, such as optimal scaling,
reciprocal averaging, optimal scoring, appropriate scoring, homo-
geneity analysis, dual scaling, and scalogram analysis [Tenenhaus
and Young 1985]. In addition, correspondence analysis has been



proposed many times in the literature because the analysis can be
expressed and interpreted in several apparently different but equiv-
alent ways. Tenenhaus and Young analyzed these different methods
and showed that they all lead to the same equations for analyzing
the data [Tenenhaus and Young 1985].

Several research efforts on Correspondence Analysis (CA) and
visualization have provided ideas for our research. Friendly sug-
gested using the coordinates from the first CA principal axis to or-
der the values of nominal variables in mosaic displays to reveal the
pattern of association [Friendly 1992]. Greenacre proposed using
the coordinates from the first CA principal axis as input to create a
classing tree [Greenacre 1993]. In this tree, the nominal values are
grouped together using reduction in inertia to represent loss of in-
formation. Greenacre also suggested the use of quantified versions
of nominal variables as input to statistical techniques that require
numeric variables, such as regression. The SPSS Categories pack-
age uses CA to pre-process data for their Categorical Regression
module and uses CA maps for visualizing nominal variables [Meul-
man and Heiser 2000]. These uses of the coordinates of the first CA
principal axis seem to be due to the theory of Optimal Scaling, that
states that these coordinates provide an optimal numeric representa-
tion of the nominal values [Greenacre 1993]. Unfortunately, when
the nominal variable is perfectly associated with another nominal
variable, such coordinates are not optimal, as we will show later.

Milanese et al. used CA and clustering to group similar images
[Milanese et al. 1996]. They created a hierarchical tree for fast
indexing into classes of images. This is similar to our approach in
that we also use CA as a data reduction technique and use clustering
to group similar nominal values together.

For each nominal value, one can also calculate statistics and use
existing numeric data visualization methods to display them. Un-
fortunately, when the variable has a large number of values, the less
frequently occurring values are often ignored. This implies that
there is a need to group similar values together, which is the issue
that our ’classing’ step addresses.

2.3 Classing

There are several approaches to grouping similar nominal values
together. One could use expert knowledge, but this can be tedious
for high cardinality nominal variables. One could use information
about the nominal variable itself (e.g., based on the frequency of
occurrence of the values, the values can be grouped into popular,
common or rare values). Or, one could use the relationship of the
nominal variable with a target classification or regression variable
[Micci-Barreca 2001] (e.g., group cities based on income level).
But using only one specific variable to guide the classing (bivariate
classing) may result in a classing that is believable only within the
context of that specific variable (e.g., if we group cities based on in-
come level alone, we may have to regroup cities if we want to visu-
alize their relationship with land area). A better classing approach
is to use several variables to guide the classing of a target variable
(multivariate classing). One multivariate classing approach applies
clustering on a data set [Johnson and Wichern 1988], where the
records represent the nominal values and the variables contain sum-
mary information about each nominal value. We use this clustering
approach for our Classing Step (Section 6). For example, to class
similar product codes together, we can create a dataset with one
record per product code and have the variables contain summarized
information. Applying clustering on this transformed data set will
result in grouping similar product codes together. Han and Kamber
suggested using heuristics to create concept hierarchies [Han and
Kamber 2001]. Milanese et al. proposed using CA and clustering
to group similar images together based on color, texture and shape
[Milanese et al. 1996].

3 Overview of Proposed Approach

Our proposed approach, the Distance-Quantification-Classing ap-
proach, consists of three steps (Figure 3). Each step can be accom-
plished by more than one technique. In this section, we describe the
input, output and purpose of each step. In the succeeding sections,
we discuss possible techniques for each step.

Figure 3: DQC Approach

Step 1: Distance Step – Given a data set with nominal vari-
ables, one of which is the nominal variable to be quantified and
classed. The purpose of this step is to create a table where the rows
represent the values of the nominal variable and the columns rep-
resent information about the other variables in the data set. For
this table to be useful for the Quantification and Classing steps, we
should be able to calculate the distance between two nominal values
from this table.

