
 Collaboration Practices and
Affordances in Free/Open Source

Software Development

Walt Scacchi
Institute for Software Research

University of California, Irvine

Irvine, CA 92697-3455 USA

Revised version to appear in I. Mistrik et al. (Eds.) Collaborative Software

Engineering, Springer-Verlag, Berlin Heidelberg 2010

Abstract. This chapter examines collaborative work practices,
development processes, project and community dynamics, and other
socio-technical relationships in free and open source software
development (FOSSD). It also describes what kinds of collaboration
affordances facilitate collaborative work in FOSSD projects. It reviews
a set of empirical studies of FOSSD that articulate different levels of
analysis. Finally, there is discussion of limitations and constraints in
understanding what collaboration practices and affordances arise in
FOSSD studies and how they work, and then to emerging
opportunities for future FOSSD studies.

Keywords. Open source software, empirical studies, collaboration
practices, affordances, socio-technical relationships

15.1 Introduction

This chapter examines and compares collaborative work practices, processes, and

affordances that emerge in empirical studies of free/open source software

development (FOSSD) projects. FOSSD is a way for building, deploying, and

sustaining large software systems on a global basis, and differs in many interesting

ways from the principles and practices traditionally advocated for software

engineering (SE) [63]. Hundreds of FOSS systems are now in use by thousands to

millions of end-users, and some of these FOSS systems entail hundreds-of-thousands

to millions of lines of source code. So what’s going on here, and how are

collaborative FOSSD processes used to build and sustain these projects, and how

might differences with SE be employed to explain what's going on with FOSSD?

One of the more significant features of FOSSD is the formation and enactment of

collaborative software development practices and processes performed by loosely

coordinated software developers and contributors. These people may volunteer their

time and skill to such effort, and may only work at their personal discretion rather

than as assigned and scheduled. Further, FOSS developers are generally expected (or

prefer) to provide their own computing resources (e.g., laptop computers on the go,

or desktop computers at home), and bring their own software tools with them.

FOSS developers often work on global software projects that do not typically

have a corporate owner or management staff to organize, direct, monitor, and

improve the software development processes being put into practice on such projects

[cf. 29]. Does the absence or limited presence of corporate authorities or sponsors

encourage or facilitate collaboration in FOSSD, or do collaborative practices and

affordances supporting FOSSD reduce the need to rely on traditional corporate

authority or project management regimes? Is collaborative practice a defining feature

of FOSSD, is FOSSD a causal attribute of collaboration, or does collaborative

practice more readily produce FOSS? What motivates software developers

participate in FOSSD projects? Is volunteerism and personal discretion key to

collaboration in FOSSD projects? Why and how are large FOSSD projects sustained

through collaborative practices and affordances? How are large FOSSD projects

coordinated, controlled or managed without a traditional project management team?

Why and how might answers to these questions change over time? These are the

kinds of questions addressed in this chapter.

15.1.1 What is free/open source software development?

FOSSD is mostly not about SE, at least not as SE is portrayed in modern SE

textbooks [cf. 63]. FOSSD is also not SE done poorly. It is instead a different

approach to the development of software systems where much of the development

activity is openly visible, and development artifacts are publicly available over the

Web. Furthermore, substantial FOSSD effort is directed at enabling and facilitating

collaboration among developers (and also end-users), but generally there is no

traditional SE project management regime, budget or schedule. FOSSD is also

oriented towards the joint development of an ongoing community of developers and

users concomitant with the FOSS system of interest.

FOSS developers are typically end-users of the FOSS they develop [57, 58, 65,

69] and other end-users often participate in and contribute to FOSSD efforts as non-

developers. There is also widespread recognition that FOSSD projects can produce

high quality and sustainable software systems that can be used by thousands to

millions of end-users [44]. Thus, it is reasonable to assume that FOSSD processes

are not necessarily of the same type, kind, or form found in modern SE projects [63].

Subsequently, what is known about collaborative SE processes may not be equally

applicable to FOSSD practices without some explicit empirical justification. Thus, it

is appropriate to review what is known about FOSSD and where collaboration

practices and affordances emerge along the way.

15.1.2 What are affordances supporting collaborative software
development?

Affordances refers to situated, interactional properties between objects and actors

that facilitate certain kinds of social interactions in a complex environment. The

concept of affordances appears in the studies that employ the construct to

characterize aspects of complex work settings that facilitate how people interact

though computing systems [1, 47]. Computer-supported work environments, when

effective, afford new ways and means for collaborative learning [36]. Subsequently,

the focus in this chapter is on the interactions that facilitate collaborative activities

between FOSS developers who are geographically dispersed but share access to

online artifacts, networked information repositories and communication

infrastructures, such as Web pages, Web sites, source code version servers,

distributed file servers, virtual private networks, and the like. Consider the example

in Fig. 1, a screenshot of an excerpt from the “Code of Conduct” that helps inform

participants and communicate social norms on how to “be collaborative” in the K

Development Environment (KDE) FOSS project.

Fig. 1. An excerpt from a FOSSD project Web page that both encourages and guides

how and why project participants can collaborate. Source: http://www.kde.org/code-

of-conduct/, accessed October 2008.

This collaboration affordance includes a narrative inscription on a KDE project Web

page (an object in a complex online environment) that encourages and guides project

participants (actors--developers or users of KDE) for how to collaborate (via certain

kinds of social interaction) in the KDE project. Collaboration affordances in FOSSD

may emerge in online venues and workspaces for FOSSD work, and may differ by

the kind or type of FOSS being developed (e.g., operating system utility program

versus network computer game), the project web site or multi-project Web portals in

use, as well as by the infrastructure of online tools participants use in FOSSD work.

What makes software development in general, or FOSSD in particular,

collaborative? Is collaborative software development work natural and obvious, or

challenging, perplexing, and sometimes problematic? What can be done to facilitate

or encourage opportunities to make software development work more collaborative,

or even more fun and playful [cf. 46]? Do all multi-user software development tools,

interfaces, or repositories automatically enable collaboration, or are some more

effective than others? Questions like these help ground our interest in reviewing what

kinds of affordances are found in empirical studies of FOSSD work, and how they

facilitate collaborative software development activities with online software artifacts.

15.1.3 Results from recent studies of FOSSD

The remainder of this chapter provides a review of empirical studies of FOSSD

that articulate different levels of analysis, and each level is examined in a separate

section. Emphasis is directed at identifying affordances that facilitate collaborative

software development activities found in different studies of FOSSD participants,

practices, and projects. Section 2 provides a brief background on what motivates

people to participate and contribution to FOSSD projects. Section 3 examines the

different resources and capabilities that FOSS developers bring to their projects.

