Solanesyl diphosphate synthase, an enzyme of the ubiquinone synthetic 1 pathway, is required throughout the life cycle of Trypanosoma bruceit 2 3 De-Hua Lai,^{a,b*} Estefanía Poropat,^c Carlos Pravia,^c Malena Landoni,^d Alicia S. Couto,^d 4 Fernando G. Pérez Rojo,^e Alicia G. Fuchs,^{c,e} Marta Dubin,^f Igal Elingold,^f Juan B. Rodríguez,^g 5 Marcela Ferella,^h Mónica I. Esteva,^c Esteban J. Bontempi,^{a,c,#} and Julius Lukeš^{a,b,#} 6 7 Biology Centre, Institute of Parasitology^a, and Faculty of Sciences, University of South 8 Bohemia, České Budějovice (Budweis), Czech Republic^b; Instituto Nacional de Parasitología 9 "Dr. M. Fatala Chabén", Ministerio de Salud, Buenos Aires, Argentina^c; CIHIDECAR, 10 Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Universidad de 11 Buenos Aires, Buenos Aires, Argentina^d: CAECIHS, Universidad Abierta Interamericana, 12 Buenos Aires, Argentina^e;CEFYBO, UBA-CONICET, Facultad de Medicina, Buenos Aires, 13 Argentina^f; Departamento de Química Orgánica and UMYMFOR (CONICET-FCEyN), 14 Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, 15 16 Argentina^g; Department of Genetics & Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden^h. 17 18 #Address correspondence to Esteban Bontempi, ejbon@yahoo.com; or Julius Lukeš, 19 20 jula@paru.cas.cz. * Present address: Center for Parasitic Organisms, State Key Laboratory of Biocontrol, School 21 22 of Life Sciences, Sun Yat-Sen University, Guangzhou, P.R. China.

²³ [†] Supplemental material for this article may be found at http://ec.asm.org/.

25

Running Head: T. brucei Solanesyl Diphosphate Synthase 24

- 26 27 Ubiquinone 9 (UQ9), the expected product of the long-chain solanesyl diphosphate 28
 - ABSTRACT

synthase (TbSPPS), has a central role in reoxidation of reducing equivalents in the 29 mitochondrion of Trypanosoma brucei. The ablation of TbSPPS gene expression by RNAi 30 increased the generation of reactive oxygen species and reduced cell growth and oxygen 31 consumption. The addition of glycerol to the culture medium exacerbated the phenotype by 32 33 blocking the endogenous generation and excretion of UQ9. The participation of TbSPPS in UQ 34 synthesis was further confirmed by growth rescue using UQ with 10 isoprenyl subunits (UQ10). Furthermore, the survival of infected mice was prolonged upon the down-regulation of 35 TbSPPS and/or the addition of glycerol to drinking water. TbSPPS is inhibited by 1-[(n-oct-1-36 ylamino)ethyl] 1,1-bisphosphonic acid, and treatment with this compound was lethal for the 37 cells. The findings that both UQ9 and ATP pools were severely depleted by the drug, and that 38 39 exogenous UQ10 was able to fully rescue growth of the inhibited parasites, strongly suggest that TbSPPS and UQ synthesis were the main targets of the drug. These two strategies highlight 40 the importance of TbSPPS for T. brucei, justifying further efforts to validate it as a new drug 41 42 target. 43

Keywords: sleeping sickness, inhibitor, chemotherapy, solanesyl diphosphate synthase, 44

45 Trypanosoma brucei, ubiquinone.

46

INTRODUCTION

47 48

The haemoflagellate parasite *Trypanosoma brucei* is responsible for sleeping sickness, a serious disease affecting humans and other vertebrates in sub-Saharan Africa. The main drugs used for treatment have numerous side effects, some are complicated to administer, and poor efficiency with increasing incidence of drug resistance has been reported (1). Therefore, new drugs targeting essential metabolic pathways are urgently needed.

We are interested in polyprenyl diphosphate synthases, enzymes catalyzing the 54 55 elongation of isoprenoid chains through the condensation of isopentenyl pyrophosphate (5-56 carbon unit, C5) with allylic prenyl pyrophosphates (2) to produce chains of variable length. 57 The detection of prenylated proteins showed that short isoprenoid chains, both farnesyl and 58 geranygeranyl, are indeed being attached to proteins in this protist (3, 4). Activities of two key enzymes of this pathway in T. brucei, namely farnesyl diphosphate synthase and farnesyl 59 transferase, have been characterized (5, 6, 7). Moreover, promising inhibitors of farnesyl 60 diphosphate synthase with anti-parasitic activities have been tested in vitro (8, 9, 10) and in vivo 61

62 (11).

EC Accepts published online ahead of print

On the other hand, enzymes synthesizing longer isoprenoid chains have so far not been thoroughly studied in trypanosomatids (9, 12). Their product is likely to be incorporated into ubiquinone that has a central role in respiration of *T. brucei*, which has two well-studied metabolically distinct stages in its life cycle. The bloodstream forms (BSF), present in vertebrate blood, respires solely via trypanosome alternative oxidase (TAO), while the procyclic forms (PCF), occurring in the tse-tse fly vector, uses both TAO and cytochrome *c*containing respiratory chain (for reviews see 13, 14). Although UQs of different lengths have

70	been found in various parasitic protists (12, 15), so far only UQ9 was detected in the BSF of T .
71	brucei via mevalonate, its labeled precursor (16, 17).
72	Due to the importance of UQ in the parasite's metabolism we decided to study TbSPPS (T.
73	brucei solanesyl diphosphate synthase), which is responsible for the synthesis of 9 isoprenyl
74	subunits chains. Alterations in the UQ level may affect oxygen consumption, reoxidation of
75	NADH and the ATP pool. Indirectly, the mitochondrial membrane potential in PCF, which is
76	produced via the respiratory chain as in most other aerobic eukaryotes, could decrease. The
77	situation is different for the mammalian-infective BSF cells, which uniquely generate the same
78	potential through the ATP-consuming reverse action of ATP synthase (18). Since UQ
79	participates in the regeneration of the NADH required for ATP synthesis in the glycosomes, the
80	shortage of reduced cofactor is likely to decrease the ATP level in this compartment, as well as
81	in the cytoplasm and mitochondrion.
82	Reactive oxygen species (ROS) is mostly generated at a low rate as a byproduct of the
83	respiratory chain, mainly from complexes I and III (19, 20). Having a central position in the
84	respiratory chain, UQ receives in a typical cell electrons from complexes I and II and, if
85	present, from alternative NADH dehydrogenase. While both the presence and activity in the <i>T</i> .
86	brucei PCF of complex II and rotenone-insensitive alternative NADH dehydrogenase are
87	undisputed (13, 14, 21, 22), both the composition (23, 24) and activity of complex I seems to be
88	highly unusual (25, 26). Diminishing the cellular concentration of UQ could then favor an
89	increase of the reduced NADH pool with parallel formation of ubisemiquinone, facilitating the
90	deviation of electrons to oxygen with consequent mitochondrial ROS formation. A lower
91	amount of UQ could also affect its function in membranes outside the mitochondrion, where it
92	reduces lipid peroxyl radicals and radical scavengers like α -tocopheryl and, together with the

93	cytochrome b5 reductase, whose gene is present in the T. brucei genome, even assists in
94	extracellular ascorbate stabilization (27). Hence, the depletion of the UQ pool in <i>T. brucei</i> may
95	disrupt the redox equilibrium, increasing ROS through a multifaceted action.
96	Indeed, the down-regulation of the mitochondrion-confined TbSPPS (28) triggered serious
97	metabolic effects in both life stages of T. brucei. These effects were mimicked in the wild type
98	cells by the TbSPPS bisphosphonate inhibitor, 1-[(n-oct-1-ylamino)ethyl] 1,1-bisphosphonic
99	acid (compound 1) (9). In vivo, infected mice displayed longer survival when TbSPPS was
100	ablated by RNAi, confirming its importance in the metabolism of the parasite.
101	
102	MATERIALS AND METHODS
103	
104	Materials. Compound 1 was prepared as previously described (9). Nickel-nitrilotriacetic
105	acid-agarose was obtained from Qiagen (USA), and paraquat, dihydroethidium and UQ10 were
106	provided by Sigma (USA). UQ10/ß-cyclodextrin (a kind gift from A. Šmidovnik) is a complex
107	of 7.5% UQ10 (Bulk Medicines & Pharma, Germany) and ß- cyclodextrin (Xi'an HongChang
108	Pharma, China). Tetramethylrhodamine ethyl ester (TMRE) was purchased from Molecular
109	Probes (USA), Mitotracker Deep Red and CellTiter-Glo® Reagent were obtained from
110	Invitrogen (USA) and Promega (USA), respectively.
111	
112	DNA sequencing and bioinformatics. The entire coding sequence of the TbSPPS gene
113	was PCR amplified from genomic DNA (strain 29-13) using primers PreBru1 5'-
114	CCTCGAGATCTATGCACCGTGCTAATATTATAT -3' and PreBru2 5'-
115	CCAAGCTTCACAATTCCCGTGTCAGG -3' that introduced Bg/II and HindIII restriction