To better explain this, consider a data set that contains quality,
color and size information for 6550 objects. Quality has three pos-
sible values – good, ok, bad; color has six values – blue, green, or-
ange, purple, red, white; and size has ten values – ’a’ to ’j’. Suppose
we want to analyze color (which we shall call our target variable)
using quality and size (which we shall call our analysis variables).
To analyze color, we look at the distribution of its values with re-
spect to the analysis variables using a contingency or counts table
(Figure 4). From the counts table, we can calculate row percent-
ages (Figure 5) and get a glimpse of which colors are similar to
each other based on row profiles; Figure 5 shows that blue and pur-
ple have similar row profiles. From the row percentage table, we
may be tempted to calculate the distance between two rows using a
euclidean distance formula; however, there are two row percentage
tables for color (color by quality and color by size). The technique
to be used for this step must have a way to combine all the columns
of all tables for color, extract new dimensions that are independent
of each other, and transform the counts table into a table that uses
the independent dimensions (Figure 6). These independent dimen-
sions would then be the basis of distance calculations needed in the
succeeding steps. Using independent dimensions ensures that the
distance calculation is not biased by groups of highly associated
columns. This argument is similar to performing Principal Com-
ponent Analysis prior to Cluster Analysis to ensure that the dimen-
sions are independent of each other as required by the euclidean
distance calculations [Johnson and Wichern 1988]. Each row in the
output table (Figure 6) can be thought of as a point in p-dimensional
space defined by the p independent dimensions.

Often the number of analysis variables is large, although several
may be highly associated with each other. This suggests that the



number of independent dimensions to keep in the output table (Fig-
ure 6) can be reduced while still maintaining a high accuracy for the
distance calculation. This Distance Step must also determine how
many of the independent dimensions to keep. This step is the most
important step as it dictates the accuracy of the distance calculation
needed in the Quantification and Classing Steps. It is also the most
memory hungry and computationally intensive step as it involves
transformations of the original (large) data sets and data reduction.

Figure 4: Counts Table
Figure 5: Row Percentage Ta-
ble Showing Row Profiles

Step 2: Quantification Step – Given a table with rows repre-
senting the values of the target variable and columns representing
independent dimensions extracted from the analysis variables (Fig-
ure 6), this step uses the distance information to assign order and
spacing to the values of the target variable. The output is a nominal-
to-numeric mapping (Figure 7). The goal of this step is to create
that mapping in a way that is distance-preserving and association-
preserving.

Figure 6: Transformed Table
with Independent Dimensions

Figure 7: Nominal-to-Numeric
Mapping

Step 3: Classing Step – This step uses the distance informa-
tion derived in the Distance Step to determine which values of the
target variable are similar to each other and thus can be grouped
together with minimal loss of information. Ideally, the output is
a hierarchical classing tree showing which values can be grouped
together successively and the information lost with each grouping
(Figure 8). Note that the Quantification and Classing steps may or
may not be dependent on each other, as suggested by the dashed
line between them in Figure 3.

The DQC approach has several advantages. First, it is general-
purpose. It provides a pre-processing approach that is useful not
only for visualization purposes but also for other techniques that
cannot handle high-cardinality nominal variables (e.g., clustering
algorithms, association rules) or can only handle numeric variables.
Second, it provides a hierarchical classing tree that gives users the
flexibility to decide how many value-groups to use in visual dis-
plays, depending on their specific analysis goals. Third, it enables

Figure 8: Classing Tree with Information Loss Measure

multivariate quantification and classing (i.e., determining the dis-
tance between the values based on their profiles across several other
variables) which we believe provides more robust results.