Section 4 examines practices in cooperation, coordination, and control that arises

within self-organizing FOSSD projects. Section 5 examines how multiple FOSSD

projects give rise to alliances and inter-project network communities. Section 6

examines how clusters of diverse projects form FOSS ecosystems that can exhibit

collective patterns of sustained exponential growth. Finally, there is a discussion of

limitations and constraints in the FOSSD studies so far, followed by conclusions that

highlight emerging opportunities for future studies of collaborative FOSSD work

practices, development processes, information artifacts, and project communities.

15.2 Individual Participation in FOSSD Projects

One of the most common questions about FOSSD projects to date is why will

software developers join and participate in such efforts, as well as engage in

sometime difficult and challenging technical work, often without pay, for sustained

periods of time. Surveys of FOSS developers [e.g., 23, 27, 28] have posed and

investigated such questions. There are complex motivations for why FOSS

developers are willing to allocate their time, skill, and effort by joining a FOSS

project [28, 66]. Some FOSS developers are motivated to see their contribution of

time, effort, and code as gifts they provide to a project community [3]. Other

motivations include a developer's ability to acquire skill and sustained experience

from working in multiple or different roles [34, 53, 66]. It can also include a desire to

work on software systems that the developer finds personally interesting, a desire to

work with well-regarded FOSSD experts, or to be recognized by project peers as a

valued and frequent contributor to a highly visible FOSS project [28, 25]. Similarly,

it can be that the developer routinely uses the FOSS system of interest, and wants it

to implement some additional feature or capability, or wants to reinvent processing

capabilities found in other software systems, or to add innovative system features

[64, 65, 58]. These conditions represent different ways for how participants learn to

collaboratively develop FOSS in different projects and different application domains.

Motivations for participating in FOSSD stand in contrast to the traditional view of

software project management. Software project managers are suppose to design

technical work activities in ways that are satisfying and thus motivating to

developers [5]. Project managers are also responsible for insuring developers

collaborate with one another when needed, and where developers are able to

participate in setting project development goals and providing process

feedback/improvement. Software project managers are expected to make SE work

interesting, rewarding, and satisfying, and if they cannot do this, then the SE project

may fail or produce low quality and hard to maintain software [5].

In contrast, the most frequently cited reason why software developers participate

and contribute to FOSSD projects is to learn [23]. In other words, participating

developers come to believe FOSSD projects of interest are expected to provide ways

and means for individual and collaborative learning [cf. 14, 36]. Consequently, when

developers no longer value or lose interest in what can be learned from a FOSSD

project in which they participate, they may choose stop contributing to the project

and move on. In traditional SE, project managers shape working conditions and thus

the basis for collaborative work, while in FOSSD projects, individual participates

must take responsibility for learning how to organize and manage themselves so as to

fulfill their personal motivations when working with other FOSS developers

currently participating in the projects. Thus, in this regard, the different ways and

means for FOSS developers to learn things of greatest personal interest serve as

individual level affordances for engaging in collaborative FOSSD project work.

Conversely, developers who do not want to collaborate with the FOSS project

developers at hand will not be able to realize or appropriate the common FOSSD

collaborative learning affordances they find motivational, and thus they may move

on to search for another project of interest.

15.3 Resources and Capabilities Supporting FOSSD

What kinds of resources or development capabilities are needed to help make FOSS

efforts collaborative and successful? Based on what has been observed and reported

across many empirical studies of FOSSD projects, the following kinds of socio-

technical resources (or social capital) enable the development of both FOSS software

and ongoing project that is sustaining its evolution, application and refinement,

though other kinds of resources may also be involved [57, 59]. The following sub-

sections examine collaborative practices and affordances centered on different

resources and capabilities found in FOSSD projects.

15.3.1 Personal software development tools and networking support

FOSS developers, end-users, and other volunteers often provide their own

personal computing resources in order to access or participate in a FOSS

development project. They similarly provide their own access to the Internet, and

may even host personal Web sites or information repositories. It is not uncommon

that a FOSS developer works on a project from a room at home, or on a laptop PC

while traveling. FOSS developers bring their own choice of software development

tools and methods to a project, and sometimes the number of tools employed ranges

into dozens. The mobility of tools and laptop computers also enables the

organization and enactment of collaborative FOSS hackathons1—marathon FOSS

development experience involving dozens of developers at a chosen destination for

the purpose of collaboratively analyzing, modifying, and rebuilding a given FOSS

system. Participation in such events often entails travel and related expenses often

borne out of pocket by each participant, though they also find such events personally

and professionally rewarding, convivial, and fun, even though involving long hours

of difficult and technically challenging work.

Sustained commitment of personal resources helps subsidize the emergence and

evolution of the ongoing project, its shared (public) information artifacts, and

resulting open source code. It spreads the cost for creating and maintaining the

information infrastructure of the virtual organization that constitute a FOSSD project

[7, 48]. These in turn help create recognizable shares of the FOSS commons [2, 49,

50] that are linked (via hardware, software, Internet and Web) to the project's

information infrastructure. So personal computers, FOSS tools, and hackathons are

affordances that help enable collaborative FOSSD.

15.3.2 Beliefs supporting FOSS Development

Why do software developers and others contribute their skill, time, and effort to

the development of FOSS and related information resources? Though there are

probably many diverse answers to such a question, it seems that one such answer

must account for the belief in the freedom to access, study, modify, redistribute and

share the evolving results from a FOSS development project [11, 12, 25]. However,

it also includes freedom of expression and freedom of choice [18, 60]. Neither of

these freedoms is explicitly declared, assured, or protected by copyright or

commons-based intellectual property rights, nor by end-user license agreements.

However, these freedoms are realized in choices for what to develop or work on

(e.g., choice of work subject or personal interest over work assignment), how to

develop it (choice of method to use instead of a corporate standard), and what tools

to employ (choice over which personal tools to employ versus only using what is

provided). They also are expressed in choices for when to release work products

(choice of satisfaction of work quality over schedule), determining what to review

and when (modulated by ongoing project ownership responsibility), and expressing

what can be said to whom with or without reservation.

The enactment of beliefs, values, and norms for why and how to develop

FOSSD, which constitute part of a FOSS developer’s mental model [cf. 20], that are

represented in FOSS licenses and project narratives (like Fig. 1), serve as affordances

that enable collaborative FOSSD projects and teamwork. Similarly, failure to enact

and sustain such beliefs can lead to participants being challenged by others regarding

their commitment to collaboratively develop FOSS in a proper manner, so the

absence or failure of such an affordance can drive FOSS developers apart [15, 17,

19].