5

116	sites, respectively, for convenient cloning into the p2T7-177 RNAi and expression vectors.
117	Besides, primer PreBru1 contains an XhoI restriction site, which was used for cloning into the
118	pZJM RNAi vector. All constructs were verified by sequencing. Homology searches were
119	performed using Blast or GeneDB, and sequences were aligned using ClustalX 1.81. The
120	molecular weight and isoelectric point were obtained from the ExPASy Server (cn.expasy.org).
121	
122	Determination of EC _{50.}
123	Parasites were adjusted to an initial concentration of 5 x 10^4 BSF or 1 x 10^6 PCF ml ⁻¹ in 200

µl medium and loaded into sterile 96 well plates. Two-fold serial dilutions of compound 1
(boiled to insure complete dissolution and sterility) were added to duplicate wells. After three
days, cells in all wells were counted with a Neubauer hemocytometer. Each assay was repeated
three times. The EC₅₀ (effective concentration for half-maximal growth inhibition) was
determined using the CompuSyn software (http://www.combosyn.com/index.html) (29).

129

C Accepts published online ahead of print

Plasmid constructs, transfections, cloning, RNAi induction, and cultivation. The full-130 131 size TbSPPS gene (1080 bp) was cloned into the pZJM (30) and p2T7-177 (31) vectors using the XhoI, BglII and HindIII sites included in the primer sequences. T. brucei PCF 29-13 and 132 BSF single marker (SM) cell lines, were transfected with the linearized constructs, and selected 133 as described elsewhere (32, 33). The PCF flagellates were cultured at 27°C in SDM79 medium 134 supplied with 15 μ g ml⁻¹ neomycin G418 and 50 μ g ml⁻¹ hygromycin, diluted to 10⁶ cells ml⁻¹ 135 every other day, while BSF were kept at 37°C in HMI-11 medium with 2.5 µg ml⁻¹ G418 and 136 5% CO₂, and diluted to 10⁵ cells ml⁻¹ every other day. Phleomycin-resistant transfectants of 137 both stages (2.5 or 1.3 µg ml⁻¹) were cloned by limiting dilution, and RNAi was induced by 138

adding 1 µg ml⁻¹ tetracycline to the medium. Lister 427 PCF (29-13) and BSF (90-13) cell lines
(34) were used for the inhibition experiments. Cell concentration was determined using a
Neubauer hemocytometer or the Z2 Coulter Counter (USA).
Northern and western blot analyses. Total RNA was isolated using Trizol (Sigma) and 10
µg of RNA per lane was loaded on a 1% formaldehyde agarose gel, blotted, linked to the
membrane, and hybridized with a radiolabelled probe under conditions described elsewhere

(35). Total cell lysates were separated on 12% SDS-PAGE gels, transferred to membranes and
probed with polyclonal antibodies against RNA binding protein 16 (RBP16) (kindly provided
by L. Read) and against TbSPPS at 1:1,000 dilutions (28). Appropriate secondary antibodies
(1:2,000) (Sevapharma, Czech Rep.) coupled to horseradish peroxidase were visualized using
the ECL kit according to the manufacturer's protocol (Pierce, USA).

151

152 Measurement of respiration rate, $\Delta \Psi_m$ and reactive oxygen species. Oxygen

consumption of both stages was measured as described elsewhere (35, 36). Changes of ROS or the $\Delta \Psi_m$ were determined using the FACSCalibur or the FACSAria flow cytometers (Becton-Dickinson, USA), after the addition of dihydroethidium, TMRE or Mitotracker Deep Red to the cell suspensions (10⁶ cells ml⁻¹) at final concentrations of 15 μ M, 250 nM or 500 nM, respectively, with carbonyl cyanide m-chlorophenyl hydrazine (CCCP) at a final concentration of 20 μ M used as a control. A total of 10,000 events were acquired in the region previously established as that corresponding to the parasites. Data were analyzed with one-way analysis of

variance (ANOVA). Significant differences among means were identified by Tukey and

161 Dunnett post-tests and $p \le 0.05$ was adopted as the minimum criterion of significance.

Statistical analyses were performed using the GraphPad Software. Alterations in the
fluorescence were quantified as the percentage of its variation compared with untreated
parasites used as a control. The data shown in the graphs are expressed as means ± standard
deviation of at least two independent experiments.

166

In vivo infectivity and glycerol treatment. Mice had food and fresh water available ad 167 libitum. Housing conditions, care, handling and euthanasia method were approved by our 168 Institution's Animal Ethics Committee. To determine infectivity of trypanosomes depleted for 169 TbSPPS, four groups of CD-1 mice (5 animals each) were infected intraperitoneally with 170 100,000 BSF RNAi cells. In their drinking water the first group received 1 mg ml⁻¹ doxycycline 171 (AppiChem, USA) sweetened with 50 mg ml⁻¹ of sucrose, starting two days before the 172 infection. The second group received 5% glycerol in the drinking water, while the third group 173 received both glycerol and doxycycline. The control group was supplied with pure drinking 174 water. The survival was recorded at least twice a day. 175

176

177 High-performance liquid chromatography. To calibrate the column, the following molecules were run: UQ8 extracted with hexane from E. coli, UQ9 isolated from T. brucei, and 178 commercially available UQ10. Treated (1 µM compound 1) and untreated BSF were pelleted 179 and diluted in 1 ml methanol. As an internal standard, a known amount of UQ10 was added. 180 181 The samples were extracted twice with 1 ml hexane. Both extractions were pooled, dried under nitrogen flow, and dissolved in hexane. Samples were analyzed in a HPLC Waters apparatus 182 using a Supelco C-18 column at 0.7 ml min⁻¹ flow. The mobile phase was methanol: hexane, 183 184 80:20, v/v, isocratic, the loop was 5 μ l and the detection was at 275 nm. All solvents were

Downloaded from http://ec.asm.org/ on March 8, 2021 by gues:

HPLC grade. The amount of UQ9 was quantified from the area under the curve by comparisonwith the UQ10 standard.

187

EC Accepts published online ahead of print

188	Measurement of ATP content. An equal volume of the CellTiter-Glo® Reagent (Promega,
189	USA) was added to <i>T. brucei</i> , and after a 10 min-long incubation, luminescence was read in a
190	Glomax Multidetection System (Promega). The signal was directly related ($r^2 = 0.99$) to the cell
191	number per well, in the range of 30,000 to 500,000 cells. The luminescence produced by serum-
192	supplemented HMI-11 medium alone was two orders of magnitude lower than that produced by
193	the flagellates.
194	
195	RESULTS
196	
197	TbSPPS gene. The <i>T. cruzi</i> TcSPPS gene used as a query identified a single <i>T. brucei</i> gene
198	(Tb09.160.4300) encoding a protein with calculated molecular weight of 39.2 kDa and an
199	isoelectric point of 6.12. The alignment of TbSPPS and TcSPPS revealed in both proteins the

presence of seven regions related to catalysis or binding (37, 38) (see Fig. S1). The TbSPPS

201 gene, identical in strains 29-13 and TREU927/4, is highly conserved between *T. brucei* and *T.*

202 *cruzi*, as there is 66% and 68% identity (83% similarity) at the nucleotide and amino acid

203 levels, respectively (see Fig. S1 in the supplemental material). Additionally, alanine occupy

204 position -5 before the first and second aspartate-rich motif (Fig. S1), allowing elongation of the

205 isoprenoid chain over C15 (39).