4 Distance Step

A well-known family of techniques from Statistics suitable for the
Distance Step is Correspondence Analysis (CA)[Greenacre 1993;
SAS Institute Inc 2000; StatSoft Inc 2002]. Its simplest version,
called Simple Correspondence Analysis (SCA), is designed to ana-
lyze the relationship of two nominal variables. SCA takes as input
a 2-way counts table (Figure 4). The rows of the counts table can
be thought of as data points in a p-dimensional coordinate space
defined by the p columns. As such, there is a distance between two
data points. CA eliminates the dependencies among the columns
by extracting a reduced set of new columns that are independent
of each other, while still preserving all or most of the information
about the differences between the rows. Figure 6 shows an example
output from CA. CA is similar to Principal Component Analysis
(PCA) except that CA is for nominal variables while PCA is for
numeric variables. Just like PCA, each successive independent di-
mension (called a principal axis) explains less and less of the overall
information.

In its general form, CA can analyze n-way tables that contain
some measure of correspondence between the rows and columns
(not just counts). In this Distance Step, one can use any version of
Correspondence Analysis, as long as it can analyze the relationship
of more than two variables and it can provide as output the coordi-
nates of the top independent dimensions for each value of the target
nominal variable (as in Figure 6). In the following subsections, we
describe two versions of CA suitable for the Distance Step.

4.1 Definition

Let a population E of n elements be described by a set of k cate-
gorical variables, A1,A2, . . . ,Ak, each with p1, p2, . . . , pk categories.

The total number of categories is p = ∑k
j=1 p j . The ith element can

be represented as a p-tuple

< xi11,xi12, . . . ,xi1p1
,xi21,xi22, . . . ,xi2p2

, . . . ,xik1,xik2, . . . ,xikpk
>.

where,

xi jl =

{

1 : i f jth variable o f ith element = category l
0 : otherwise

an n-element binary indicator vector, X jl = [x1 jl ,x2 jl , ...,xn jl]
′,

is associated with category l of each variable j. The p j vectors for
variable j form a matrix associated with variable A j,

X j = [X j1,X j2, . . .,X jp j
].

The matrix X for all elements is:

X = [X1,X2, . . .,Xk].
The scale value η jl is a numeric value associated with category

l of variable j. The value of variable X j for element i is x̃i j =



∑
p j

l=1 xi jlη jl . This is the scaling value of the category of variable j
chosen by element i.

4.2 Problem Formulation

Consider the (n×k) scaling value matrix X̃, correspondence analy-
sis can be transformed into an optimization problem of maximizing
the variance [Tenenhaus and Young 1985]:

n

∑
i=1

k

∑
j=1

(x̃i j − x̄)2

under the constraints that mean X̃ = 0, variance X̃ = 1, and where
x̄ is the overall mean.

Since the variance of scale values for categories have been maxi-
mized, the results of this algorithm would be that the categories are
separated as much as possible. This is one potential solution to the
problem of ordering categorical values.

4.3 Multiple Correspondence Analysis

Multiple Correspondence Analysis (MCA) extends SCA to analyze
more than two nominal variables [Greenacre 1993; SAS Institute
Inc 2000; StatSoft Inc 2002]. To perform MCA, simply create a
Burt Table (Figure 9) and use that as input to SCA. If a counts table
is a cross between two nominal variables, a Burt Table is a cross
of all variables by all variables. If V is the total number of unique
values across all variables, then the size of the Burt Table is V by V.

The Burt Table structure allows MCA to simultaneously analyze
all variables. That is, for every target variable, it can build row
profiles using information from all other variables. This simultane-
ous analysis is efficient in terms of processing time because certain
calculations can be reused, though wasteful in memory. When the
number of nominal variables to analyze is large and some have high
cardinality, MCA could run out of memory, depending on how it is
implemented.

The coordinates of the first principal axis from MCA follow an
optimal scaling property [Greenacre 1993]. This means that such
coordinates represent a quantification of all nominal values in all
variables. Note, however, that this quantification is sub-optimal
when the target variable has a perfect 1-to-many or many-to-many
association with another variable, as we show in Section 7.