1 Description and examples of FOSS hackathons at http://en.wikipedia.org/wiki/Hackathon .

15.3.3 FOSSD informalisms
Software informalisms [57] are the information artifacts that participants use as

resources to describe, proscribe, prescribe, or question what's happening in a FOSSD

project. They are informal narrative resources that are comparatively easy to use, and

publicly accessible to those who want to join the project, or just browse around.

They are generally supported with lightweight tools [4, 68]. Nonetheless, these

artifacts serve as both workspaces where collaborative FOSSD work activities

(including reading, reviewing, writing, and learning) occurs, as well as the products

of such collaborations [14, 16, 37, 54, 57].

The most common informalisms used in OSSD projects include (i)

communications and messages within project Email [68], (ii) threaded message

discussion forum, bulletin boards, or group blogs, (iii) news postings, and (iv) instant

messaging or Internet relay chat. These enable developers and users to converse with

one another in a lightweight, semi-structured manner, and now use of these tools is

global across applications domains and cultures. As such, the discourse captured in

these tools is a frequent source of OSS requirements. A handful of OSSD projects

have found that summarizing these communications into (v) project digests [16]

helps provide an overview of major development activities, problems, goals, or

debates. These project digests represent multi-participant summaries that record and

hyperlink the rationale accounting for focal project activities, development problems,

current software quality status, and desired software functionality. Project digests

(see Fig. 2) record the discussion, debate, consideration of alternatives, code

Fig. 2: A project digest that summarizes multiple messages including those

hyperlinked (indicated by highlighted underlined text) to their originating online

sources. Source: http://www.kerneltraffic.org/GNUe/latest.html, accessed July 2006.

patches and initial operational/test results drawn from discussion forums, online chat

transcripts, and related online artifacts [16].

Other common informalisms include (vi) scenarios of usage as linked Web pages

or screenshot galleries, (vii) how-to guides, (viii) to-do lists, (ix) Frequently Asked

Questions, and other itemized lists, and (x) project Wikis, as well as (xi) traditional

system documentation and (xii) external publications [e.g., 24, 25]. OSS (xiii)

project property licenses (whether to assert collective ownership, transfer copyrights,

insure “copyleft,” or some other reciprocal agreement) are documents that also help

to define what software or related project content are protected resources that can

subsequently be shared, examined, modified, and redistributed. Finally, (xiv) open

software architecture diagrams, (xv) intra-application functionality realized via

scripting languages like Perl and PhP, and the ability to either (xvi) incorporate

externally developed software modules or “plug-ins”, or (xvii) integrate software

modules from other OSSD efforts, are all resources that are used informally, where

or when needed according to the interests or actions of project participants.

All software informalisms are found or accessed from (xix) project related Web

sites or portals. These Web environments are where most OSS software informalisms

can be found, accessed, studied, modified, and redistributed [57]. A Web presence

helps make visible the project's information infrastructure and the array of

information resources that populate it. These include FOSSD multi-project Web sites

(e.g., SourgeForge.net, Savanah.org, Freshment.org, Tigris.org, Apache.org,

Mozilla.org), community software Web sites (PhP-Nuke.org), and project-specific

Web sites (e.g., www.GNUenterprise.org), as well as (xx) embedded project source

code Webs (directories), (xxi) project repositories (CVS [24] or Subversion), and

(xxii) software bug reports [31] and (xxiii) issue tracking data base like Bugzilla

[http://www.bugzilla.org/]. Last, giving the growing global interest in online social

networking, it is not surprising to find increased attention to documenting various

kinds of social gatherings and meetings using (xxiv) social media Web sites (e.g,

YouTube, Flickr, MySpace, etc.) where FOSS developers, users, and interested

others come together to discuss, debate, or work on FOSSD projects, and to use these

online media to record, and publish photographs/videos that establish group identity

and affiliation with different FOSSD projects.

Software informalisms as online artifacts which developers employ as their

online workspaces are where and in what FOSSD is organized, captured, reviewed,

and managed. Accordingly, these informalisms serve as affordances that facilitate,

enculturate, and document collaborative work in FOSSD projects.

15.3.4 Skilled, self-organizing, and self-managed software developers

Developing complex software modules for FOSS applications requires skill and

expertise in a target application domain. For example, contributing to a FOSSD

project like Filezilla [http://filezilla.sourceforge.org] requires knowledge and skill in

handling file transfer states, actions, and protocols. Developing FOSS modules or

applications in a way that enables an open architecture requires a base of prior

experience in constructing open systems. The skilled use of project management

tools for tracking and resolving open issues, and also for bug reports contribute to the

development of such system architecture [51].

FOSS developers organize their work as a virtual organizational form [7, 18, 48]

that seems to differ from what is common to in-house, centrally managed software

development projects, which are commonly assumed in traditional SE textbooks. In

the decentralized virtual organization of a large ongoing FOSSD project like the

Apache.org or Mozilla.org, a hierarchical role/skill-based meritocracy [22, 6, 34] can

arise. In such a meritocracy, there is no proprietary software development

methodology or standard tool suite that all developers must employ, but critical

decisions for what to do (e.g., overall system design) and how to do it will follow

from respected core developers [cf. 51]. Similarly, there are few explicit rules about

what development tasks should be performed, who should perform them, when, why,

or how. However, this is not to say there are no rules that serve to govern the project

or collective action within it.

FOSS project participants self-organize around the expertise, reputation, and

accomplishments of core developers, secondary contributors, and tertiary reviewers

and other peripheral users [9, 38]. FOSSD participants nearer the core have greater

control and discretionary decision-making authority, compared to those further from

the core [cf. 6, 9, 38]. Subsequently, core developers are expected to provide

guidance, example artifacts, routinely use FOSSD coordination tools (e.g.

CVS/Subversion, Bugzilla), and make critical decisions meritocratically. Together

these afford collaborative FOSSD. Similarly, other participants must be able to both

learn from and contribute to the efforts of the core developers. Together these realize

a virtual, meritocratic, or self-managed form of decentralized software project

management [7, 58].