206

207	Inhibition of TbSPPS expression by RNAi. To assess the importance of the protein for
208	parasite's metabolism, PCF and BSF cells were transfected with the pZJM and p2T7-177 RNAi
209	vectors, each bearing a full-length TbSPPS gene, respectively. First, total RNA was isolated
210	from the non-induced and RNAi-induced PCF clonal cell line and analyzed by Northern
211	blotting. In the parental 29-13 cell, TbSPPS is abundantly transcribed (band of \sim 1.9 kb-long.
212	Fig. 1A; also see Fig. S1 in the supplemental material), but probably due to small leakage of the
213	T7 promoter, less TbSPPS mRNA is present in the non-induced cells (clone 4). This effect is
214	likely reflected also by the slight growth inhibition of the non-induced cells, as compared to the
215	29-13 parentals (Fig. 2A). Upon induction of RNAi with tetracycline, the TbSPPS mRNA was
216	undetectable after two days, with a concurrent massive appearance of double-stranded RNA
217	(Fig. 1A), yet a slow growth phenotype of PCF started only from day 7 (Fig. 2A). Based on the
218	growth curve, day 6 post-RNAi induction was selected for all subsequent experiments. At this
219	time point, the levels of the TbSPPS mRNA and corresponding protein became undetectable by
220	Northern and western blot analyses (Fig. 1A), confirming high efficiency of RNAi.
221	Viability of the BSF cells was also compromised upon RNAi induction. As revealed by
222	western blot analysis, TbSPPS was equally abundant in the parental SM and the non-induced
223	cells (clone 6), while the protein was downregulated already on day 3 post-induction (Fig. 1B).
224	As judged by the amount of the protein, there seems to be no leakage. Although the
225	disappearance of TbSPPS upon RNAi induction was not complete, growth inhibition started
226	already from day 2 (Fig. 2B).
227	
228	Diminished O ₂ consumption. As shown in Fig. 3, respiration of the non-induced PCF cells

Diminished O₂ consumption. As shown in Fig. 3, respiration of the non-induced PCF cells
 represents about 90% of that of the parental cell line and remained the same during the first few

230	days after RNAi induction. However, on day 6, the oxygen consumption rate of the RNAi-
231	induced cells dropped to approximately 60%, in correlation with the appearance of the growth
232	phenotype. The diminished O ₂ consumption then lasted till day 10 post-induction, when the
233	measurement was finished (Fig. 3). Cyanide (KCN) and salicylhydroxamic acid (SHAM),
234	inhibitors of the cytochrome c oxidase (= complex IV) and TAO, respectively, were used to
235	discriminate between the oxygen consumption of each pathway. Upon RNAi induction, no
236	switch from one pathway to the other was observed, indicating that the decreased oxygen
237	consumption rate was caused by both of them (Fig. 3A; also see Fig. S3A-E). On the other
238	hand, the oxygen consumption of BSF that rely solely on TAO, dropped on day 3 post-RNAi
239	induction to 50% as compared to the parental and non-induced parasites (Fig. 3B and Fig. S3F).
240	
241	Inhibition of BSF RNAi cells by glycerol or compound 1. Under hypoxic or anaerobic
241 242	Inhibition of BSF RNAi cells by glycerol or compound 1. Under hypoxic or anaerobic conditions, glycerol-3-phosphate and ADP accumulate within the glycosomes, causing the
241 242 243	Inhibition of BSF RNAi cells by glycerol or compound 1. Under hypoxic or anaerobic conditions, glycerol-3-phosphate and ADP accumulate within the glycosomes, causing the glycerol kinase to operate in reverse and excrete glycerol (40). Under these conditions,
241 242 243 244	Inhibition of BSF RNAi cells by glycerol or compound 1. Under hypoxic or anaerobic conditions, glycerol-3-phosphate and ADP accumulate within the glycosomes, causing the glycerol kinase to operate in reverse and excrete glycerol (40). Under these conditions, exogenous glycerol added to the medium became a toxic metabolite, as it may diffuse into the
241 242 243 244 245	Inhibition of BSF RNAi cells by glycerol or compound 1. Under hypoxic or anaerobic conditions, glycerol-3-phosphate and ADP accumulate within the glycosomes, causing the glycerol kinase to operate in reverse and excrete glycerol (40). Under these conditions, exogenous glycerol added to the medium became a toxic metabolite, as it may diffuse into the cells, inhibiting the glycerol kinase activity and preventing NAD ⁺ regeneration (41). Since the
241 242 243 244 245 246	Inhibition of BSF RNAi cells by glycerol or compound 1. Under hypoxic or anaerobic conditions, glycerol-3-phosphate and ADP accumulate within the glycosomes, causing the glycerol kinase to operate in reverse and excrete glycerol (40). Under these conditions, exogenous glycerol added to the medium became a toxic metabolite, as it may diffuse into the cells, inhibiting the glycerol kinase activity and preventing NAD ⁺ regeneration (41). Since the ablation of TbSPPS by RNAi will decrease the function of the glycerol-3-phosphate shuttle, the
241 242 243 244 245 246 247	Inhibition of BSF RNAi cells by glycerol or compound 1. Under hypoxic or anaerobic conditions, glycerol-3-phosphate and ADP accumulate within the glycosomes, causing the glycerol kinase to operate in reverse and excrete glycerol (40). Under these conditions, exogenous glycerol added to the medium became a toxic metabolite, as it may diffuse into the cells, inhibiting the glycerol kinase activity and preventing NAD ⁺ regeneration (41). Since the ablation of TbSPPS by RNAi will decrease the function of the glycerol-3-phosphate shuttle, the addition of glycerol should further enhance the ensuing phenotype. Indeed, while the addition
241 242 243 244 245 245 246 247 248	Inhibition of BSF RNAi cells by glycerol or compound 1. Under hypoxic or anaerobic conditions, glycerol-3-phosphate and ADP accumulate within the glycosomes, causing the glycerol kinase to operate in reverse and excrete glycerol (40). Under these conditions, exogenous glycerol added to the medium became a toxic metabolite, as it may diffuse into the cells, inhibiting the glycerol kinase activity and preventing NAD ⁺ regeneration (41). Since the ablation of TbSPPS by RNAi will decrease the function of the glycerol-3-phosphate shuttle, the addition of glycerol should further enhance the ensuing phenotype. Indeed, while the addition of 4 mM glycerol to the HMI-11 medium within 5 days had just a mild inhibitory effect on the
241 242 243 244 245 245 246 247 248 249	Inhibition of BSF RNAi cells by glycerol or compound 1. Under hypoxic or anaerobic conditions, glycerol-3-phosphate and ADP accumulate within the glycosomes, causing the glycerol kinase to operate in reverse and excrete glycerol (40). Under these conditions, exogenous glycerol added to the medium became a toxic metabolite, as it may diffuse into the cells, inhibiting the glycerol kinase activity and preventing NAD ⁺ regeneration (41). Since the ablation of TbSPPS by RNAi will decrease the function of the glycerol-3-phosphate shuttle, the addition of glycerol should further enhance the ensuing phenotype. Indeed, while the addition of 4 mM glycerol to the HMI-11 medium within 5 days had just a mild inhibitory effect on the parental BSF cells (3.4x slower growth) and the non-induced TbSPPS BSF cells (5.2x slower
241 242 243 244 245 246 247 248 249 250	Inhibition of BSF RNAi cells by glycerol or compound 1. Under hypoxic or anaerobic conditions, glycerol-3-phosphate and ADP accumulate within the glycosomes, causing the glycerol kinase to operate in reverse and excrete glycerol (40). Under these conditions, exogenous glycerol added to the medium became a toxic metabolite, as it may diffuse into the cells, inhibiting the glycerol kinase activity and preventing NAD ⁺ regeneration (41). Since the ablation of TbSPPS by RNAi will decrease the function of the glycerol-3-phosphate shuttle, the addition of glycerol should further enhance the ensuing phenotype. Indeed, while the addition of 4 mM glycerol to the HMI-11 medium within 5 days had just a mild inhibitory effect on the parental BSF cells (3.4x slower growth) and the non-induced TbSPPS BSF cells (5.2x slower growth), on their RNAi-induced counterparts the effect was dramatic (48.7x slower growth)

252	Next, we examined the effect of 1-[(n-oct-1-ylamino)ethyl] 1,1-bisphosphonic acid, termed
253	here compound 1, which is a TbSPPS bisphosphonate inhibitor (Fig. 4B). After the addition of
254	compound 1 (1 μ M), BSF cells (SM)'s oxygen consumption dropped within 24 hrs to 30%, as
255	compared to the non-treated parasites (Fig. 3B; also see Fig. S3F), but without severe growth
256	defect (Fig. 4C). When trying on the RNAi-induced cells, a strong growth inhibition occurred
257	in the presence of the same concentration (lower than the EC_{50} , see below). Cells grew normally
258	for the first two days, but died suddenly on day 3 (Fig. 4C). It should be noted that this effect
259	could not be mimicked even by treating the parental BSF with the simultaneous addition of
260	compound 1 and 4 mM glycerol (22.9x growth inhibition), suggesting that a minimal amount of
261	the active enzyme is sufficient to support the growth.
262	
263	Measurement of ROS and mitochondrial membrane potential, and paraquat
264	treatment. Mitotracker and TMRE are fluorophores sensitive to the mitochondrial membrane

potential $(\Delta \Psi_m)$ that stain functional mitochondria. Flagellates from both stages depleted for 265 TbSPPS did not show any significant increase of the potential as compared to the parental cells. 266 To follow another possible outcome of the disruption of the respiratory system, we have 267 detected the generation of ROS using dihydroethidium. Indeed, in the PCF cells ROS increased 268 continuously, reaching a maximum between days 6 and 8 (Fig. 5A). RNAi-induced BSF did not 269 270 show any change in fluorescence upon addition of dihydroethidium, suggesting no changes in ROS generation (data not shown). The different phenotypes between two cell forms suggested 271 272 that the dramatic increase of ROS in the PCF flagellates was likely generated by the disruption 273 of the respiratory chain, which is active only in this life cycle stage.