Figure 9: Example MCA Input Table (Burt Table)

Figure 10: Example FCA Input Table (Compressed Burt Table)

4.4 Focused Correspondence Analysis

Due to the memory-intensive nature of MCA, we have designed an
alternative solution, which we call Focused Correspondence Analy-
sis (FCA), aimed at processing a large number of nominal variables,
some possibly having high cardinality.

Unlike MCA which analyzes all variables simultaneously, FCA
analyzes one variable at a time, making FCA less computationally
efficient than MCA. The memory savings in FCA come from this
key idea: instead of comparing value profiles across all other nom-
inal variables, just compare value profiles across the set of nominal
variables most associated (i.e., correlated) with the target variable.
For example, to analyze one nominal variable (e.g., color) against
its most associated variables, say quality and size, we use a com-
pressed Burt table such as Figure 10 as input to SCA. This table is
a concatenation of counts tables of color*quality and color*size.

We now discuss why such a table would be a valid input for
SCA. In Section 4, we mentioned that the basic version of SCA
uses a counts table as input. In Section 4.3, we indicated that we can
perform MCA by using a Burt Table as input to SCA. In general,
SCA can use as input any table that has the following properties
[Greenacre 1984]: (1) the table must use the same physical units or
measurements, and (2) the values in the table must be non-negative.
If the input table does not meet these assumptions, the table must be
transformed before performing SCA. The table in Figure 10 follows
these properties.

Two pre-processing steps are needed for FCA: (1) Measure the
pairwise association between nominal variables, and (2) Determine
the top k associated variables for each nominal variable.

4.4.1 Measure the pairwise association between nominal
variables

Given the counts table of two nominal variables, we can state how
closely related the variables are with each other using measures
of nominal association [Agresti 1990]. These measures are anal-
ogous to measures of correlation between numeric variables. Sev-
eral measures of nominal association exist. The choice depends on
factors such as the size and shape of the counts table and the pres-
ence of low counts [Agresti 1990]. For our purpose, we want a
measure of association that is valid for counts tables that may be
large, non-square and may contain low cell counts – all properties
of counts tables from high cardinality variables. We also want a
measure of association that has a bounded range of values, so it is
easy to compare two values. One such measure is the Uncertainty
Coefficient Asymmetric measure U(R|C) [SAS Institute Inc 2000].
U(R|C) gives the proportion of uncertainty in the row variable R
that can be explained by the column variable C. If U(R|C) = 1, the
value of the row variable can be known precisely given the value of
the column variable.

4.4.2 Determine top k associated variables for each nom-
inal variable

For now, we select some k greater than 2, depending on the memory
space available. Since there may be variables that are only weakly
associated with other variables, we cannot use a threshold on the
measure of association chosen in Section 4.4.1. By selecting k to be
greater than 2, we ensure that we use at least one analysis variable
for each target variable.

In summary, FCA has its own strengths and weaknesses. With
FCA, memory usage is reduced and, in fact, controllable. Also,
we empirically show in Section 7 that FCA provides better classing
trees compared to MCA for some data sets. FCA however needs a
longer run time compared to MCA. This is due to the one-at-a-time
analysis as well as the need for pre-processing. In the context of



visualization tools, intelligently mapping nominal values to num-
bers is a pre-processing step that can be run in batch mode. Hence,
the run time may not be as important compared to memory space in
some situations.

4.5 Reduce Number of Dimensions to Keep

The CA family of techniques uses forms of decomposition (e.g.,
Singular Value Decomposition, Eigenvalue Analysis) to extract
the set of independent dimensions. By default, all forms of CA
will keep all independent dimensions calculated [Greenacre 1993]
which, for high dimensional high cardinality data sets, require a
lot of space. These independent dimensions are ordered by dimin-
ishing importance. Part of the CA output is the set of eigenvalues
(principal inertia) that indicate the importance of each independent
dimension. The first dimension, which is the most important di-
mension, will have the highest eigenvalue. We plot the eigenvalue
by dimension number (called a Scree Plot) and find the ’elbow’,
the point at which the change in consecutive eigenvalues is small.
We keep only the dimensions up to the ’elbow’. This is a common
technique used in Factor Analysis [SAS Institute Inc 2000]. This
technique is independent of the particular version of CA we use for
the Distance Step.