15.3.5 Discretionary time and effort of developers

Are FOSS developers working for "free" or for advancing their career and

professional development? Following the survey results of Hars and Ou [28] and

others [23, 27], there are many personal and professional career oriented reasons for

why participants will contribute their time and effort to the sometimes difficult and

demanding tasks of software development. Results from case studies in free software

projects like GNUenterprise.org appear consistent with these observations [18, 19,

60]. These include self-determination, peer recognition, project affiliation or

identification, and self-promotion, as well as belief in the inherent value of free

software [cf. 11, 12, 25]. Core developers are expected to provide example through

their own work practices, artifact contributions, and virtual project management style

that other participants can observe, acknowledge, and learn from in ways that

continue to afford collaborative FOSSD over time. Accordingly, the discretionary

time, skill and effort of FOSS developers commit to their FOSSD project give rise to

increased opportunity to collaborate, and increased collaborative activity can give

rise to increased commitment of discretionary time and effort.

15.3.6 Trust and social accountability mechanisms

Developing complex FOSS source code and applications requires trust and

accountability among project participants. Though trust and accountability in a

FOSSD project may be invisible resources, ongoing software and project

development work occur only when these intangible resources and mechanisms for

social control are present. Actions that embody trust and accountability arise in

many forms. They include (a) assuming ownership or responsibility of a project

software module, (b) voting on the approval of individual action or contribution to

ongoing project software [22], (c) shared peer reviewing [2, 11, 12], and (d)

contributing gifts [3] that are reusable and modifiable common goods [49]. They also

arise through the project's recognition of a developer's status, emerging reputation,

and migration from peripheral roles to core contributor [34]. The ways and means

through which FOSS developers exercise trust and social accountability mechanisms

act to afford, build, and sustain collaborative work practices in FOSSD projects.

15.4 Cooperation, coordination, and control in FOSS projects

Getting software developers to work together, even when they desire to cooperate

is not without its challenges for coordinating and controlling who does what when,

and to what they do it to. Conflicts arise in both FOSSD [18, 33] and traditional

software development projects [56], and finding ways to resolve conflicts becomes

part of the cost (in terms of social capital) that must be incurred by FOSS developers

for development progress to occur. Minimizing the occurrence, duration, and

invested effort in such conflicts quickly becomes a goal for the core developers in an

FOSSD project. Similarly, finding tools and project organizational forms that

minimize or mitigate recurring types of conflicts also becomes a goal for

experienced core developers. Focus of this section is thus directed to examining how

different tools, artifacts, and socio-technical interaction practices are employed to

enable FOSS developers to self-organize and govern project activities in an effective

and adaptive manner.

Software version control tools such as the concurrent versions system, CVS--itself

an FOSS system and document base [24]--have been widely adopted for use within

FOSS projects [cf. 11, 12, 21, 25]. Tools like CVS are being used as both (a) a

logically centralized mechanism for coordinating and synchronizing FOSS

development, as well as (b) an online venue for mediating control over what

software enhancements, extensions, or architectural revisions will be checked-in and

made available for check-out throughout the decentralized project as part of the

publicly released version. In addition, the FOSS architecture the project organizes

itself about may commonly be expressed through informal access/update rules and

file/directory archiving schemes that are coded and agreed to by FOSS code

contributors [cf. 51].

FOSSD projects teams can take the organizational form of a meritocracy [cf. 22,

58] operating as a dynamically organized virtual enterprise [7, 18, 48]. A layered

meritocracy is a hierarchical organizational form that centralizes and concentrates

certain kinds of authority, trust, and respect for experience and accomplishment

within the team [cf. 6]. Such an organizational form also makes administrative

governance more tractable and suitable, especially when a FOSS project seeks to

legally constitute a non-profit foundation to better address its legal concerns and

property rights [49]. However, it does not necessarily imply the concentration of

universal authority into a single individual or directorial board, since decision-

making may be shared among core developers who act as peers at the top layer, and

they may be arrayed into overlapping groups with other project contributors with

different responsibilities and interest areas [cf. 34].

Traditional software project management stresses planning, staffing, budget and

schedule control activities. Virtual project management exists within FOSS

communities, for example within projects developing FOSS-based computer games

[58], to enable control via project decision-making, Web site administration, and

administration of CVS/Subversion repositories (or other similar source code control

tools). VPM requires multiple people to act in the roles of team leader, sub-system

manager, or system module owner in a manner that may be short-term or long-term,

based on their skill, accomplishments, availability and belief in ongoing project

development. The implied requirement for VPM can be seen within Fig. 3, from the

FOSS project developing Planeshift, a free massively multiplayer online role-playing

game. Similarly, VPM exists to mobilize and sustain the use of privately owned

resources (e.g., Web servers, network access, site administrator labor, skill and

effort) that are made available for shared use or collective reuse by the ongoing

project [cf. 2, 60].

To be a leader you must pass the approval of the
director. Before that you will be considered a W.T.B.
(Want To Be) Leader and only after proving that you have
the right skills and dedication to the project you will
officially become a leader.

There's one leader for each department and he can have
also one co-leader helping in his job. He will ensure
progress in his department completing the most important
tasks in his area and will organize work of other
members. He is the primary reference for development.
Required Skills:
 * Strong committment to the project.
 * Good skill to organize work of the Team.
 * Team leadership.
 * Good knowledge of the area in which he applies
The leader is the most important contributor of his
department! He will complete critical tasks, he will
always have job to do. His tasks are similar to the ones
of the members (see below in the section of a specific
department). He will also manage work of other guys.

Fig. 3. Description of virtual project management skills implied for a Team Leader.

Source: http://www.planeshift.it/recruitment.html, accessed October 2008.

Many FOSSD projects also post guidelines for how to report and discuss bugs,

unintended features, or flaws in the current FOSS system release. These guidelines

are embodied in online artifacts that developers follow in ways that suggest they

have elevated certain informalisms into community norms (see Fig. 1) that act to

encourage or control appropriate behavior within FOSSD projects.

Thus, a variety of socio-technical arrangements are put into motion in a FOSSD

project in ways that encourage developers to cooperate, coordinate, and control their

development activities through tools, informalisms, shared resources, and

contribution practices. These collectively afford a lightweight centralized project

management scheme through decentralized collaborative FOSSD practices.

15.5 Alliance formation, inter-project social networking and
community development

How does the gathering of FOSS developers give rise to a more persistent self-

sustaining organization or project community? Through choices that developers

make for their participation and contribution to a FOSSD project, they find that there

are like-minded individuals who also choose to participate and contribute to a

project. These software developers find and connect with each other through FOSSD

Web sites and online discourse (e.g., threaded discussions on bulletin boards) [45],

and they find they share many technical competencies, values, and beliefs in

common [7, 18, 20]. This manifests itself in the emergence of an alliance of

collaborating FOSSD projects that share either common interests or development

methods in projects that adopt a given FOSS system for subsequent application

development, or in a occupational network of FOSS developers [18].