275	concentrations ranging from 0.5 to 2 μM to the non-induced and RNAi-induced PCF on day 5.
276	Twenty four hours later an increment in ROS production that lasted several days was detected
277	by flow cytometry (data not shown). The effect was paralleled by a significant growth
278	inhibition on day 8 observed in the paraquat-treated RNAi-induced cells as compared to their
279	equally treated non-induced counterparts (Fig. 5B). Thus, the ROS boost in knock-down cells
280	was responsible for their increased sensitivity to paraquat.
281	
282	Rescue of RNAi by exogenous UQ and in vivo infections. Addition of UQ, the
283	downstream product of SPPS, to the medium should alleviate the effect of RNAi-mediated
284	depletion of TbSPPS. To increase its hydrophilicity and bioavailability, UQ is usually provided
285	bound to other compounds. We used a complex of UQ10 with ß-cyclodextrin, a molecule
286	widely used by the pharmaceutical industry for encapsulation (43). Cells ablated for TbSPPS
287	were subjected to three different concentrations (1, 10 and 90 μ M) of the above-mentioned
288	compound added to the cultivation medium. The growth of parental cells (SM) was considered
289	as 100%. In non-induced BSF cells, there was no effect of any of these concentrations on the
290	growth (89-95% growth). While RNAi-induced parasites (56% growth) were marginally
291	affected upon the addition of 1 μ M of UQ/B-cyclodextrin (65% growth), a significant rescue
292	(79% and 85% growth) was observed in the presence of 10 μM and 90 μM of these compounds,

To corroborate this result, paraquat, a reagent catalyzing ROS formation (42), was added at

274

EC Accepts published online ahead of print

respectively (see Fig. S2). After the addition of UQ10, the oxygen consumption returned to

normal as compared to the parental and non-induced parasites (Fig. 3B; also see Fig. S3F).

Next, we tested infection of animals with the transfected parasites. In humans, ingested

296 glycerol can raise the serum concentration to 20 mM, from the normal 0.05 mM level (44). In

297	T. brucei-infected animals, glycerol added to the drinking water improved the protective effect
298	of ascofuranone (45). Four groups of mice, each composed of five animals, were infected with
299	the same dose of 100,000 BSF RNAi transfectants treated with different substances, with their
300	survival rate being recorded. Two replications of this experimental setup were done with
301	similar results, and one of them is shown (Fig. 6). While four days was the average survival of
302	animals in the control group supplied with plain drinking water, the survival rate increased
303	significantly to 7 and 7.6 days for mice drinking water containing glycerol or doxycycline,
304	respectively. Moreover, the longest average survival of 11.2 days was recorded for animals
305	supplied with drinking water containing both substances (Fig. 6).
306	

307 **Metabolic effects of compound 1 on** *T. brucei.* Compound 1 was shown to be a potent 308 inhibitor of the *T. cruzi* SPPS, with an EC₅₀ of 250 nM (9). Due to similarities in the active site 309 and in the enzymatic mechanism of type E-polyprenyl diphosphate synthases, we hypothesized 310 that compound 1 could also be active against the TbSPPS protein. Indeed, it affected also the 311 growth of both *T. brucei* life forms, with EC₅₀ of 2 μ M for BSF as compared to EC₅₀ of 50 μ M 312 for PCF.

EC Accepts published online ahead of print

Since TbSPPS was predicted to synthesize the isoprenoid chain of UQ9, the expected effect of compound 1 treatment should be the depletion of the UQ pool. The BSF parasites were treated with the inhibitor at a concentration close to its EC₅₀, and UQ was extracted and separated by HPLC. As anticipated, a significant reduction of the UQ9 pool (90 %) was observed under these conditions (Fig. 7A), as compared to extraction standard (UQ10). UQ mediates the transfer of electrons that, through the respiratory chain and/or the

320	acceptor. We have shown the oxygen consumption of cells incubated with compound 1 in Fig.
321	3. When increased concentrations of compound 1 were used, the respiration could even drop
322	down to 13% in BSF and 16% in PCF, as compared to the non-treated cells. As with targeting
323	TbSPPS by RNAi, there was no switch from KCN-sensitive to SHAM-sensitive respiration in
324	the inhibited parasites (see Fig. S3). Trypanosomes reoxidize their NADH pool through
325	respiration. After inhibition by compound 1, the reduced rate of reoxidation could be
326	insufficient to provide enough ATP by glycolysis. We have measured the ATP pool in BSF
327	using a luminescent assay. The results were expressed in luminescent arbitrary units (lau) per 5
328	x 10^4 BSF cells. In comparison with untreated cells (1.4 x $10^5 \pm 28000$ lau), treatment with 2
329	μM of compound 1 lowered the signal to 6.75 x 10^4 lau, which represents a 51 % decrease.
330	We then tested the $\Delta \Psi_m$ variation. Low concentrations of compound 1 produced a mild
331	increase of the potential, while concentrations exceeding the respective EC_{50} caused its slight
332	decrease in both life stages, being significant (10-20%) only in PCF (Fig. 7B). Dissipation of
333	80% of the potential by the addition of the uncoupler CCCP served as a negative control. As
334	respiratory chain is a major source of ROS (46), any of its alterations are expected to generate
335	more ROS. When compared with the single peak of the untreated cells, PCF incubated with
336	compound 1 formed a population with 25-35% higher amount of ROS, and an additional
337	population with less fluorescent particles (Fig. 7C). The BSF cells, which lack a functional
338	respiratory chain, either depleted for TbSPPS or treated with compound 1 still generate a
339	normal amount of ROS. However, similarly to PCF, higher concentrations of the inhibitor
340	generated a second peak with a lower ROS concentration, likely representing dead or dying
341	cells.

342	Next, we tested whether UQ10 could rescue the growth inhibition of the 90-13 BSF cell line
343	caused by treatment with compound 1. The inhibitor was used at a concentration of 10 μ M,
344	which is lethal for BSF within three days. To eliminate the possibility of the inhibitor getting
345	trapped by ß-cyclodextrin, we added commercial UQ10 alone to the medium. In spite of the
346	limited aqueous solubility of the bisphosphonate, the lethal phenotype was fully superseded in
347	the presence of 20 μ M UQ10, as the BSF cells grew at a normal rate (Fig. 7D).

349 DISCUSSION

In an effort to find novel chemotherapeutic targets against pathogenic trypanosomatids, we decided to study the long chain polyprenyl diphosphate synthases. Earlier, SPPS of *T. cruzi* was characterized (12), with some bisphosphonate inhibitors tested against the recombinant enzyme (9). In order to further validate these enzymes as putative targets, we performed functional analysis of the corresponding protein in *T. brucei* using RNAi and inhibition by compound 1. This compound was shown to inhibit SPPS and the farnesyl diphosphate synthase of *T. cruzi* (9) and was thus an obvious candidate. The identification of TbSPPS was straightforward due to a high sequence similarity with its *T. cruzi* homologue. The protein was detected in the PCF and BSF cells and the down-regulation by RNAi or the inhibition of TbSPPS affected the growth of both of them. In most cells, UQ is involved in respiration, which is linked to other activities. Defficient

- 362 respiration would be reflected in diminished oxygen consumption, which was indeed observed
- in PCF and BSF after RNAi-induction or inhibition with compound 1. Insufficient
- 364 mitochondrial (and glycosomal) NADH reoxidation would be reflected in lowered total ATP

365	and altered generation of $\Delta \Psi_m$. The effect of the addition of glycerol to the RNA1-induced BSF
366	highlighted a survival mechanism of cells experiencing an imbalance in the NADH/NAD ⁺ ratio
367	in glycosomes. In fact, the failure to efficiently reoxidate NADH through the glycerol-3-
368	phosphate:dihydroxyacetone-phosphate shuttle bolstered the production of glycerol by the
369	action of the glycerol-3-phosphate dehydrogenase and the glycerol kinase. Hence, hindering
370	this outlet by the exogenous glycerol seriously affected the cell growth.
371	Nitrogen-containing bisphosphonates were earlier found to be effective in vitro and in vivo
372	against T. cruzi without toxicity to the host cells (47). From the experiment with compound 1
373	on RNAi-induced <i>T. brucei</i> it can be concluded that TbSPPS is inhibited in the same fashion as
374	TcSPPS, a reflection of the high similarity between their respective active sites. In fact,
375	compound 1 was more efficient than RNAi in abolishing the enzymatic activity of TbSPPS,
376	leading to a lethal phenotype. Regarding the redox balance, a massive build-up of ROS was
377	detected in PCF following RNAi induction, and a similar but lesser effect was seen after the
378	treatment with compound 1. An incremented production of ROS by the respiratory chain could
379	be controlled by mechanisms involving iron-superoxide dismutases, which transform
380	superoxide radicals into oxygen and hydrogen peroxide. As there are four isoforms of these
381	enzymes distributed in glycosomes, cytosol and mitochondria (48, 49), it would be of interest to
382	address whether they are overexpressed in the TbSPPS knock-downs. In conclusion, both in the
383	RNAi knock-down parasites, as well as in those treated with compound 1, neither the
384	generation and maintenance of $\Delta \Psi_m$ nor ROS were the main cause of the phenotype triggered
385	by tampering with TbSPPS.
386	Without active synthesis of the isoprenyl chain, the UQ pool, estimated to be 0.1 nmol UQ
387	in 10 ⁹ BSF cells (17), should diminish according to its half-life which, however, remains

. . . .