In summary, the MCA-based Distance Step algorithm is as fol-
lows:

1. BurtTable(rawdataMatrix) -> burtMatrix
2. SCA(burtMatrix) -> coordMatrix, evaluesVector

3. ReduceNumberDim(coordMatrix, evaluesVector) -> coordMatrixSubset

while the FCA-based Distance Step algorithm is as follows:

1. PairwiseAssociation(rawdataMatrix) -> assocMatrix
2. Set k

3. FCATable(rawdataMatrix, k, assocMatrix) -> fcaInputMatrix
4. SCA(fcaInputMatrix) -> coordMatrix, evaluesVector

5. ReduceNumberDim(coordMatrix, evaluesVector) -> coordMatrixSubset

5 Quantification Step

Quantification is the process of assigning order and spacing to the
nominal values. For this step, we want a technique that can take
as input the independent dimensions from the Distance Step and
produce a nominal-to-numeric mapping for each nominal variable.

As mentioned in Section 2, a popular technique used for quantifi-
cation is based on the theory of Optimal Scaling [Greenacre 1993].
Based on Optimal Scaling, we can use the coordinates from the first
CA independent dimension as the quantified version of the nomi-
nal values. Unfortunately, when a nominal variable is perfectly as-
sociated with another variable (e.g., one-to-many association: one
state has many zip codes, or many-to-many association: specific
products are only sold in specific regions), we have found in our
experiments that this technique fails (see Section 7).

Since we want our technique to work without the need for do-
main knowledge, we want it to automatically handle cases of per-
fect associations. Hence, we propose an adjustment to the Op-
timal Scaling approach: If the first n CA eigenvalues are 1.0,
let scalei = ∑n

j=1 coordinatei, j , where coordinatei, j is the coor-

dinate of the jth independent dimension for row i. Otherwise set
scalei = coordinatei,1 (coordinate of the first independent dimen-
sion). Scale is the term used in Optimal Scaling for the quantified
version of a nominal variable. In Section 7, we show that this pro-
posed adjustment gives more effective results for cases with perfect
association.

By using independent dimensions extracted via CA to create the
quantified versions of nominal values, we have essentially defined
the order and spacing of two nominal values to be a function of
the chi-squared distance between them. Chi-squared distance is the

distance function used in CA [Greenacre 1993]. It is the weighted
euclidean distance between a row profile and the average (or ex-
pected) row profile. Put differently, the quantified version of a nom-
inal value depends on how different its profile is from the average
profile. This implies that even if the nominal variable has an un-
derlying order (i.e., even if it is actually a discretized numeric vari-
able), that order may not be recreated in the quantified version. An
example of this can be seen in section 7.2.3.

An alternative to our modified optimal scaling is to use an algo-
rithm similar to that described in [Ankerst et al. 1998] for rearrang-
ing dimensions for a visualization. We search for an ordering of the
rows of Figure 6 that minimizes the sum of the distances between
all pairs of adjacent rows. This defines the order of the nominal
values. The spacing between values can be defined using the dis-
tance between the row values. Our Optimal Scaling quantification
is faster than this algorithm because Optimal Scaling directly uses
output from CA at no extra cost.

6 Classing Step

Classing (or intra-dimension clustering) is the process of finding
which values within a nominal variable are similar to each other and
thus can be grouped together. For this step, we want a technique that
can take as input a table with rows representing the values of the
target variable and columns representing independent dimensions
extracted from the analysis variables, and produce a hierarchical
classing tree showing value groupings and the amount of informa-
tion lost with each grouping (shown in Figure 8). One method for
solving this is to apply a hierarchical clustering algorithm on the CA
output table (Figure 6), where each value (row point) is weighted
by its counts.