Examples of FOSS multi-project alliances are readily recognized. First, there are

those that have established non-profit corporations or foundations like Apache,

Mozilla, Gnome, Perl, Eclipse, NetBeans, or Free Software Foundation [49]. Second,

there are those organized and supported by for-profit corporations by Sun

Microsystems (e.g., OpenOffice), Hewlett-Packard, IBM, Nokia, and others [13,

52]. Third, other FOSS multi-project networks arise as the result of the architectural

integration of multiple, disparate FOSS systems into larger, more encompassing

system of systems [60]. Fourth, some FOSS projects produce systems that are

platforms, frameworks or libraries of components which in turn give rise to

application projects which are developed using these core systems. The Open

Graphics Rendering Engine (OGRE at http://www.ogre3d.org), for instance, serves

as the basis for dozens of user-led projects that build applications (like computer

games) using OGRE. These projects both depend on OGRE project, as well as the

network of other application projects, for FOSS code, updates, development

expertise and advice. In turn, the peripheral participation of FOSS developers in

these application projects can supplement the base of collaborating developers and

users of the core systems.

Becoming a central node in a social network of software developers that

interconnects multiple FOSS projects is also a way to accumulate social capital and

recognition from peers. However, it also enables the merger of independent FOSS

systems into larger composite ones that gain the critical mass of core developers to

grow more substantially and attract ever larger user-developer communities [42, 59].

Multi-project clustering and interconnection enables small FOSS projects to come

together as a larger social network with the critical mass [43] needed for their

independent systems to be merged and experience more growth in size, functionality,

and user base. It also enables shared architectural dependencies to arise (perhaps

unintentionally) in the software components or sub-systems that are used/reused

across projects [cf. 9, 32, 51]. FOSSD Web sites also serve as hubs that centralize

attention for what is happening with the decentralized development of the focal

FOSS system, its status, participants and contributors, discourse on pending/future

needs, etc. Subsequently, there is growing research interest in understanding,

modeling, and analyzing the social and technical networks of FOSS developers [9,

30, 41, 42]. Fig. 4 provides an example of a social network of FOSS developers

spanning five projects, but interlinked by just two developers.

Other studies [28, 35] indicate that upwards of two out of three OSS developers

contributes to two or more FOSSD projects, and perhaps as many as 5% contribute

to 10 or more FOSSD projects. The density and interconnectedness of this social

networking characterizes the membership and in-breeding of the FOSS movement

[15,17,19], but at the same time, the multiplicity of projects reflects its segmentation

into specific socio-technical FOSSD domains.

All of these conditions for inter-project networking and alliance formation point

to new kinds of requirements for collaborative software development—for example,

network community building requirements, community software requirements, and

community information sharing system (Web site and interlinked communication

channels for email, forums, and chat) requirements [46, 57]. These requirements may

entail both functional and non-functional requirements, but they will most typically

be expressed using FOSS informalisms, rather than using formal notations based on

Fig. 4. A social network linking 24 FOSS developers in five projects through two
“linchpin” developers into a larger multi-project community [42].

some system of mathematical logic known by few. Similarly, sharing beliefs, values,

communications, artifacts and tools among FOSS developers enables not only

cooperation, but also provides a basis for “common ground,” shared mental models

and experiences, camaraderie, and learning [cf. 20, 31, 38].

As such, the emergence of alliances among multiple, internetworked FOSSD

projects helps to sustain and expand the viability of each participating project, along

with the community of contributing developers (who are also users) and peripheral

users. Together, they collectively afford collaborative software development

connections and opportunities that transcend the boundaries of the constituent

FOSSD projects.

15.6 FOSS as a multi-project software ecosystem

As noted above, many FOSSD projects have become interdependent through the

networking of software developers, development artifacts, common tools, shared

Web sites, and computer-mediated communications. What emerges from this is a

kind of multi-project software ecosystem, whereby ongoing development and

evolution of one FOSS system gives rise to propagated effects, architectural and

integration dependencies, functional conflicts, or vulnerabilities in one or more of the

projects linked to it [33]. Fig. 5 depicts part of the FOSS ecosystem that supports a

Web-based information infrastructure that interlinks Mozilla/Firefox Web browsers

(and also Internet Explorer), Apache Web servers, NetBeans interactive development

environment, Java development community (JCP), and others.

Interdependencies that span a software ecosystem are most apparent when

FOSSD projects share source code modules, components, or sub-systems. In such

situations, the volume of source code of an individual FOSSD project may appear to

Fig. 5. A depiction of a multi-project software ecosystem that supports Web-based
information infrastructures [33].

grow at an exponential rate when modules, components, or sub-systems are

integrated in whole into an existing FOSS system [8, 35, 59, 62, 67]. Such an

outcome, which economists and political scientists refer to as a “network externality”

[50], may be due to the import or integration of shared components, or the

replication and tailoring of device, platform, or internationalization specific code

modules. Such system growth patterns therefore seem to challenge the well-

established laws of software evolution [39, 40]. Thus, software evolution in a multi-

project FOSS ecosystem is a collaborative evolution (“co-evolution”) process

spanning interrelated FOSSD projects, people, artifacts, tools, code, and project-

specific activities [59, 69].

It may also be useful to characterize a key evolutionary dynamic of FOSS as

reinvention [cf. 58]. Reinvention is enabled through the sharing, examination,

modification, and redistribution of concepts and techniques that have appeared in

closed source systems, research and textbook publications, conferences, and the

interaction and discourse between developers and users across multiple FOSS

projects. Thus, reinvention is a continually emerging source for how to recreate,

improve or invent new software functionality and quality in FOSS, as well as also a

collaborative approach to organizational learning in FOSS projects [31, 38]. Said

differently, reinvention is an effective way to learn how to innovate and invent, by

re-producing and re-experiencing the technical problems, dead-ends, anomalous

bugs, and challenges that others before them may have done. Reinvention is a way to

(virtually) collaborate with those who have come before, which has long been a

pedagogical strategy for education and learning.

Last, the layered meritocracies that arise in FOSS projects [34] tend to embrace or

cultivate incremental innovations such as evolutionary mutations to an existing

software code base, over radical innovations. These incremental mutations are most

common in contributed revisions incorporated into daily/nightly builds of FOSS

code. Radical software system changes might be advocated by a minority of code

contributors who challenge the status quo of the core developers. However, their

success in such advocacy usually implies creating and maintaining a separate version

of the system through forking. Forking entails creating a duplicate copy of

architected source code, then modifying or refactoring into a distinct new

architectural configuration. Such forking may split/fragment a FOSSD project team

into distinct sets of collaborators, which may results in no group having a sufficient

critical mass of core developers. Thus, incremental FOSS mutations tend to win out

over time since they more easily afford and sustain current collaboration patterns.