388	undetermined in <i>T. brucei</i> . The UQ half-life varies in different organisms, ranging in rat tissues
389	between 49 and 125 hrs (50), while in human blood it is about 34 hrs (51). The HPLC results of
390	BSF inhibited for three days confirmed a huge exhaustion of the pool, suggesting that the half-
391	life of <i>T. brucei</i> UQ is comparable to that in other organisms. The HPLC experiment also
392	provided additional data about the UQ9 content of <i>T. brucei</i> cells. The average value obtained
393	was 1.825 ng/ 10^6 cells, equivalent to 2.3 nmoles/ 10^9 cells. This represents 1.3 million
394	molecules per cell, a value higher than the reported one (17) but still lower than that described
395	from other cells. For example, hepatocytes, cells with a 50 times larger volume, contain 246
396	million molecules per cell (52).
397	Aminobisphosphonates caused ATP decrease in a tapeworm model (53), but the molecular
398	mechanism has not been described. In T. brucei ATP generation is probably not affected
399	directly by the decrease of TbSPPS. The PCF cells obtain the bulk of ATP by substrate level
400	phosphorylation (54, 55) or via oxidative phosphorylation (35). Through the depletion of
401	NAD^+ , however, the interference may indirectly affect these ATP-producing processes. The
402	same is likely to happen in BSF, which metabolize glucose in glycosomes (56) but depend on
403	the NADH reoxidation in mitochondria through the UQ-dependent glycerol-3-phosphate
404	shuttle. Thus, the significant decrease of ATP plausibly caused the growth phenotype and, at
405	longer times or higher concentrations of compound 1, the lethal outcome.
406	Another factor to be considered is the acquisition of UQ from the serum that may replenish the
407	dwindling intracellular pool, following the RNAi-mediated ablation of TbSPPS or its inhibition
408	via a drug. In several organisms including humans, the UQ deficiency increases the uptake and
409	transport of the exogenous UQ to mitochondria (57, 58). In the serum, UQ is normally
410	transported by lipid particles, such as (very) low as well as high density lipoproteins, which can

411	be uptaken by specific cell receptors, some of which have already been described in T. brucei
412	(59 - 61). It was also demonstrated that the parasite's growth is affected in the lipoprotein-free
413	serum or in the presence of anti-receptor antibodies (59, 62).
414	Alone or in a complex with ß-cyclodextrin, UQ10 was apparently taken up by
415	trypanosomes, since the exogenous UQ rescued their growth, which was affected by either
416	RNAi-mediated down-regulation or specific inhibition of TbSPPS. The complementation effect
417	by the exogenous UQ on inhibited parasites clearly pinpoints UQ biosynthesis rather than
418	protein farnesylation as the main target of compound 1. While highlighting the importance of
419	UQ for the BSF cells, the rescue experiments are also in accordance with an earlier report, in
420	which synvinolin (simvastatin) reduced cell growth through the inhibition of the first enzyme of
421	the mevalonate pathway, the 3-hydroxy-3-methylglutaryl coenzyme A reductase (62). This
422	enzyme is responsible for the synthesis of sterols and isoprenoids. The addition of exogenous
423	mevalonate or low density lipoprotein particles, which transport some of the final products of
424	the pathway, almost completely reverted the phenotype. Interestingly, the growth was reverted
425	less efficiently by exogenous cholesterol alone, indicating that another essential products
426	present in the low density lipoprotein particles such as UQ, were depleted by the synvinolin
427	inhibition (62).
428	The experiment in which transfected parasites were RNAi-induced in vivo showed that
429	interfering with the synthesis of TbSPPS doubled the life span of the infected mice, confirming
430	the in vitro results. Furthermore, as anticipated, the excess of glycerol further substantially
431	prolonged survival of the infected animals. The experiments reported here show that TbSPPS is
432	the main target of compound 1, and also that blocking the biosynthesis of UQ has important
433	metabolic consequences for both T. brucei life stages.
434	

436

EC Accepts published online ahead of print

ACKNOWLEDGEMENTS

437 438 We wish to thank Andrej Šmidovnik (National Institute of Chemistry, Ljubljana, Slovenia) for 439 the provision of UQ10/B-cyclodextrin complex, Claudia Nose (Instituto Nacional de Parasitología, Buenos Aires, Argentina) for art work, Philippe Bastin (Institut Pasteur, Paris, 440 France) for comments on the manuscript and Marcelo Argüelles (Universidad Nacional de 441 Ouilmes, Argentina) for help with the flow cytometry experiments. Laurie K. Read (State 442 443 University of New York, Buffalo, USA) kindly provided antibodies. This work was supported 444 by the FOCANLIS2010, the FOCANLIS2013 and the Instituto Nacional de Parasitología "Dr. 445 Mario Fatala Chabén", A.N.L.I.S. "Dr. Carlos G. Malbrán" to E.J.B., the Grant Agency of the Czech Republic P305/11/2179, project BIOGLOBE CZ.1.07/2.3.00/30.0032, AMVIS 446 LH12104, and the Praemium Academiae award to J.L., who is also a Fellow of the Canadian 447 Institute for Advanced Research. 448 449 REFERENCES 450 451 1. Legros D, Ollivier G, Gastellu-Etchegorry M, Paquet C, Burri C, Jannin J, Büscher P. 452 453 2002. Treatment of human African trypanosomiasis--present situation and needs for research and development. Lancet Infect. Dis. 2:437-440. 454 455 2. Ohnuma S, Hirooka K, Tsuruoka N, Yano M, Ohto C, Nakane H, Nishino T. 1998. A pathway where polyprenyl diphosphate elongates in prenyltransferase. Insight into a 456

457

458

459

273:26705-26713.

brucei. Mol. Biochem. Parasitol. 87:61-69. 460 461 4. Field H, Blench I, Croft S, Field MC. 1996. Characterisation of protein isoprenylation in procyclic form Trypanosoma brucei. Mol. Biochem. Parasitol. 82:67-80. 462 5. Montalvetti A, Fernandez A, Sanders JM, Ghosh S, Van Brussel E, Oldfield E, 463 **Docampo R.** 2003. Farnesyl pyrophosphate synthase is an essential enzyme in 464 465 Trypanosoma brucei. In vitro RNA interference and in vivo inhibition studies. J. Biol. 466 Chem. 278:17075-17083. 467 6. Yokoyama K, Trobridge P, Buckner FS, Van Voorhis WC, Stuart KD, Gelb MH. 1998. 468 Protein farnesyltransferase from Trypanosoma brucei: A heterodimer of 61- and 65-kDa subunits as a new target for antiparasite therapeutics. J. Biol. Chem. 273:26497–26505. 469 7. Buckner FS, Yokoyama K, Nguyen L, Grewal A, Erdjument-Bromage H, Tempst P, 470 Strickland CL, Xiao L, Van Voorhis WC, Gelb MH. 2000. Cloning, heterologous 471 472 expression, and distinct substrate specificity of protein farnesyltransferase from Trypanosoma brucei. J. Biol. Chem. 275:21870-21876. 473

common mechanism of chain length determination of prenyltransferases. J. Biol. Chem.

3. Yokoyama K, Lin Y, Stuart KD, Gelb MH. 1997. Prenylation of proteins in Trypanosoma

474 8. Garzoni LR, Caldera A, Meirelles M de N, de Castro SL, Docampo R, Meints GA,

475 Oldfield E, Urbina JA. 2004. Selective *in vitro* effects of the farnesyl pyrophosphate

476 synthase inhibitor risedronate on *Trypanosoma cruzi*. Int. J. Antimicrob. Agents 23:273–

477 285.