Classing is a data reduction technique, thus it results in a loss
of information. In this step, we also want to show the amount of
information lost whenever two values are grouped together, and
display this alongside the classing tree. To approximate the loss
of information incurred in classing the nominal variable X, we fol-
low four steps (inspired by [Greenacre 1993]): (1) Determine the
variable V with the highest association with X. (2) Create a con-
tingency table between variables X and V. (3) Calculate the total
table measure of association (e.g., Uncertainty Coefficient). (4)
Starting from the bottom of the classing tree and going all the
way to the top, for every pair of nodes merged together, calcu-
late the loss of information incurred, defined by the cumulative
percentage loss of information In f oLoss = 100∗ (A( f ullTable)−
A(a f terMerging))/A( f ullTable), where A(t) is the association
measure for table t. An alternative measure of information loss is
the R-squared measure that can be calculated with Cluster Analysis
[SAS Institute Inc 2000].

7 Experimental Evaluation

In this section, we compare the MCA-based implementation, FCA-
based implementation, and the common approach of arbitrary quan-
tification (arbitrary ordering and uniform spacing) using a wide
range of evaluation measures. We focus our evaluations on the Dis-
tance Step (MCA vs. FCA) because it is the most important step
in the DQC approach. All implementations and evaluations were
done within XmdvTool [XmdvTool Home Page 2003].

7.1 Setup

We used real as well as synthetic data sets, as listed in Figure 11.
Most of the real data sets used are popular benchmark data sets
taken from [Blake and Merz 1998]. We have used only the nomi-
nal variables for most of these data sets. The NOTPERF synthetic



Figure 11: Evaluation Data Sets

data set has three variables (quality, color, size) and is intended to
simulate varying degrees of association. This is the data set used
in all examples given in earlier sections. The PERF synthetic data
set has three variables (region, country and product code) and is in-
tended to simulate perfect associations (1-to-many: region-country,
many-to-many: specific set of products are only sold in specific
countries).

7.2 Quality of Visual Display

Intuitively, quantification A is better than quantification B if the vi-
sual display resulting from A allows the data analyst to confirm or
discover (true) patterns in the data that are otherwise harder or im-
possible to learn using B. The quality of a visual display is more
difficult to measure and quantify. One alternative is to conduct
user studies and have subjects answer questions using data sets for
which they have some domain knowledge. Example questions in-
clude: Based on your domain knowledge, are the values that are po-
sitioned close together for the most part similar to each other? Are
the values that are positioned far from the rest of the other values
for the most part that different? Is the perceived structure improved
by the ordering plus spacing? Did you discover any new patterns
(e.g., outliers, clusters, strength of association between two nomi-
nal variables)? In general, which quantification do you feel is better
(easier to understand, more believable ordering and spacing)?

7.2.1 Automobile Data Set Case Study

We chose the Automobile Data Set as an initial test because it is
easy to interpret. Figures 12, 13 and 14 display the quantified ver-
sions of selected variables in a Parallel Coordinates display. In Par-
allel Coordinates, each vertical line represents one variable, and
each polyline cutting across the vertical axes represents one in-
stance in the data set. Parallel Coordinates is one type of display
that requires ordering and spacing of values and it can display sev-
eral variables compactly. In these figures, we have ordered the vari-
ables such that the vertical axes of highly associated variables are
adjacent to each other for easier interpretation.

The MCA-based display (Figure 12) and the FCA-based dis-
play (Figure 13) present alternative notions of similarity among
the values. Some results are similar (Peugot/Mercedes are posi-
tioned away from Honda/Mazda), some are different (the spacing
between Convertible/Hardtop/Hatchback and Sedan/Wagon). But
both MCA and FCA displays tend to agree with our domain knowl-
edge. Which is better depends on the user’s preference. Also,
both MCA and FCA-based displays have fewer line crossings (125
and 120 respectively) than the Arbitrary Quantification display
(208)(Figure 14), which we believe improves interpretability.