Such affordance limits major FOSS system changes to arise slowly through

meritocratic coordination and consensus building that give rise to new system

versions with alternative architectural configurations [cf. 51, 58, 59].

15.7 Discussion

One discussion topic that immediately may come to mind is whether the

collaboration affordances found in the FOSSD studies cited above might also be

found in SE projects. At least four views of this topic can be considered.

First, we do not yet have in hand such a review of empirical studies of SE projects

that identifies the collaboration affordances found therein, though such studies are

starting to appear [cf. 29]. Though it might be an academic exercise to examine

common SE textbooks to see what affordances for collaborative SE they might

suggest or the reader might hypothesize, the point of this chapter was to focus review

and examination of empirical studies of FOSSD to find what collaboration

affordances are observed in these studies. So a fair and balanced comparison

grounded in empirical studies is not yet possible due to a lack of such studies in SE

projects.

Second, it is unclear to what extent such affordances found in SE projects that

build proprietary (closed source) software systems in a centrally managed and

controlled way, would be readily comparable to FOSSD projects that are self-

organized and self-managed in a decentralized way. In traditional SE projects,

developers are generally assumed to be collocated (although there are exceptions,

like subcontracted, outsourced, or offshore development), while in FOSSD projects,

developers are generally assumed to not be collated (with few exceptions like

hackathons). Thus, while such an investigation might produce some sharp

comparisons and keen insights, this is a matter that requires further empirical study.

Last, it is unclear whether there are studies of closed source SE projects that are

organized as internetworked alliances, though it seems likely that networked multi-

projects exist, though perhaps within the boundaries of a large corporate framework,

or behind the corporate firewall [cf. 13].

15. Conclusions

This chapter provides a multi-level analysis of collaboration affordances that

support free/open source software development work, through a review of dozens of

empirical studies of FOSSD. Various kinds of collaboration affordances were

identified with respect to individual participation in FOSSD projects, resources and

capabilities that FOSS developers bring to a project, how FOSS developers

cooperate and coordinate decentralized development activities, how multiple FOSSD

projects coalesce into inter-networked alliances, and how FOSS ecosystems give rise

to co-evolutionary patterns of growth and diversity. FOSSD can be understood as a

socio-technical approach to collaborative software development supported through

an array of collaboration affordances. The development of FOSS systems entails

both the collaborative development of a networked project community, as well as the

collaborative development of a network of software components and online artifacts.

Consequently, some topics for further study can also be identified from this review.

First, it is possible to engage in systematic case studies of collaboration

affordances that arise in comparable set of FOSSD projects. The findings reviewed

in this chapter span multiple studies with different research methods, tools, data sets,

and discipline-specific analytical lens [cf. 26, 30]. As collaboration affordances

supporting software development are a relatively new topic of study, then it is

appropriate to consider examining multiple FOSSD projects close up and in-depth to

determine what affordances enable different kinds of collaborative activities in

different development task situations. Case studies indicate such studies may rely

more on qualitative, ethnographic field study and participant observation (i.e.,

become an active participant in one or more FOSSD projects to observe or discover

collaboration affordances in action) [26, 55, 61].

Second, it may be possible to develop ways and means for mapping, visualizing,

or animating collaboration affordances in action. As affordances associate properties

of objects and actors that give rise to interactions in a situated environment, then it

may be possible to identify and graphically portray these data elements in various

kinds of networked representations [61]. There is a growing trend in studies focusing

on social networks or technical dependencies within FOSSD projects to render their

data and associations as different kinds of networks [10]. As such, how best to

visualize collaboration affordances would be an intriguing avenue for exploration.

Last, as suggested in the Discussion section, there are numerous opportunities to

study collaboration affordances within traditional software engineering projects.

Similarly, there is need to systematically compare collaboration affordances found in

FOSSD and SE projects so as to see what's similar, what's different, and why. The

study of collaboration affordances in projects that seek to actively embrace and

practice both FOSSD and SE is mostly unexplored territory, and many such projects

can be found at the Tigris.org “open source software engineering” Web portal.

Finally, as the review in this chapter indicates that affordances for collaborative

software development can be analyzed at different/multiple levels of analysis, then

multiple analytical lenses are now available to help focus new studies of

collaborative software engineering. This chapter marks a starting point for further
study.

Acknowledgments. The research described in this chapter has been supported by

grants #0534771 and #0808783 from the National Science Foundation; also a grant

from the Center for the Edge at the Naval Postgraduate School. No endorsement

implied. Contributors to this research include Chris Jensen, Margaret Elliott, John

Noll, Mark Ackerman, and others at the Institute for Software Research at the

University of California, Irvine.

References

[1] Anderson, R. and Sharrock, W. (1992), Can Organisations Afford Knowledge?

Computer Supported Cooperative Work, 1(3), 143-616.

[2] Benkler, Y. The Wealth of Networks: How Social Production Transforms Markets

and Freedom, (2006). Yale University Press, New Haven, CT.

[3] Bergquist, M. and Ljungberg, J., (2001). The power of gifts: organizing social

relationships in open source communities, Info. Systems J., 11, 305-320.

[4] Churchill, E.F. and Bly, S. (1999). It's all in the words: supporting work activities

with lightweight tools, Proc. ACM Conf. Supporting Group Work, 40-49,

Phoenix, AZ.

[5] Couger, J. D., and Zawacki, R. A., (1980). Motivating and managing computer

personnel, John and Wiley and Sons, New York.

[6] Crowston, K. and Howison, J., (2006). Hierarchy and centralization in free and

open source software team communications, Knowledge Technology & Policy,

18(4), Winter, 65-85.

[7] Crowston, K., and Scozzi, B., (2002). Open Source Software Projects as Virtual

Organizations: Competency Rallying for Software Development, IEE

Proceedings--Software, 149(1), 3-17.

[8] Deshpande, A. and Riehle, D. (2008). The Total Growth of Open Source, in IFIP

Intern. Federation Info. Processing, Vol. 275; Open Source Development,

Community and Quality; B. Russo, E. Damiani, S. Hissan, B. Lundell, and G.

Succi (Eds.), Boston, Springer, 179-209.

[9] de Souza, C. R. B., Froehlich, J., and Dourish, P. (2005). Seeking the Source:

Software Source Code as a Social and Technical Artifact. Proc. ACM Intern.