478 9. Szajnman SH, García Liñares GE, Li ZH, Jiang C, Galizzi M, Bontempi EJ, Ferella M,

479 Moreno SN, Docampo R, Rodriguez JB. 2008. Synthesis and biological evaluation of 2-

480	alkylaminoethyl-1,1-bisphosphonic acids against Trypanosoma cruzi and Toxoplasma
481	gondii targeting farnesyl diphosphate synthase. Bioorg. Med. Chem. 16:3283-3290.
482	10. Demoro B, Caruso F, Rossi M, Benítez D, Gonzalez M, Cerecetto H, Parajón-Costa B,
483	Castiglioni J, Galizzi M, Docampo R, Otero L, Gambino D. 2010. Risedronate metal
484	complexes potentially active against Chagas disease. Inorg. Biochem. 104:1252-1258.
485	11. Garzoni LR, Waghabi MC, Baptista MM, de Castro SL, Meirelles M de N, Britto CC,
486	Docampo R, Oldfield E, Urbina JA. 2004. Antiparasitic activity of risedronate in a murine
487	model of acute Chagas' disease. Int. J. Antimicrob. Agents 23:286-290.
488	12. Ferella M, Montalvetti A, Rohloff P, Miranda K, Fang J, Reina S, Kawamukai M, Búa
489	J, Nilsson D, Pravia C, Katzin A, Cassera MB, Aslund L, Andersson B, Docampo R,
490	Bontempi EJ. 2006. A solanesyl-diphosphate synthase localizes in glycosomes of
491	<i>Trypanosoma cruzi</i> . J. Biol. Chem. 281: 39339–39348.
492	13. Besteiro S, Barrett MP, Rivière L, Bringaud F. 2005. Energy generation in insect stages
493	of Trypanosoma brucei: metabolism in flux. Trends Parasitol. 21:185-191.
494	14. Tielens AGM, van Hellemond JJ. 2009. Surprising variety in energy metabolism within
495	Trypanosomatidae. Trends Parasitol. 25:482–490.
496	15. Ellis JE, Setchell KDR, Kaneshiro ES. 1994. Detection of ubiquinone in parasitic and
497	free-living protozoa, including species devoid of mitochondria. Mol. Biochem. Parasitol.
498	65: 213–224.
499	16. Clarkson AB, Bienen EJ, Pollakis G, Grady RW. 1989. Respiration of bloodstream
500	forms of the parasite Trypanosoma brucei brucei is dependent on a plant-like alternative
501	oxidase. J. Biol. Chem. 264:17770–17776.

502	17. Löw P, Dallner G, Mayor S, Cohen S, Chait BT, Menon AK. 1991. The mevalonate
503	pathway in the bloodstream form of Trypanosoma brucei. Identification of dolichols
504	containing 11 and 12 isoprene residues. J. Biol. Chem. 266:19250-19257.
505	18. Schnaufer A, Clark-Walker JD, Steinberg AG, Stuart K. 2005. The F1-ATP synthase
506	complex in bloodstream stage trypanosomes has an unusual and essential function. EMBO
507	J. 24: 4029–4040.
508	19. Sugioka K, Nakano M, Totsune-Nakano H, Minakami H, Tero-Kubota S, Ikegami Y.
509	1988. Mechanism of O ₂ - generation in reduction and oxidation cycle of ubiquinones in a
510	model of mitochondrial electron transport systems. Biochim. Biophys. Acta 936:377-385.
511	20. Turrens JF, Boveris A. 1980. Generation of superoxide anion by the NADH
512	dehydrogenase of bovine heart mitochondria. Biochem. J. 191:421-427.
513	21. Morales J, Mogi T, Mineki S, Takashima E, Mineki R, Hirawake H, Sakamoto K,
514	Omura S, Kita K. 2009. Novel mitochondrial complex II isolated from Trypanosoma cruzi
515	is composed of 12 peptides including a heterodimeric Ip subunit. J. Biol. Chem. 284:7255-
516	7263.
517	22. Fang J, Beattie DS. 2002. Rotenone-insensitive NADH dehydrogenase is a potential
518	source of superoxide in procyclic Trypanosoma brucei mitochondria. Mol. Biochem.
519	Parasitol. 123: 135–142.
520	23. Panigrahi AK, Zíková A, Dalley RA, Acestor N, Ogata Y, Anupama A, Myler PJ,
521	Stuart KD. 2008. Mitochondrial complexes in Trypanosoma brucei: a novel complex and a
522	unique oxidoreductase complex. Mol. Cell Proteomics 7:534–545.
523	24. Opperdoes FR, Michels PA. 2008. Complex I of Trypanosomatidae: does it exist? Trends
524	Parasitol. 24:310–317.

25. Verner Z, Čermáková P, Škodová I, Kriegová E, Horváth A, Lukeš J. 2011. Complex I
(NADH:ubiquinone oxidoreductase) is active in but non-essential for procyclic
Trypanosoma brucei. Mol. Biochem. Parasitol. 175:196-200.
26. Surve S, Heestand M, Panicucci B, Schnaufer A, Parsons M. 2012. Enigmatic presence
of mitochondrial complex I in Trypanosoma brucei bloodstream forms. Eukaryot. Cell
11: 183–193.
27. Santos-Ocaña C, Córdoba F, Crane FL, Clarke C F, Navas P. 1998. Coenzyme Q6 and
iron reduction are responsible for the extracellular ascorbate stabilization at the plasma
membrane of Saccharomyces cerevisiae. J. Biol. Chem. 273:8099-8105.
28. Lai D-H, Bontempi EJ, Lukeš J. 2012. Trypanosoma brucei solanesyl-diphosphate
synthase localizes to the mitochondrion. Mol. Biochem. Parasitol. 183:189-192.
29. Chou TC. 2006. Theoretical basis, experimental design, and computerized simulation of
synergism and antagonism in drug combination studies. Pharmacol. Rev. 58:621-681.
30. Wang Z, Morris JC, Drew ME, Englund PT. 2000. Inhibition of Trypanosoma brucei
gene expression by RNA interference using an integratable vector with opposing T7
promoters. J. Biol. Chem. 275:40174-40179.
31. Wickstead B, Ersfeld K, Gull K. 2002. Targeting of a tetracycline-inducible expression
system to the transcriptionally silent minichromosomes of Trypanosoma brucei. Mol.
Biochem. Parasitol. 125:211–216.
32. Vondrušková E, van den Burg J, Zíková A, Ernst NL, Stuart K, Benne R, Lukeš J.
2005. RNA interference analyses suggest a transcript-specific regulatory role for
mitochondrial RNA-binding proteins MRP1 and MRP2 in RNA editing and other RNA
processing in Trypanosoma brucei. J. Biol. Chem. 280:2429–2438.

548	33. Hashimi H, Čičová Z, Novotná L, Wen Y-Z, Lukeš J. 2009. Kinetoplastid guide RNA
549	biogenesis is dependent on subunits of the mitochondrial RNA binding complex 1 and
550	mitochondrial RNA polymerase. RNA 15:588-599.
551	34. Wirtz E, Leal S, Ochatt C, Cross GA. 1999. A tightly regulated inducible expression
552	system for conditional gene knock-outs and dominant-negative genetics in Trypanosoma
553	brucei. Mol. Biochem. Parasitol. 99:89-101.
554	35. Horváth A, Horáková E, Dunajčíková P, Verner Z, Pravdová E, Šlapetová I,
555	Cuninková L, Lukeš J. 2005. Downregulation of the nuclear-encoded subunits of the
556	complexes III and IV disrupts their respective complexes but not complex I in procyclic
557	<i>Trypanosoma brucei</i> . Mol. Microbiol. 58: 116–130.
558	36. Lai D-H, Hashimi H, Lun ZR, Ayala FJ, Lukeš J. 2008. Adaptations of Trypanosoma
559	brucei to gradual loss of kinetoplast DNA: Trypanosoma equiperdum and Trypanosoma
560	evansi are petite mutants of T. brucei. Proc. Natl. Acad. Sci. USA 105:1999-2004.
561	37. Koyama T. 1999. Molecular analysis of prenyl chain elongating enzymes. Biosci.
562	Biotechnol. Biochem. 63:1671–1676.
563	38. Chen A, Kroon PA, Poulter D. 1994. Isoprenyl diphosphate synthases: protein sequence
564	comparisons, a phylogenetic tree, and predictions of secondary structure. Prot. Sci. 3:600-
565	607.
566	39. Liang P-H, Ko T-P, Wang AH. 2002. Structure, mechanism and function of
567	prenyltransferases. Eur. J. Biochem. 269:3339-3354.
568	40. Krakow JL, Wang CC. 1990. Purification and characterization of glycerol kinase from

569 *Trypanosoma brucei*. Mol. Biochem. Parasitol. **43:**17-25.