Figure 12: Automobile Data, MCA-Based Quantification

Figure 13: Automobile Data, FCA-Based Quantification

Figure 14: Automobile Data, Arbitrary Quantification

7.2.2 PERF Data Set Case Study

Figures 15 and 16 display the quantified versions of the variables
in the PERF Data Set. Recall that the region-country pair has a
1-to-many association while the country-product code pair has a
many-to-many association. These perfect associations are revealed
in all CA-based quantifications but are hidden in the arbitrary quan-
tification.



Figure 15: Perfect Association Data, FCA-Based Quantification

Figure 16: Perfect Association Data, Arbitrary Quantification

7.2.3 AIDSPIDS Data Set Case Study

The AIDSPIDS data set contains information abstracted from ac-
quired immunodeficiency syndrome (AIDS) cases reported in the
United States from 1981 to 2000 [United States Department of
Health 2001]. Two variables, DxDate and RepDate, contain the
year and month. Variable MSA is the metropolitan area code.

After the DQC analysis process presented in the above sections,
a parallel coordinate plot is generated to show the different associ-
ations between nominal values. By brushing a cluster as shown in
Figure 17, we can find that the cities with MSA code of 6780, 2000,
2880 6520 and 7320 present similar behaviors in these AIDS cases
(Figure 17). The careful examination of the contingency table of
the original data supports this result.

From the scatterplot between Age and MSA, several similar pat-
terns can be found (Figure 18). The age group of 1 and 0 appear
very close in all AIDS cases reported in the past twenty years. This
makes sense if we look back into the data set. Age ranges 0 and 1
represent ≤ 1 year and between 1 and 12. The AIDS cases in young
children only occurred in a small number of areas of the country. It
is not difficult to find that several regional groups present similar
patterns in several age groups.

A close look of the zoomed-in view of the scatterplot between
Age and MSA shows that certain nominal values have been grouped
together because they present similar patterns in the other dimen-
sions (Figure 19). For example, age classes 8 and 6 are grouped
together because these two groups show similar cases along all re-
gions. Similarly, age classes 9 and 4 are mapped very closely to-
gether.

7.3 Memory Space and Processing Time

The most memory-intensive part of our implementation is the use
of CA in the Distance Step, so we only focus on the memory
needed there. Ignoring any specific memory optimization that may
be employed by some CA implementations, in general, the MCA

input table (Figure 9) requires (sum o f cardinality)2 while the
FCA input table (Figure 10) requires at most max cardinality ∗
(sum o f cardinality−max cardinality) for each nominal variable
to be processed. These formulas and the example tables show that
MCA uses more memory than FCA.

Figure 20 shows the percentage of time the FCA-based approach
runs longer than MCA-based using the formula 100∗ (total time−
MCA total time)/(MCA total time). For each MCA bar, we show
the actual number of seconds that the MCA-based approach ran. So
although the gap between FCA and MCA run times seems large, the
actual run time of the FCA-based approach is still fast.

Figure 20: Total Run Time of Entire DQC Approach

7.4 Quality of Quantification

Intuitively, a given quantification is good if (a) instances that are
close to each other in nominal space are also close together in quan-
tified space, and (b) if two variables are highly associated with each
other, we expect their quantified versions to also have a high corre-
lation measure.

[Greenacre 1993] suggests the use of Average Squared Cor-
relation to measure the quality of a quantification. Given the
original dataset, replace each nominal variable V j with its quan-
tified version Q j (i.e. scale). For each instance i, calculate
scorei = average(Qi j) for all variables j. For each quantified vari-
able Q j , calculate the correlation of Q j and score for the en-
tire data set. Then calculate the average squared correlation =
average((correlation(Q j ,score))2) across all Q j . The higher the
average squared correlation, the better the quantification. Intu-
itively, if two variables are highly associated with each other, we
expect their quantified versions to also have a high correlation mea-
sure. If all nominal variables are highly associated with each other,
then the score of each observation should be highly correlated with
each individual quantified variable. This further implies that if two
observations are close together in nominal space, then they would
also be close together in quantified space; so the scores of these
observations would be close to each other.