Conf. Supporting Group Work (GROUP 2005), Sanibel Island, Florida, 197-206.

[10] de Souza, C. R. B., Quirk, S., Trainer, E., Redmiles, D., (2007). Supporting

Collaborative Software Development through Visualization of Social and

Technical Dependencies, Proc. ACM Conf. Supporting Group Work (Group07),

Sanibel, Island, FL, 147-156.

[11] DiBona, C., Cooper, D., and Stone, M., (2005). Open Sources 2.0, O’Reilly

Media, Sebastopol, CA.

[12] DiBona, C., Ockman, and Stone, M., (1999). Open Sources: Voices from the

Open Source Revolution, O’Reilly Media, Sebastopol, CA.

[13] Dinkelacker, J., Garg, P.K., Miller, R., and Nelson, D. (2002). Progressive Open

Source, Proc. 24th Intern. Conf. Software Engineering, Orlando, FL, 177-184.

[14] Ducheneaut, N. (2005). Socialization in an Open Source software community: A

socio-technical analysis. Computer Supported Cooperative Work, 14(4), 323-368.

[15] Elliott, M., (2008) Examining The Success of Computerization Movements in the

Ubiquitous Computing Era: Free and Open Source Software Movements, in

Elliott, M. and K.L. Kraemer, Computerization Movements and Technology

Diffusion, Information Today, Inc.

[16] Elliott, M., Ackerman, M., and Scacchi, W. (2007). Knowledge Work Artifacts:

Kernel Cousins for Free/Open Source Software Development, Proc. ACM Conf.

Support Group Work (Group07), Sanibel Island, FL, 177-186.

[17] Elliott, M. and K.L. Kraemer, (Eds.), (2008). Computerization Movements and

Technology Diffusion, Information Today, Inc.

[18] Elliott, M. and Scacchi, W., (2005). Free Software Development: Cooperation

and Conflict in a Virtual Organizational Culture, in Koch, S. (Ed.), Free/Open

Source Software Development, IGI Publishing, Hershey, PA, 152-172.

[19] Elliott, M. and Scacchi, W., (2008) Mobilization of Software Developers: The

Free Software Movement, Information, Technology and People, 21(1), 4-33.

[20] Espinosa, J. A., Kraut, R.E., Slaughter, S. A., Lerch, J. F., Herbsleb, J. D.,

Mockus, A., (2002). Shared Mental Models, Familiarity, and Coordination: A

Multi-method Study of Distributed Software Teams. Intern. Conf. Information

Systems, Barcelona, Spain, December. 425-433.

[21] Feller, J., Fitzgerald, B., Hissam, S. and Lakhani, K. (2005), Perspectives on Free

and Open Source Software, MIT Press, Cambridge, MA.

[22] Fielding, R.T., Shared Leadership in the Apache Project. (1999).

Communications ACM, 42(4), 42-43.

[23] FLOSS (2002). Free/Libre and Open Source Software: Survey and Study, FLOSS

Final Report, http://www.flossproject.org/report/ .

[24] Fogel, K., (1999). Open Source Development with CVS, Coriolis Press,

Scottsdale, AZ.

[25] Fogel, K., (2005). Producing Open Source Software: How to Run a Successful

Free Software Project, O’Reilly Press, Sebastopol, CA.

[26] Gasser, L. and Scacchi, (2008), Towards a Global Infrastructure for

Multidisciplinary Studies of Free/Open Source Software, in IFIP Intern.

Federation Info. Processing, Vol. 275; Open Source Development, Community

and Quality; B. Russo, E. Damiani, S. Hissan, B. Lundell, and G. Succi, (Eds.),

Springer, Boston, 143-158.

[27] Hann, I-H., Roberts, J., Slaughter, S., and Fielding, R., (2002). Economic

Incentives for Participating in Open Source Software Projects, in Proc. Twenty-

Third Intern. Conf. Information Systems, 365-372.

[28] Hars, A. and Ou, S., (2002). Working for Free? Motivations for participating in

open source projects, Intern. J. Electronic Commerce, 6(3), 25-39.

[29] Herbsleb, J.D., Paulish, D.J. And Bass, M. (2005). Global software

development at Siemens: Experience from nine projects, Proc. 27th Intern.

Conf. Software Engineering, St. Louis, MO, 524-533.

[30] Howison, J., Conklin, M., and Crowston, K., (2006). FLOSSmole: A

Collaborative Repository for FLOSS Research Data and Analyses. Intern. J.

Internet Technology and Web Engineering, 1(3), 17-26.

[31] Huntley, C.L., (2003). Organizational Learning in Open-Source Software

Projects: An Analysis of Debugging Data, IEEE Trans. Engr. Management, 50,

485-493.

[32] Iannacci, F. (2005). Beyond Markets and Firms: The Emergence of Open Source

Networks, First Monday, 10(5).

[33] Jensen, C. and Scacchi, W., (2005). Process Modeling Across the Web

Information Infrastructure, Software Process — Improvement and Practice,

10(3), 255-272.

[34] Jensen, C. and Scacchi, W., (2007). Role migration and advancement processes in

OSSD projects: A comparative case study, in Proc. 29th Intern. Conf. Soft. Eng.,

ACM, Minneapolis, MN, 364-374, 2007.

[35] Koch S. (2005a). Evolution of Open Source Software Systems—A Large-Scale

Investigation, in Proc. 1st Intern, Conf. Open Source Systems (OSS2005),

Genoa, Italy.

[36] Kreijns, K. and Kirschner, P.A. (2001). The Social Affordances of Computer-

Supported Collaborative Learning Environments, Proc. 31st. ASEE/IEEE

Frontiers in Education Conference, TIF 12-17, Reno, NV.

[37] Lanzara, G.F. and Morner, M., (2005). Artifacts rule! How organizing happens in

open source software projects, in B. Czarniawska and T. Hernes (Eds.), Actor-

Network Theory and Organizing, Liber & Copenhagen Business School Press,

Malmo, Sweden, 197-206.

[38] Lave, J. and Wenger, E., (1991). Situated Learning: Legitimate Peripheral

Participation, Cambridge University Press, Cambridge, UK.

[39] Lehman, M.M., (1980). Programs, Life Cycles, and Laws of Software Evolution,

Proc. IEEE, 68, 1060-1078.

[40] Lehman, M.M., (2002). Software Evolution and Software Evolution Processes,

Annals of Software Engineering, 12, 275-309, 2002.