570

571

572	42. Bus JS Gibson JE. 1984. Paraquat: model for oxidant-initiated toxicity. Environ. Health
573	Perspect. 55: 37–46.
574	43. Loftsson T, Duchêne D. 2006. Cyclodextrins and their pharmaceutical applications. Int. J.
575	Pharm. 329: 1–11.
576	44. Robergs RA, Griffin SE. 1998. Glycerol. Biochemistry, pharmacokinetics and clinical
577	and practical applications. Sports Med. 26:145-167.
578	45. Yabu Y, Minagawa N, Kita K, Nagai K, Honma M, Sakajo S, Koide T, Ohta N,
579	Yoshimoto A. 1998. Oral and intraperitoneal treatment of Trypanosoma brucei brucei with a
580	combination of ascofuranone and glycerol in mice. Parasitol. Internat. 47:131-137.
581	46. Boveris A, Oshino N, Chance B. 1972. The cellular production of hydrogen peroxide.
582	Biochem. J. 128: 617–630.
583	47. Urbina JA, Moreno B, Vierkotter S, Oldfield E, Payares G, Sanoja C, Bailey BN, Yan
584	W, Scott DA, Moreno SN, Docampo R. 1999. Trypanosoma cruzi contains major
585	pyrophosphate stores, and its growth in vitro and in vivo is blocked by pyrophosphate
586	analogs. J. Biol. Chem. 274:33609–33615.
587	48. Dufernez F, Yernaux C, Gerbod D, Noël C, Chauvenet M, Wintjens R, Edgcomb VP,
588	Capron M, Opperdoes FR, Viscogliosi E. 2006. The presence of four iron-containing
589	superoxide dismutase isozymes in trypanosomatidae: characterization, subcellular

41. Hammond DJ, Bowman IB. 1980. Studies on glycerol kinase and its role in ATP synthesis

in Trypanosoma brucei. Mol. Biochem. Parasitol. 2:77-91.

- localization, and phylogenetic origin in Trypanosoma brucei. Free Rad. Biol. Med. 40:210-590
- 225. 591

ļ	592 49	9. Wilkinson SR, Prathalingam SR, Taylor MC, Ahmed A, Horn D, Kelly JM. 2006.
!	593	Functional characterisation of the iron superoxide dismutase gene repertoire in
!	594	Trypanosoma brucei. Free Rad. Biol. Med. 40:198–209.
!	595 50). Thelin A, Schedin S, Dallner G. 1992. Half-life of ubiquinone-9 in rat tissues. FEBS Lett.
!	596	313: 118–120.
!	597 51	. Greenberg S, Frishman WH. 1990. Co-enzyme Q10: a new drug for cardiovascular
Į	598	disease. J. Clin. Pharmacol. 30:596–608.
Į	599 52	2. Åstrand I-M, Fries E, Chojnacki T, Dallner G. 1986. Inhibition of dolichyl phosphate
(600	biosynthesis by compactin in cultured rat hepatocytes. Eur. J. Biochem. 155:447-452.
(601 53	3. Fuchs AG, Echeverría CI, Pérez Rojo FG, Prieto González EA, Roldán EJA. 2013.
(602	Proline modulates the effect of bisphosphonate on calcium levels and adenosine:
(603	triphosphate production in cell lines derived from bovine Echinococcus granulosus
(604	protoscoleces. J. Helminthol. 7:1-9.
(605 54	4. Bochud-Allemann N, Schneider A. 2002. Mitochondrial substrate level phosphorylation is
(606	essential for growth of procyclic Trypanosoma brucei. J. Biol. Chem. 277:32849-32854.
(607 55	5. Coustou V, Besteiro S, Biran M, Diolez P, Bouchaud V, Voisin P, Michels PA, Canioni
(608	P, Baltz T, Bringaud F. 2003. ATP generation in the <i>Trypanosoma brucei</i> procyclic form:
(609	cytosolic substrate level is essential, but not oxidative phosphorylation. J. Biol. Chem.
(610	278: 49625–49635.
(611 56	6. Opperdoes FR. 1987. Compartmentation of carbohydrate metabolism in trypanosomes.
(612	Annu. Rev. Microbiol. 41:127–151.

- repertoire in
- EC Accepts published online ahead of print

613	57. Santos-Ocaña C, Do TQ, Padilla S, Navas P, Clarke CF. 2002. Uptake of exogenous
614	coenzyme Q and transport to mitochondria is required for bc1 complex stability in yeast coq
615	mutants. J. Biol. Chem. 277:10973-10981.
616	58. Turunen M, Olsson J, Dallner G. 2004. Metabolism and function of coenzyme Q.
617	Biochim. Biophys. Acta 1660:171–199.
618	59. Coppens I, Baudhuin P, Opperdoes FR, Courtoy PJ. 1988. Receptors for the host low
619	density lipoproteins on the hemoflagellate Trypanosoma brucei: purification and
620	involvement in the growth of the parasite. Proc. Natl. Acad. Sci. USA 85:6753-6757.
621	60. Liu J, Qiao X, Du D, Lee MG. 2000. Receptor-mediated endocytosis in the procyclic form
622	of Trypanosoma brucei. J. Biol. Chem. 275:12032-12040.
623	61. Green HP, Del Pilar Molina Portela M, St. Jean EN, Lugli EB, Raper J. 2003.
624	Evidence for a Trypanosoma brucei lipoprotein scavenger receptor. J. Biol. Chem.
625	278: 422–427.
626	62. Coppens I, Bastin P, Levade T, Courtoy PJ. 1995. Activity, pharmacological inhibition
627	and biological regulation of 3-hydroxy-3-methylglutaryl coenzyme A reductase in

628 *Trypanosoma brucei*. Mol. Biochem. Parasitol. **69:**29–40.

629

630

631 Figure legends

632

EC Accepts published online ahead of print

FIG. 1. Northern and Western blot analyses of the TbSPPS T. brucei RNAi cell lines. (A) 633 634 Effect of TbSPPS RNAi on mRNA and protein levels in the procyclic stage (clone 4). Total RNA and protein were extracted from parental 29-13 cells (lane 1), non-induced cells (lane 2) 635 and procyclic cells on day 6 after RNAi induction (lane 3). Two upper panels show Northern 636 blot analysis with the full-length TbSPPS gene used as a probe. Ethidium bromide stained 637 rRNAs was used as a loading control. Two lower panels show western blot analysis of the 638 639 expression of the TbSPPS protein in same cell lines as in the RNA panels. The target protein was detected with specific polyclonal α -TbSPPS antibodies. Antibody against RNA-binding 640 protein 16 (RBP16) was used as a loading control. (B) Effect of TbSPPS RNAi on mRNA and 641 protein levels in the bloodstream stage (clone 6) on day 3 after RNAi induction. Total protein 642 was extracted from parental SM cells (lane 1), non-induced cells (lane 2) and bloodstream cells 643 644 3 days after RNAi induction (lane 3). TbSPPS and RBP16 were detected as described in (A). 645 FIG. 2. Effect of TbSPPS RNAi on cell growth of the procyclic (A) and bloodstream (B) cells. 646 Cell densities (cells ml⁻¹) of procyclics and bloodstreams were measured and diluted as 647 explained. The total cell numbers were calculated and plotted on a logarithmic scale on the y-648 649 axis over 14 days (A) or 6 days (B). Clonal procyclics (A) and bloodstreams (B) grown in the absence or presence of 1 mg ml⁻¹ tetracycline, the addition of which induces RNAi, are 650 651 indicated by dotted lines with empty triangles and continuous lines with black triangles,

respectively. The growth of parental procyclics (29-13) and bloodstreams (SM) is shown by adotted line with empty circles.

655	FIG. 3. Effect of TbSPPS RNAi on oxygen consumption rate in the procyclic (A) and
656	bloodstream (B) cells. (A) For procyclics, the relative contribution of alternative pathway via
657	trypanosome alternative oxidase (TAO; black columns) and cytochrome-mediated pathway
658	(OXPHOS; white columns) was measured in parental 29-13 cells, non-induced cells (-), and
659	cells 2, 6 and 10 days after RNAi induction. The amount of O_2 consumption inhibited by KCN
660	(0.1 mM) reflected the capacity of the cytochrome-mediated pathway, while the amount
661	inhibited by SHAM (0.03 mM) represented the TAO activity. The non-inhibited residual
662	oxygen consumption was considered as zero. The mean and the S.D. values of three
663	experiments are shown. (B) In the absence of the cytochrome-mediated pathway in the
664	bloodstream cells, all respiration is mediated by TAO. Oxygen consumption was measured in
665	parental SM cells, non-induced cells (-), cells after 1 or 3 days RNAi induction, cells after
666	compound 1 (1 μ M for 24 hours) inhibition and RNAi cells supplied with UQ10. Statistic
667	significances to control group were indicated by asterisks (*, <i>p</i> <0.05; ***, <i>p</i> <0.0005; ****,
668	<i>p</i> <0.00005).
669	