Figure 21 shows the Average Squared Correlation for MCA-
based, FCA-based, and arbitrary quantifications. It shows that both
CA-based quantifications are better than arbitrary quantification.
The figure also verifies the Optimal Scaling theory, namely, that the
quantification based on the coordinates of the first MCA extracted
dimension is optimal [Greenacre 1993]. Figure 22 shows how close
the FCA scales are to the MCA scales. This figure uses boxplots to
show, for the real data sets, the distribution of the correlation be-
tween MCA and FCA scales. These boxplots show the minimum
and maximum values as well as the 25th, 50th and 75th percentile
values of each set of correlation values. Correlation values close to
1.0 mean the FCA scales closely agree with the MCA scales.



Figure 17: AIDSPIDS data visualized using parallel coordinates. The highlighted cluster corresponds to MSA codes 6780, 2000, 2880 and
7320 that were grouped together by our algorithm. They present similar patterns in the AIDS cases reported. Some labels were filtered to
reduce clutter.

Figure 18: AIDSPIDS data scatterplot of Age and MSA code. Similar patterns can be found in several age groups and regional clusters. Note
that only a subset of labels are shown along the horizontal axis to avoid clutter.



Figure 19: A zoomed-in view of AIDSPIDS data set. Age classes 8 and 6 are grouped together because these two groups show similar cases
along most regions of the country. Similarly, age groups 9 and 4 are mapped very closely. Similar patterns are visible in the clustering of
MSA codes.

Figure 21: Average Squared Correlation

Figure 22: Correlation between MCA Scales and FCA Scales

7.5 Quality of Classing

Intuitively, classing A is better than classing B if, given a classing
tree, the rate of information loss with each merging is slower. One

way of calculating information loss is given in Section 6.

Figure 23 compares the rate of information loss of MCA com-
pared to FCA for one variable. Each line shows the cumulative
information loss incurred at each merging of nodes. The lower
the line, the slower is the information loss, the better the class-
ing. The gap between the lines (MCA cumulative loss minus
FCA cumulative loss) can be calculated for all variables. Its distri-
bution has been summarized in Figure 24. This plot shows that the
FCA-based classing is better than MCA-based for some data sets.

Figure 23: Information
Loss Due To Classing
For One Variable

Figure 24: Distribution of the Differ-
ence in MCA and FCA Information
Loss

8 Conclusions

In this paper, we proposed the Distance-Quantification-Classing
(DQC) approach which enables the exploration of data sets con-
taining nominal variables using visualization tools that have been



designed exclusively for numeric variables. To make the approach
accessible to data analysts, we implemented it in XmdvTool, a
public-domain multivariate data visualization package. For our im-
plementation, we used Multiple Correspondence Analysis (MCA)
and our own Focused Correspondence Analysis (FCA) for the Dis-
tance Step, a modification of the Optimal Scaling formula for the
Quantification Step, and Hierarchical Clustering for the Classing
Step. We evaluated our approach in terms of memory space re-
quirement, run time, quality of quantification, quality of classing,
and quality of visual display. MCA-based and FCA-based quan-
tifications are clearly better than the common practice of arbitrary
quantification. In terms of the quality of classing and quantifica-
tion, MCA seems to perform better than FCA but in terms of the
quality of the visual displays, which one is better depends on the
eye of the beholder. When memory space is limited, FCA provides
a viable alternative to MCA for the Distance Step. The adjustment
made to the quantification function to make it work for variables
with perfect association improves upon the existing technique of
taking only the coordinates of the top CA dimension. Producing
classing trees further allows users to reduce the data for displays
requiring low cardinality nominal variables.

The DQC approach is a general-purpose pre-processing step
which can also be used for other techniques that require low car-
dinality nominal variables as input (e.g., such as clustering algo-
rithms, association rules, neural networks), or require numeric vari-
ables as input (e.g., regression). Possible future work includes al-
lowing the user to interactively modify the ordering, spacing and
classing of the nominal values, conducting formal evaluations, and
trying other alternatives for each step.
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