[41] Lopez-Fernandez, L., Robles, G., Gonzalez-Barahona, J.M., and Herraiz, I.,

(2006). Applying Social Network Analysis to Community-Driven Libre Software

Projects, Intern. J. Info. Tech. and Web Engineering, 1(3), 27-28.

[42] Madey, G., Freeh, V., and Tynan, R., (2005). Modeling the F/OSS Community: A

Quantitative Investigation, in Koch, S. (Ed.) Free/Open Source Software

Development, IGI Publishing, Hershey, PA, 203-221.

[43] Marwell, G. and Oliver, P., (1993). The Critical Mass in Collective Action: A

Micro-Social Theory. Cambridge University Press, Cambridge, England.

[44] Mockus, A., Fielding, R., & Herbsleb, J.D., (2002). Two Case Studies of Open

Source Software Development: Apache and Mozilla, ACM Trans. Software

Engineering and Methodology, 11(3), 309-346.

[45] Monge, P.R., Fulk, J., Kalman, M.E., Flanagin, A.J., Parnassa, C., and Rumsey,

S., (1998). Production of Collective Action in Alliance-Based Interorganizational

Communication and Information Systems, Organization Science, 9(3), 411-433.

[46] Mynatt, E.D., O'Day, V.L., Adler, A., and Ito, M. (1998). Network Communities:

Something Old, Something New, Something Borrowed,..., Computer Supported

Cooperative Work, 7(1), 123-156.2

[47] Norman, D. (1999). Affordances, Conventions, Design. Interactions, 6(3), 38–43.

[48] Noll, J. and Scacchi, W., (1999). Supporting Software Development in Virtual

Enterprises, J. Digital Information, 1(4), February,

http://jodi.tamu.edu/Articles/v01/i04/Noll/ .

[49] O’Mahony, S. (2003). Guarding the Commons: How Community Managed

Software Projects Protect their Work, Research Policy 32(7), 1179-1198.

[50] Ostrom, E., Eggertssons, T., and Calvert, R. (1990). Governing the Commons:

The Evolution of Institutions for Collective Action, Cambridge University Press,

Cambridge, UK.

[51] Ovaska, P., Rossi, M. and Marttiin, P. (2003). Architecture as a Coordination Tool

in Multi-Site Software Development, Software Process—Improvement and

Practice, 8(3), 233-247.

[52] Robles, G., Duenas, S., and Gonzalez-Baharona, J.M., (2007). Corporate

Involvement in Libre Software: Study of Presence in Debian Code over Time, in

Feller, J., Fitzgerald, B., Scacchi, W., and Sillitti, A. (Eds.), Open Source

Development, Adoption and Innovation, IFIP Vol. 234, Springer, Boston, 121-

132.

[53] Robles, G. and Gonzalez-Baharona, J.M., (2006a). Contributor Turnover in Libre

Software Projects, in Damiani, E., Fitzgerald, B., Scacchi, W., Scotto, M. and

Succi, G. (Eds.), Open Source Systems, IFIP Vol. 203, Springer, Boston. 273-286.

[54] Robles, G., Gonzalez-Baharona, J.M., and Merelo, J.J., (2006b). Beyond Source

Code: The importance of other artifacts in software development (a case study).

J. Systems and Software, 79(9), 1233-1248.

[55] Sack, W., Detienne, F., Ducheneaut, Burkhardt, Mahendran, D., and Barcellini,

F., A (2006). Methodological Framework for Socio-Cognitive Analyses of

Collaborative Design of Open Source Software, Computer Supported

Cooperative Work, 15(2/3), 229-250.

[56] Sawyer, S., (2001). Effects of intra-group conflict on packaged software

development team performance, Information Systems J., 11, 155-178, 2001.

[57] Scacchi, W., (2002). Understanding the Requirements for Developing Open

Source Software Systems, IEE Proceedings--Software, 149(1), 24-39.

[58] Scacchi, W., (2004). Free/Open Source Software Development Practices in the

Computer Game Community, IEEE Software, 21(1), 59-67.

[59] Scacchi, W., (2006). Understanding Free/Open Source Software Evolution, in

N.H. Madhavji, J.F. Ramil and D. Perry (Eds.), Software Evolution and

Feedback: Theory and Practice, John Wiley and Sons Inc, New York, 181-206.

[60] Scacchi, W. (2007). Understanding the Development of Free E-Commerce/E-

Business Software: A Resource-Based View, in S.K. Sowe, I. Stamelos, and I.

Samoladas (eds.), Emerging Free and Open Source Software Practices, IGI

Publishing, Hershey, PA, 170-190.

[61] Scacchi, W., Jensen, C., Noll. J. and Elliott, M., (2006). Multi-Modal Modeling,

Analysis and Validation of Open Source Software Development Processes,

Intern. J. Internet Technology and Web Engineering, 1(3), 49-63.

[62] Schach, S.R., Jin, B., Wright, D.R., Heller, G.Z., and Offutt, A.J., (2002).

Maintainability of the Linux Kernel, IEE Proceedings – Software, 149(1), 18-23.

[63] Sommerville, I., (2006). Software Engineering, 8th Edition, Addison-Wesley, New

York.

[64] von Hippel, E. (2005). Democratizing Innovation, MIT Press, Cambridge, MA.

[65] von Hippel, E., and von Krogh, G., (2003). Open Source Software and the

“Private-Collective” Innovation Model: Issues for Organization Science,

Organization Science, 14(2), 209-223.

[66] von Krogh, G., Spaeth, S., and Lakhani, K., (2003). Community, Joining, and

Specialization in Open Source Software Innovation: A Case Study, Research

Policy, 32(7), 1217-1241.

[67] Weiss, M., Moroiu, G. and Zhao, P., (2006). Evolution of Open Source

Communities, in Damiani, E., Fitzgerald, B., Scacchi, W., Scotto, M. and Succi,

G., (Eds.), Open Source Systems, IFIP Vol. 203, Springer, Boston., 21-32.

[68] Yamauchi, Y., Yokozawa, M., Shinohara, T., and Ishida, T., (2000). Collaboration

with Lean Media: How Open-Source Software Succeeds, Proc. Computer

Supported Cooperative Work Conf. (CSCW’00), Philadelphia, PA, ACM Press,

329-338.

[69] Ye, Y., Nakajoki, K., Yamamoto, Y., and Kishida, K., The Co-Evolution of

Systems and Communities in Free and Open Source Software Development, in

Koch, S. (Ed.), Free/Open Source Software Development, IGI Publishing,

Hershey, PA, 59-82. 2005.