FIG. 4. Growth curve of bloodstream transfectant cells in the presence of glycerol or
compound 1. (A) The addition of 4 mM glycerol to the medium had an inhibitory effect on the
TbSPPS knock-downs after RNAi induction (continuous line with full squares), while only
mild effect was observed for the SM parental (continuous line with full circles) and noninduced cells (continuous line with full triangles). The same cell lines were grown in the
absence of glycerol as controls (dotted lines). (B) Chemical structure of 1-[(n-oct-1ylamino)ethyl] 1,1-bisphosphonic acid (compound 1), a potent inhibitor of the enzymatic

67	activity of TcSPPS. (C) The addition of 1 μ M compound 1 to the medium was lethal for the
67	8 RNAi-induced TbSPPS knock-downs (continuous line with full squares), while just a very
67	9 small effect was observed for the SM parental (continuous line with full circles) and the non-
68	induced cells (continuous line with full triangles). The same cell lines were grown in the
68	absence of compound 1 as controls (dotted lines). The experiment was repeated three times, a
68	2 representative curve is shown.
68	3
68	FIG. 5 . Generation of reactive oxygen species (A) and paraquat treatment (B) in the TbSPPS
68	5 procyclic cells. Experiments were performed at least twice with triplicate samples. (A) Parental
68	29-13 cells (open area with black line), non-induced cells (gray area) and procyclics 6 days
68	after RNAi induction (open area with gray line) were incubated in the presence of 5 mg ml ^{-1}
68	8 dihydroethidium for 30 min. The fluorescence distributions measured by flow cytometry were
68	9 plotted as frequency histograms. (B) Growth of procyclics, non-induced (open boxes) or cells
69	induced by RNAi for 5 days (gray boxes), incubated for 3 additional days in the presence of
69	$0.2, 0.5, 1$ and $2 \mu M$ paraquat. The growth of cells in the absence of paraquat, either non-
69	2 induced or RNAi-induced, was considered as 100%. Statistic significances between two groups
69	were indicated by asterisks (***, $p < 0.0005$; ****, $p < 0.0005$)

694

FIG. 6. Survival of mice infected with TbSPPS RNAi transfectant cells was prolonged upon
the addition of glycerol and doxycycline. Drinking water available to four groups of mice, each
consisting of five individuals, was either pure (gray line), or supplemented with 1 mg ml⁻¹
doxycyline sweetened with 50 mg ml⁻¹ of sucrose (black line), or 5% glycerol (black dotted

line), or both doxycycline and glycerol (gray dotted line). The survival of mice was followed ona daily basis.

701

702	FIG. 7. Metabolic effects of the inhibition by compound 1 on wild type bloodstreams. (A)
703	Measurement of the UQ pool. HPLC representative runs for untreated and treated bloodstreams
704	are shown. The positions of the calibration standards are indicated by arrows. (B) The $\Delta\Psi_m$
705	displayed by procyclics treated with different concentrations of compound 1. Statistical analysis
706	and a representative experiment are presented. Asterisks indicate significant differences in
707	comparison to the control group (untreated parasites). The arrowhead represents the position of
708	the depolarized membrane control CCCP. (C) ROS level in procyclics treated for 72 hrs with
709	50 μ M compound 1. The data is expressed as means \pm standard deviation of at least two
710	independent experiments. (D) Rescue of parental SM bloodstream cells. The addition of 10 μM
711	compound 1 to the medium was lethal within three days (continuous line with full squares).
712	Further addition of 20 μ M UQ10 fully rescued cell growth (continuous line with full circles).
713	Non-treated (empty squares) and cells treated only with UQ10 (empty circles) were used as
714	controls.

FIG. 1. Northern and Western blot analyses of the TbSPPS T. brucei RNAi cell lines. (A) Effect of TbSPPS RNAi on mRNA and protein levels in the procyclic stage (clone 4). Total RNA and protein were extracted from parental 29-13 cells (lane 1), noninduced RNAi cells (lane 2) and procyclic cells on day 6 after RNAi induction (lane 3). Two upper panels show Northern blot analysis, with the full-length TbSPPS gene used as a probe. Ethidium bromide stained rRNAs was used as a loading control. Two lower panels show Western blot analysis of the expression of the TbSPPS protein in same cell lines as in the RNA panels. The target protein was detected with specific polyclonal TbSPPS antibodies. Antibody against RNA-binding protein 16 (RBP16) was used as a loading control. (B) Effect of TbSPPS RNAi on mRNA and protein levels in the bloodstream stage (clone C6) on day 3 after RNAi induction. Total protein was extracted from parental SM cells (lane 1), non-induced RNAi cells (lane 2) and bloodstream cells 3 days after RNAi induction (lane 3). TbSPPS and RBP16 were detected as described in (A).

FIG. 2. Effect of TbSPPS RNAi on cell growth of the procyclic (A) and bloodstream (B) cells. Cell densities (cells ml⁻¹) of procyclics and bloodstreams were measured and diluted as explained. The total cell numbers were calculated and plotted on a logarithmic scale on the y-axis over 14 days (A) or 6 days (B). Clonal procyclics (A) and bloodstreams (B) grown in the absence or presence of 1 mg ml⁻¹ tetracycline, the addition of which induces RNAi, are indicated by dotted lines with empty triangles and continuous lines with black triangles, respectively. The growth of parental procyclics (29-13) and bloodstreams (SM) is shown by a dotted line with empty circles.

FIG. 3. Effect of TbSPPS RNAi on oxygen consumption rate in the procyclic (A) and bloodstream (B) cells. (A) For procyclics, the relative contribution of alternative pathway via trypanosome alternative oxidase (TAO; black columns) and cytochrome-mediated pathway (white columns) was measured in parental 29-13 cells, non-induced cells (-), and cells 2, 6 and 10 days after RNAi induction. The amount of O2 consumption inhibited by KCN (0.1 mM) reflected the capacity of the cytochrome-mediated pathway, while the amount inhibited by SHAM (0.03 mM) represented the TAO activity. The non-inhibited residual oxygen consumption was considered as zero. The mean and the S.D. values of three experiments are shown. (B) In the absence of the cytochrome-mediated pathway in the bloodstream cells, all respiration is mediated by TAO. Oxygen consumption was measured in parental SM cells, non-induced cells (-), cells after 1 or 3 days RNAi induction, cells after compound 1 (1 μ M for 24 hours) inhibition and RNAi cells supplied with UQ10. Statistic significances to control groups were indicated by asterisks (*, p<0.05; ****, p<0.0005).

FIG. 4. Growth curve of bloodstream transfectant cells in the presence of glycerol or compound 1. (A) The addition of 4 mM glycerol to the medium had an inhibitory effect on the TbSPPS knock-downs after RNAi induction (continuous line with full squares), while only mild effect was observed for the SM parentals (continuous line with full circles) and noninduced cells (continuous line with full triangles). The same cell lines were grown in the absence of glycerol as controls (dotted lines). (B) Chemical structure of 1-[(n-oct-1-ylamino)ethyl] 1,1bisphosphonic acid (compound 1), a potent inhibitor of the enzymatic acitivity of TcSPPS. (C) The addition of 1 μ M compound 1 to the medium was lethal to the RNAi-induced TbSPPS knock-downs (continuous line with full squares), while just a very small effect was observed for the SM parentals (continuous line with full circles) and the non-induced cells (continuous line with full triangles). The same cell lines were grown in the absence of compound 1 as controls (dotted lines). The experiment was repeated three times, a representative curve is shown.

FIG. 5. Reactive oxygen species generation (A) and paraquat treatment (B) in the TbSPPS procyclic cells. (A) Parental 29-13 cells (open area with black line), non-induced cells (gray area) and procyclic cells 6 days after RNAi induction (open area with gray line) were incubated in the presence of 5 mg ml-1 dihydroethidium for 30 min. The fluorescence distributions measured by flow cytometry were plotted as frequency histograms. (B) Growth of non-induced procyclics and cells 5 days after RNAi induction in the presence of 0.2, 0.5, 1 and 2 μ M paraquat for 3 additional days. The growth of cells in the absence of paraquat, either non-induced or RNAi-induced, was considered as 100%.

FIG. 7. Metabolic effects of the inhibition by compound 1 on wild type bloodstream parasites. (A) Measurement of the UQ pool. HPLC representative runs for untreated and treated bloodstream stages are shown. The positions of the calibration standards are indicated by arrows. (B) The m displayed by procyclic cells treated with different concentrations of compound 1. Statistical analysis and a representative experiment are presented. Asterisks indicate significant differences in comparison to the control group (untreated parasites). The arrowhead represents the position of the depolarized membrane control CCCP. (C) ROS level in procyclic cells treated for 72 hours with 50 µM compound 1. The data are expressed as means ± standard deviation of at least two independent experiments. (D) Rescue of parental SM bloodstream cells. The addition of 10 µM compound 1 to the medium was lethal within three days (continuous line with full squares). Further addition of 20 µM UQ10 fully rescued cell growth (continuous line with full circles). Non-treated (empty squares) and cells treated only with 20 µM UQ10 (empty circles) were used as controls.